metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Di­chlorido[2-di­phenyl­phosphanyl-N-(pyridin-3-ylmeth­yl)benzyl­idenamine-κ2P,N]platinum(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 22 September 2011; accepted 29 September 2011; online 5 October 2011)

The title compound, [PtCl2(C25H21N2P)], is a PtII complex with an NPCl2 coordination sphere in which the metal is coordinated to the imino N and phosphane P atoms of the ligand and to two chloride ions. The PtII atom is in a distorted square-planar environment and is bound to the ligand via the P and amine N atoms in a cis fashion, with the chlorine atoms located at the two remaining sites.

Related literature

For related structures with related ligands, see: Chiririwa et al. (2011[Chiririwa, H., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m608-m609.]); Ghilardi et al. (1992[Ghilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. pp. 3371-3376.]); Sanchez et al. (1998[Sanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165-169.], 2001[Sanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100-104.]). For Pt—N and Pt—P bond lengths in imino­phosphane platinum(II) complexes, see: Ankersmit et al. (1996[Ankersmit, H. A., Loken, B. H., Kooijman, H., Spek, A. L., Vrieze, K. & van Koten, G. (1996). Inorg. Chim. Acta, 252, 141-155.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C25H21N2P)]

  • Mr = 646.40

  • Triclinic, [P \overline 1]

  • a = 9.9684 (14) Å

  • b = 10.4129 (15) Å

  • c = 12.526 (3) Å

  • α = 97.687 (5)°

  • β = 98.363 (5)°

  • γ = 114.499 (3)°

  • V = 1143.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.46 mm−1

  • T = 173 K

  • 0.07 × 0.06 × 0.04 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.671, Tmax = 0.802

  • 16090 measured reflections

  • 4994 independent reflections

  • 4177 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.062

  • S = 1.01

  • 4994 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N1 2.040 (4)
Pt1—P1 2.1999 (13)
Pt1—Cl2 2.2840 (12)
Pt1—Cl1 2.3806 (14)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, platinum complexes with iminophosphane ligands of the N-[(2-diphenylphosphanyl)benzylidene]amine type have been used as catalysts (or catalyst precursors) in a variety organic reactions. To the best of our knowledge, no structures have been determined so far, concerning the free ligand -(2(diphenylphosphanyl) benzylidene) (phenyl) methanamine, where the potentially bidentate ligand is chelated to the metal through the phosphorus and imino nitrogen atoms (Fig. 1). The platinum is in a square-planar environment and it is bound to the ligand using a k2P,N interaction in a cis fashion, with the chlorides located at the two remaining sites. However the square-planar geometry of the platinum environment is distorted with the angles being less than 180°, N(1)-Pt(1)-Cl(2) and P(1)-Pt(1)-Cl(1) of 176.70 (12)° and 178.20 (5)°, respectively. The average Pt-N and Pt-P bond lengths of 2.040 (4) and 2.1999 (13) Å, respectively are in the range expected for iminophosphane platinum(II) complexes, Ankersmit et al.,1996. The torsion angle Pt-P-C(9)-C(8) = -36.5 (4)° indicates that the =CHC6H4- unit lies below the PtCl2(P,N) plane. Selected bond lengths are given in Table 1.

Related literature top

For related structures with related ligands, see: Chiririwa et al. (2011); Ghilardi et al.(1992); Sanchez et al. (1998, 2001). For Pt—N and Pt—P bond lengths in iminophosphane platinum(II) complexes, see: Ankersmit et al. (1996).

Experimental top

To a dry CH2Cl2 (10 ml) solution of the precursor [Pt(COD)Cl2] was added an equimolar amount of (2(diphenylphosphanyl) benzylidene) (phenyl)methanamine in CH2Cl2 (10 ml) solution, and the reaction was stirred at room temperature for 1 hr. The yellow solution was concentrated under reduced pressure to half volume and the addition of ca 10 ml hexane caused precipitation of the complex, which was filtered off, washed with Et2O and dried under vacuum for 4 hrs. Yellow crystals used in the X-ray diffraction studies were grown by slow evaporation of a solution of the compound in a CH2Cl2-hexane solution at room temperature.

Refinement top

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for iPr CH, C—H = 0.95 Å for CH and C—H = 0.98 for Me groups.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids).
Dichlorido[2-diphenylphosphanyl-N-(pyridin-3-ylmethyl)benzylidenamine- κ2P,N]platinum(II) top
Crystal data top
[PtCl2(C25H21N2P)]Z = 2
Mr = 646.40F(000) = 624
Triclinic, P1Dx = 1.878 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9684 (14) ÅCell parameters from 16090 reflections
b = 10.4129 (15) Åθ = 2.2–27.1°
c = 12.526 (3) ŵ = 6.46 mm1
α = 97.687 (5)°T = 173 K
β = 98.363 (5)°Block, colourless
γ = 114.499 (3)°0.07 × 0.06 × 0.04 mm
V = 1143.1 (4) Å3
Data collection top
Bruker Kappa DUO APEXII
diffractometer
4994 independent reflections
Radiation source: fine-focus sealed tube4177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
0.5° ϕ scans and ωθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 127
Tmin = 0.671, Tmax = 0.802k = 1113
16090 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0217P)2]
where P = (Fo2 + 2Fc2)/3
4994 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[PtCl2(C25H21N2P)]γ = 114.499 (3)°
Mr = 646.40V = 1143.1 (4) Å3
Triclinic, P1Z = 2
a = 9.9684 (14) ÅMo Kα radiation
b = 10.4129 (15) ŵ = 6.46 mm1
c = 12.526 (3) ÅT = 173 K
α = 97.687 (5)°0.07 × 0.06 × 0.04 mm
β = 98.363 (5)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
4994 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4177 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.802Rint = 0.058
16090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.01Δρmax = 0.87 e Å3
4994 reflectionsΔρmin = 1.02 e Å3
280 parameters
Special details top

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50mm; combination of ϕ and ω scans of 0.5°, 10s per °, 2 iterations.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.30212 (2)0.26883 (2)0.257890 (16)0.02056 (6)
Cl10.43855 (18)0.18884 (16)0.38298 (11)0.0407 (4)
Cl20.28642 (15)0.09332 (13)0.11921 (11)0.0312 (3)
P10.18282 (14)0.34845 (13)0.14220 (10)0.0191 (3)
N10.3050 (4)0.4171 (4)0.3836 (3)0.0250 (9)
N20.1190 (6)0.2951 (6)0.5265 (5)0.0499 (14)
C10.1057 (6)0.2892 (6)0.4810 (4)0.0285 (12)
C20.0286 (7)0.3573 (6)0.5293 (5)0.0407 (15)
H20.08540.45550.56710.049*
C30.1960 (7)0.1592 (7)0.4729 (5)0.0488 (17)
H30.30160.11330.46930.059*
C40.1333 (7)0.0797 (6)0.4219 (5)0.0499 (17)
H40.19370.01860.38540.060*
C50.0210 (7)0.1468 (6)0.4251 (5)0.0445 (16)
H50.06750.09550.38930.053*
C60.2735 (6)0.3698 (6)0.4900 (4)0.0289 (12)
H7A0.32210.30670.50620.035*
H7B0.31730.45570.55170.035*
C70.3209 (6)0.5449 (5)0.3819 (4)0.0273 (12)
H70.32360.60030.44960.033*
C80.3357 (5)0.6170 (5)0.2876 (4)0.0212 (11)
C90.2770 (5)0.5450 (5)0.1774 (4)0.0212 (11)
C100.2852 (6)0.6262 (5)0.0963 (4)0.0276 (12)
H100.24370.57830.02090.033*
C110.3523 (6)0.7740 (5)0.1242 (4)0.0289 (12)
H110.36020.82770.06780.035*
C120.4088 (6)0.8461 (5)0.2341 (4)0.0299 (12)
H120.45270.94870.25290.036*
C130.4012 (6)0.7687 (5)0.3156 (4)0.0273 (12)
H130.44010.81780.39100.033*
C140.1730 (6)0.3018 (5)0.0046 (4)0.0214 (11)
C150.3084 (6)0.3303 (5)0.0391 (4)0.0290 (12)
H150.40120.36650.01380.035*
C160.3057 (7)0.3050 (6)0.1516 (5)0.0365 (14)
H160.39720.32560.17550.044*
C170.1718 (7)0.2506 (6)0.2277 (5)0.0404 (15)
H170.17150.23470.30420.049*
C180.0362 (7)0.2182 (6)0.1947 (5)0.0386 (14)
H180.05700.17680.24780.046*
C190.0400 (6)0.2477 (5)0.0823 (4)0.0289 (12)
H190.05140.23000.05900.035*
C200.0091 (5)0.2964 (5)0.1564 (4)0.0217 (11)
C210.0639 (6)0.3960 (5)0.1868 (4)0.0291 (12)
H210.00010.49680.20010.035*
C220.2132 (6)0.3464 (6)0.1973 (5)0.0371 (14)
H220.25040.41430.21840.045*
C230.3071 (6)0.2025 (6)0.1780 (5)0.0387 (14)
H230.40890.17110.18510.046*
C240.2551 (6)0.1018 (6)0.1481 (5)0.0358 (14)
H240.32140.00160.13400.043*
C250.1056 (6)0.1471 (5)0.1384 (4)0.0304 (12)
H250.06890.07810.11990.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02045 (11)0.02191 (10)0.01956 (11)0.01090 (8)0.00208 (8)0.00264 (7)
Cl10.0548 (10)0.0505 (9)0.0257 (7)0.0386 (8)0.0057 (7)0.0005 (7)
Cl20.0376 (8)0.0252 (6)0.0298 (7)0.0181 (6)0.0007 (6)0.0025 (6)
P10.0175 (7)0.0197 (6)0.0200 (7)0.0081 (5)0.0040 (6)0.0044 (5)
N10.020 (2)0.029 (2)0.025 (2)0.011 (2)0.002 (2)0.0067 (19)
N20.044 (3)0.048 (3)0.064 (4)0.025 (3)0.020 (3)0.010 (3)
C10.043 (3)0.033 (3)0.015 (3)0.020 (3)0.010 (3)0.014 (2)
C20.054 (4)0.038 (3)0.037 (3)0.027 (3)0.012 (3)0.006 (3)
C30.036 (4)0.062 (4)0.057 (4)0.025 (3)0.021 (3)0.021 (4)
C40.049 (4)0.036 (3)0.057 (4)0.010 (3)0.021 (4)0.004 (3)
C50.048 (4)0.037 (3)0.049 (4)0.018 (3)0.020 (3)0.001 (3)
C60.033 (3)0.036 (3)0.024 (3)0.019 (3)0.009 (3)0.011 (2)
C70.027 (3)0.026 (3)0.024 (3)0.010 (2)0.004 (2)0.001 (2)
C80.014 (3)0.029 (3)0.019 (3)0.010 (2)0.003 (2)0.005 (2)
C90.014 (3)0.022 (2)0.025 (3)0.007 (2)0.003 (2)0.001 (2)
C100.029 (3)0.029 (3)0.025 (3)0.013 (2)0.006 (2)0.008 (2)
C110.027 (3)0.030 (3)0.032 (3)0.013 (2)0.008 (3)0.015 (2)
C120.031 (3)0.019 (3)0.036 (3)0.009 (2)0.007 (3)0.004 (2)
C130.030 (3)0.021 (3)0.030 (3)0.008 (2)0.014 (3)0.005 (2)
C140.028 (3)0.021 (2)0.019 (3)0.014 (2)0.006 (2)0.006 (2)
C150.029 (3)0.037 (3)0.024 (3)0.016 (3)0.009 (3)0.008 (2)
C160.040 (4)0.045 (3)0.036 (3)0.026 (3)0.017 (3)0.013 (3)
C170.068 (5)0.046 (3)0.020 (3)0.036 (3)0.013 (3)0.006 (3)
C180.046 (4)0.039 (3)0.023 (3)0.017 (3)0.008 (3)0.001 (3)
C190.025 (3)0.037 (3)0.022 (3)0.014 (3)0.001 (2)0.002 (2)
C200.023 (3)0.025 (3)0.016 (3)0.011 (2)0.003 (2)0.004 (2)
C210.032 (3)0.027 (3)0.029 (3)0.013 (2)0.009 (3)0.006 (2)
C220.025 (3)0.052 (4)0.041 (4)0.023 (3)0.013 (3)0.007 (3)
C230.023 (3)0.053 (4)0.037 (4)0.012 (3)0.011 (3)0.012 (3)
C240.026 (3)0.033 (3)0.045 (4)0.007 (3)0.011 (3)0.018 (3)
C250.025 (3)0.027 (3)0.036 (3)0.010 (2)0.006 (3)0.006 (2)
Geometric parameters (Å, º) top
Pt1—N12.040 (4)C10—H100.9500
Pt1—P12.1999 (13)C11—C121.386 (7)
Pt1—Cl22.2840 (12)C11—H110.9500
Pt1—Cl12.3806 (14)C12—C131.375 (7)
P1—C201.803 (5)C12—H120.9500
P1—C141.815 (5)C13—H130.9500
P1—C91.819 (5)C14—C191.372 (7)
N1—C71.276 (6)C14—C151.404 (6)
N1—C61.512 (6)C15—C161.392 (7)
N2—C31.318 (8)C15—H150.9500
N2—C21.332 (7)C16—C171.367 (8)
C1—C51.384 (7)C16—H160.9500
C1—C21.390 (7)C17—C181.391 (8)
C1—C61.507 (7)C17—H170.9500
C2—H20.9500C18—C191.392 (7)
C3—C41.374 (8)C18—H180.9500
C3—H30.9500C19—H190.9500
C4—C51.392 (8)C20—C211.393 (6)
C4—H40.9500C20—C251.414 (7)
C5—H50.9500C21—C221.392 (7)
C6—H7A0.9900C21—H210.9500
C6—H7B0.9900C22—C231.362 (8)
C7—C81.475 (7)C22—H220.9500
C7—H70.9500C23—C241.383 (7)
C8—C91.390 (6)C23—H230.9500
C8—C131.405 (6)C24—C251.393 (7)
C9—C101.396 (7)C24—H240.9500
C10—C111.369 (7)C25—H250.9500
N1—Pt1—P188.47 (12)C11—C10—H10119.6
N1—Pt1—Cl2176.70 (12)C9—C10—H10119.6
P1—Pt1—Cl291.76 (5)C10—C11—C12120.5 (5)
N1—Pt1—Cl191.27 (12)C10—C11—H11119.7
P1—Pt1—Cl1178.20 (5)C12—C11—H11119.7
Cl2—Pt1—Cl188.60 (5)C13—C12—C11119.8 (5)
C20—P1—C14106.2 (2)C13—C12—H12120.1
C20—P1—C9106.1 (2)C11—C12—H12120.1
C14—P1—C9104.7 (2)C12—C13—C8120.0 (5)
C20—P1—Pt1111.62 (16)C12—C13—H13120.0
C14—P1—Pt1119.12 (15)C8—C13—H13120.0
C9—P1—Pt1108.20 (17)C19—C14—C15119.4 (5)
C7—N1—C6114.4 (4)C19—C14—P1122.4 (4)
C7—N1—Pt1127.8 (4)C15—C14—P1118.2 (4)
C6—N1—Pt1117.6 (3)C16—C15—C14119.4 (5)
C3—N2—C2116.7 (5)C16—C15—H15120.3
C5—C1—C2116.9 (5)C14—C15—H15120.3
C5—C1—C6122.7 (5)C17—C16—C15120.3 (5)
C2—C1—C6120.4 (5)C17—C16—H16119.9
N2—C2—C1124.8 (6)C15—C16—H16119.9
N2—C2—H2117.6C16—C17—C18121.0 (5)
C1—C2—H2117.6C16—C17—H17119.5
N2—C3—C4124.2 (6)C18—C17—H17119.5
N2—C3—H3117.9C17—C18—C19118.6 (5)
C4—C3—H3117.9C17—C18—H18120.7
C3—C4—C5118.3 (6)C19—C18—H18120.7
C3—C4—H4120.8C14—C19—C18121.3 (5)
C5—C4—H4120.8C14—C19—H19119.3
C1—C5—C4119.1 (5)C18—C19—H19119.3
C1—C5—H5120.4C21—C20—C25119.4 (5)
C4—C5—H5120.4C21—C20—P1123.1 (4)
C1—C6—N1110.5 (4)C25—C20—P1117.5 (3)
C1—C6—H7A109.6C22—C21—C20119.4 (5)
N1—C6—H7A109.6C22—C21—H21120.3
C1—C6—H7B109.6C20—C21—H21120.3
N1—C6—H7B109.6C23—C22—C21121.3 (5)
H7A—C6—H7B108.1C23—C22—H22119.3
N1—C7—C8127.9 (4)C21—C22—H22119.3
N1—C7—H7116.1C22—C23—C24120.3 (5)
C8—C7—H7116.1C22—C23—H23119.8
C9—C8—C13120.0 (5)C24—C23—H23119.8
C9—C8—C7124.4 (4)C23—C24—C25120.2 (5)
C13—C8—C7115.3 (4)C23—C24—H24119.9
C8—C9—C10118.8 (4)C25—C24—H24119.9
C8—C9—P1119.8 (4)C24—C25—C20119.5 (4)
C10—C9—P1121.4 (4)C24—C25—H25120.3
C11—C10—C9120.8 (5)C20—C25—H25120.3
N1—Pt1—P1—C2071.2 (2)C8—C9—C10—C111.2 (7)
Cl2—Pt1—P1—C20105.47 (17)P1—C9—C10—C11178.0 (4)
N1—Pt1—P1—C14164.4 (2)C9—C10—C11—C122.3 (8)
Cl2—Pt1—P1—C1418.93 (19)C10—C11—C12—C131.8 (8)
N1—Pt1—P1—C945.12 (19)C11—C12—C13—C80.2 (7)
Cl2—Pt1—P1—C9138.17 (16)C9—C8—C13—C120.8 (7)
P1—Pt1—N1—C736.2 (4)C7—C8—C13—C12174.6 (4)
Cl1—Pt1—N1—C7142.0 (4)C20—P1—C14—C194.1 (5)
P1—Pt1—N1—C6138.9 (3)C9—P1—C14—C19107.9 (4)
Cl1—Pt1—N1—C642.8 (3)Pt1—P1—C14—C19131.1 (4)
C3—N2—C2—C10.5 (9)C20—P1—C14—C15179.6 (4)
C5—C1—C2—N20.8 (9)C9—P1—C14—C1568.4 (4)
C6—C1—C2—N2179.5 (5)Pt1—P1—C14—C1552.6 (4)
C2—N2—C3—C40.7 (10)C19—C14—C15—C160.9 (7)
N2—C3—C4—C51.1 (10)P1—C14—C15—C16175.6 (4)
C2—C1—C5—C41.1 (8)C14—C15—C16—C171.1 (8)
C6—C1—C5—C4179.2 (5)C15—C16—C17—C180.6 (8)
C3—C4—C5—C11.3 (9)C16—C17—C18—C192.5 (8)
C5—C1—C6—N177.7 (6)C15—C14—C19—C181.1 (7)
C2—C1—C6—N1102.0 (5)P1—C14—C19—C18177.4 (4)
C7—N1—C6—C193.8 (5)C17—C18—C19—C142.8 (8)
Pt1—N1—C6—C182.0 (4)C14—P1—C20—C21109.9 (4)
C6—N1—C7—C8172.7 (5)C9—P1—C20—C211.2 (5)
Pt1—N1—C7—C82.5 (8)Pt1—P1—C20—C21118.8 (4)
N1—C7—C8—C926.9 (8)C14—P1—C20—C2571.8 (4)
N1—C7—C8—C13159.6 (5)C9—P1—C20—C25177.1 (4)
C13—C8—C9—C100.3 (7)Pt1—P1—C20—C2559.5 (4)
C7—C8—C9—C10173.6 (4)C25—C20—C21—C220.9 (8)
C13—C8—C9—P1176.5 (3)P1—C20—C21—C22179.1 (4)
C7—C8—C9—P13.3 (6)C20—C21—C22—C230.4 (8)
C20—P1—C9—C883.4 (4)C21—C22—C23—C240.5 (9)
C14—P1—C9—C8164.5 (4)C22—C23—C24—C250.6 (9)
Pt1—P1—C9—C836.5 (4)C23—C24—C25—C201.8 (8)
C20—P1—C9—C1093.4 (4)C21—C20—C25—C241.9 (8)
C14—P1—C9—C1018.7 (4)P1—C20—C25—C24179.7 (4)
Pt1—P1—C9—C10146.7 (4)

Experimental details

Crystal data
Chemical formula[PtCl2(C25H21N2P)]
Mr646.40
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.9684 (14), 10.4129 (15), 12.526 (3)
α, β, γ (°)97.687 (5), 98.363 (5), 114.499 (3)
V3)1143.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)6.46
Crystal size (mm)0.07 × 0.06 × 0.04
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.671, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
16090, 4994, 4177
Rint0.058
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.062, 1.01
No. of reflections4994
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 1.02

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Selected bond lengths (Å) top
Pt1—N12.040 (4)Pt1—Cl22.2840 (12)
Pt1—P12.1999 (13)Pt1—Cl12.3806 (14)
 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.

References

First citationAnkersmit, H. A., Loken, B. H., Kooijman, H., Spek, A. L., Vrieze, K. & van Koten, G. (1996). Inorg. Chim. Acta, 252, 141–155.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiririwa, H., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m608–m609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. pp. 3371–3376.  CSD CrossRef Web of Science Google Scholar
First citationSanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100–104.  CAS Google Scholar
First citationSanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165–169.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds