metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1629-m1630

(μ-Piperazine-1,4-dicarbodi­thio­ato-κ4S1,S1′:S4,S4′)bis­­[bis­­(tri­phenyl­phos­phane-κP)gold(I)] chloro­form disolvate

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 18 October 2011; accepted 24 October 2011; online 29 October 2011)

In the title compound, [Au2(C6H8N2S4)(C18H15P)4]·2CHCl3, the digold complex resides on a crystallographic inversion center and co-crystallizes with two mol­ecules of chloro­form solvent. The piperazine-1,4-dicarbodithio­ate linker has an almost ideal chair conformation. The geometry about the gold atoms is severely distorted tetra­hedral punctuated by a very acute S—Au—S bite angle.

Related literature

For stabilization of gold salts by dithio­carbonates, see: Fernandez et al. (1998[Fernandez, E. J., Lopez-de-Luzuriaga, J. M., Monge, M., Olmos, E., Gimeno, M. C., Laguna, A. & Jones, P. G. (1998). Inorg. Chem. 37, 5532-5536.]). For use of piperazine dithio­carbamates as ligands used to engineer multimetallic assemblies, see: Wilton-Ely et al. (2008[Wilton-Ely, J. D. E. T., Solanki, D., Knight, E. R., Holt, K. B., Thompson, A. L. & Hogarth, G. (2008). Inorg. Chem. 47, 9642-9653.]); Knight et al. (2009a[Knight, E. R., Leung, N. H., Lin, Y. H., Cowley, A. R., Watkins, D. J., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009a). Dalton Trans. pp. 3688-3697.],b[Knight, E. R., Leung, N. H., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009b). Inorg. Chem. 48, 3866-3874.]); Oliver et al. (2011[Oliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852-5864.]). For the copper analgoue, see: Kumar et al. (2009[Kumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720-2725.]). For other related gold complexes, see: Razak et al. (2000[Razak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Jian, F., Bei, F., Yang, X., Lu, L. & Wang, X. (2000). Acta Cryst. C56, 666-667.]); Jian et al. (2000[Jian, F., Lu, L., Wang, X., Shanmuga Sundara Raj, S., Razak, I. A. & Fun, H.-K. (2000). Acta Cryst. C56, 939-940.]). A mol­ecular geometry check was performed with Mogul, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). Related compounds were found in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For ring analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358-1367.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2(C6H8N2S4)(C18H15P)4]·2CHCl3

  • Mr = 1918.13

  • Triclinic, [P \overline 1]

  • a = 12.8455 (17) Å

  • b = 13.2879 (10) Å

  • c = 13.4197 (9) Å

  • α = 119.572 (2)°

  • β = 101.544 (2)°

  • γ = 96.039 (2)°

  • V = 1895.2 (3) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 11.30 mm−1

  • T = 100 K

  • 0.44 × 0.35 × 0.29 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.083, Tmax = 0.140

  • 30338 measured reflections

  • 7089 independent reflections

  • 7080 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.15

  • 7089 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 2.40 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—P2 2.2994 (8)
Au1—P1 2.3233 (8)
Au1—S2 2.6133 (8)
Au1—S1 2.7414 (8)
P2—Au1—P1 134.65 (3)
P2—Au1—S2 116.81 (3)
P1—Au1—S2 107.10 (3)
P2—Au1—S1 107.34 (3)
P1—Au1—S1 99.39 (3)
S2—Au1—S1 67.03 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), FCF_filter (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]) and INSerter (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Dithiocarbamates have long been used as ligands to stabilize gold(I) and gold(III) salts (Fernandez et al., 1998), but piperazine dithiocarbamates are currently receiving a lot more attention as ligands that can be used to engineer multimetallic assemblies including making gold nanoparticles (Wilton-Ely et al., 2008; Knight et al. 2009a; Knight et al., 2009b; Oliver et al., 2011). We recently isolated the title compound (I) via a slight modification of one of the routes described in the aforementioned literature.

The crystal structure of (I) contains the digold complex residing on a crystallographic inversion center and two molecules of solvent chloroform solvent per digold complex. The piperzine dithiocarbamate linker exhibits an almost ideal chair conformation (puckering coordinates θ=177.97 (1)° ϕ=0°, Cremer & Pople, 1975) similar to the analogous compounds with group ten square-planar metal centers nickel, palladium, and platinum (Knight et al., 2009a) and the tetrahedral copper analogue (Kumar et al., 2009). All bond distances and angles are typical as confirmed by a Mogul geometry check except for the S1—C1—S2, S1—C1—N1, and S2—C1—N1 angles (Bruno et al., 2002). However these angles in (I) are similar to those in the closely related compounds (N,N-diisopropyldithiocarbamato-S,S')-bis(triphenylphosphane-P)-gold(I) (Jian et al., 2000) and (piperidine-1-carbodithioato-S,S')-bis(triphenylphosphane-P)-gold(I) (Razak et al., 2000).

The geometry about the gold atom is severely distorted tetrahedral with the dihedral angle between the planes defined by atoms S1, Au1, S1 and P1, Au1, P1 measuring 88.77 (3)°. Such a distorted tetrahedral geometry and acute S—Au—S bite angle (67.03 (2)°) are typical of complexes where gold is bonded to two phosphorous atoms and two sulfur atoms of a bidentale ligand forming a four-membered metallocycle. For eight such compounds in the Cambridge Structural Database (CSD; August 2011 update; Allen, 2002) the S—Au—S bite angle has an average of 66 (3)°. These compounds also have very large P—Au—P angles with a 135 (5)° average corresponding well to the 134.65 (3)° value found in (I). The copper analogue of (I) also exhibits a similarly distorted tetrahedral geometry but with a larger S—Cu—S bite angle of 75.41 (2)° (Kumar et al., 2009). The group ten analogues exhibit distorted square planar geometries with larger S—metal—S bite angles that average 77 (3)° (Knight et al., 2009a). The Au—S distances in (I) differ by 0.1281 Å; this value agrees well with the differences in the two Au—S bonds in the eight related compounds in the CSD where such distances differ by an average of 0.18 (11) Å.

Related literature top

For stabilization of gold salts by dithiocarbonates, see: Fernandez et al. (1998). For use of piperazine dithiocarbamates as ligands used to engineer multimetallic assemblies, see: Wilton-Ely et al. (2008); Knight et al. (2009a,b); Oliver et al. (2011). For the copper analgoue, see: Kumar et al. (2009). For other related gold complexes, see: Razak et al. (2000); Jian et al. (2000). A molecular geometry check was performed with Mogul, see: Bruno et al. (2002). Related compounds were found in the Cambridge Structural Database, Allen (2002). For ring analysis, see: Cremer & Pople (1975).

Experimental top

To a solution of potassium piperazine-1,4-bis(dithiocarbamate) (0.17 g, 0.57 mmol) in water (10 mL) was added a solution of [AuCl(PPh3)] (0.40 g, 0.81 mmol) in dichloromethane (10 mL). The biphasic reaction mixture was stirred for 30 minutes. The organic layer was separated and layered with chloroform and hexane to yield a yellow solid. Yield: 0.32 g (69%). 1H NMR (CDCl3): δ 7.53 (m, 12H), 7.42 (m, 18H), 4.30 (s, 8H). 13C{1H} NMR (CDCl3): δ 208.2 (2 C, C=S), 134.1, 130.7, 128.9, 50.1. 31 P{1H} NMR (CDCl3): δ 28.9. ESI-MS (m/z): 1155 ([M], 5%), 721 [Au(PPh3)2]+, 100%). IR (ATR, cm-1): υ(C—N) = 1451, υ(C=S) = 1026, υ(C—S) = 997. Anal. Calc. for C78H68Au2N2P2S4.CHCl3: C 50.09, H 3.68, N 1.46. Found: C 49.73, H 3.76, N 1.60%.

Refinement top

All H-atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 times Ueq(bearing atom). Default effective X—H distances for T = -173.0°C C(sp 3)–1H=1.00, C(sp 3)–2H=0.99, C(sp 2)–H=0.95. The final difference map had a peak and a hole in the vicinities of Au.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007); molecular graphics: SHELXTL(Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) (Brandenburg, 1999). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted. Symmetry code: (i) -x,2-y, 2-z.
(µ-Piperazine-1,4-dicarbodithioato- κ4S1,S1':S4,S4') bis[bis(triphenylphosphane-κP)gold(I)] chloroform disolvate top
Crystal data top
[Au2(C6H8N2S4)(C18H15P)4]·2CHCl3Z = 1
Mr = 1918.13F(000) = 948
Triclinic, P1Dx = 1.681 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 12.8455 (17) ÅCell parameters from 9936 reflections
b = 13.2879 (10) Åθ = 3.6–71.7°
c = 13.4197 (9) ŵ = 11.30 mm1
α = 119.572 (2)°T = 100 K
β = 101.544 (2)°Block, colourless
γ = 96.039 (2)°0.44 × 0.35 × 0.29 mm
V = 1895.2 (3) Å3
Data collection top
Bruker SMART APEXII
diffractometer
7089 independent reflections
Radiation source: fine-focus sealed tube7080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
0.50° ω and 0.5 ° ϕ scansθmax = 72.3°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1514
Tmin = 0.083, Tmax = 0.140k = 1616
30338 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0416P)2 + 3.5159P]
where P = (Fo2 + 2Fc2)/3
7089 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 2.40 e Å3
0 restraintsΔρmin = 1.35 e Å3
Crystal data top
[Au2(C6H8N2S4)(C18H15P)4]·2CHCl3γ = 96.039 (2)°
Mr = 1918.13V = 1895.2 (3) Å3
Triclinic, P1Z = 1
a = 12.8455 (17) ÅCu Kα radiation
b = 13.2879 (10) ŵ = 11.30 mm1
c = 13.4197 (9) ÅT = 100 K
α = 119.572 (2)°0.44 × 0.35 × 0.29 mm
β = 101.544 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
7089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
7080 reflections with I > 2σ(I)
Tmin = 0.083, Tmax = 0.140Rint = 0.031
30338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.15Δρmax = 2.40 e Å3
7089 reflectionsΔρmin = 1.35 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.234436 (10)0.776500 (10)0.653197 (10)0.01426 (6)
S10.25387 (6)0.94442 (7)0.88645 (7)0.01770 (16)
S20.04873 (6)0.82819 (7)0.68645 (7)0.01689 (16)
P10.24564 (7)0.61270 (7)0.67150 (7)0.01428 (16)
P20.32654 (7)0.86933 (7)0.57904 (7)0.01350 (16)
N10.0585 (2)0.9761 (2)0.9150 (2)0.0168 (5)
C10.1155 (3)0.9217 (3)0.8365 (3)0.0156 (6)
C20.1115 (3)1.0645 (3)1.0418 (3)0.0195 (7)
H2AB0.10511.14461.05840.023*
H2AA0.19031.06551.06140.023*
C30.0590 (3)1.0359 (3)1.1199 (3)0.0192 (7)
H3AA0.07370.96081.11130.023*
H3AB0.09131.10051.20500.023*
C40.3628 (3)0.6456 (3)0.7941 (3)0.0183 (7)
C50.4568 (3)0.7301 (3)0.8254 (3)0.0215 (7)
H5AA0.45810.77230.78540.026*
C60.5488 (3)0.7527 (4)0.9152 (3)0.0285 (8)
H6AA0.61300.80980.93570.034*
C70.5471 (3)0.6927 (4)0.9744 (3)0.0311 (9)
H7AA0.61010.70851.03570.037*
C80.4537 (3)0.6093 (4)0.9447 (3)0.0301 (8)
H8AA0.45260.56870.98630.036*
C90.3620 (3)0.5849 (3)0.8550 (3)0.0238 (7)
H9AA0.29850.52700.83460.029*
C100.2675 (3)0.4871 (3)0.5424 (3)0.0159 (6)
C110.3632 (3)0.4487 (3)0.5474 (3)0.0203 (7)
H11A0.41710.48250.62230.024*
C120.3813 (3)0.3601 (3)0.4429 (3)0.0245 (7)
H12A0.44750.33460.44700.029*
C130.3025 (3)0.3101 (3)0.3339 (3)0.0229 (7)
H13A0.31450.24980.26310.027*
C140.2067 (3)0.3477 (3)0.3280 (3)0.0215 (7)
H14A0.15270.31280.25300.026*
C150.1887 (3)0.4362 (3)0.4311 (3)0.0190 (7)
H15A0.12280.46240.42620.023*
C160.1298 (3)0.5531 (3)0.7022 (3)0.0168 (6)
C170.0658 (3)0.4376 (3)0.6282 (3)0.0187 (7)
H17A0.08230.38360.55740.022*
C180.0229 (3)0.4005 (3)0.6578 (3)0.0236 (7)
H18A0.06700.32150.60650.028*
C190.0467 (3)0.4788 (3)0.7617 (3)0.0243 (7)
H19A0.10670.45340.78200.029*
C200.0174 (3)0.5941 (3)0.8355 (3)0.0248 (7)
H20A0.00170.64740.90720.030*
C210.1042 (3)0.6322 (3)0.8060 (3)0.0204 (7)
H21A0.14640.71210.85610.025*
C220.2798 (3)0.9894 (3)0.5672 (3)0.0169 (6)
C230.1719 (3)0.9678 (3)0.5049 (3)0.0218 (7)
H23A0.12330.89290.47260.026*
C240.1338 (3)1.0550 (3)0.4894 (3)0.0269 (8)
H24A0.06041.03820.44380.032*
C250.2025 (3)1.1658 (3)0.5399 (3)0.0262 (8)
H25A0.17641.22520.52930.031*
C260.3099 (3)1.1904 (3)0.6063 (3)0.0242 (7)
H26A0.35671.26720.64310.029*
C270.3491 (3)1.1018 (3)0.6189 (3)0.0207 (7)
H27A0.42301.11810.66280.025*
C280.4678 (3)0.9384 (3)0.6736 (3)0.0157 (6)
C290.4856 (3)1.0177 (3)0.7967 (3)0.0187 (7)
H29A0.42491.03410.82760.022*
C300.5910 (3)1.0720 (3)0.8732 (3)0.0214 (7)
H30A0.60271.12620.95630.026*
C310.6797 (3)1.0473 (3)0.8284 (3)0.0208 (7)
H31A0.75201.08440.88120.025*
C320.6637 (3)0.9691 (3)0.7077 (3)0.0206 (7)
H32A0.72470.95240.67760.025*
C330.5574 (3)0.9145 (3)0.6298 (3)0.0177 (6)
H33A0.54640.86100.54670.021*
C340.3386 (3)0.7666 (3)0.4312 (3)0.0154 (6)
C350.3435 (3)0.7995 (3)0.3476 (3)0.0205 (7)
H35A0.33720.87690.36570.025*
C360.3575 (3)0.7189 (3)0.2381 (3)0.0247 (7)
H36A0.35970.74100.18100.030*
C370.3683 (3)0.6067 (3)0.2119 (3)0.0220 (7)
H37A0.37900.55240.13740.026*
C380.3635 (3)0.5729 (3)0.2941 (3)0.0220 (7)
H38A0.37150.49600.27630.026*
C390.3470 (3)0.6526 (3)0.4026 (3)0.0184 (7)
H39A0.34130.62880.45780.022*
Cl10.15739 (10)0.41053 (9)0.95175 (11)0.0451 (3)
Cl20.14677 (11)0.15846 (10)0.81701 (11)0.0455 (3)
Cl30.05265 (9)0.24127 (10)0.82114 (9)0.0383 (2)
C400.0848 (3)0.2721 (4)0.8232 (4)0.0305 (8)
H40A0.08630.27620.75110.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01735 (9)0.01435 (8)0.01405 (8)0.00500 (5)0.00798 (6)0.00817 (6)
S10.0143 (4)0.0222 (4)0.0133 (3)0.0047 (3)0.0051 (3)0.0065 (3)
S20.0149 (4)0.0209 (4)0.0123 (3)0.0050 (3)0.0044 (3)0.0066 (3)
P10.0157 (4)0.0147 (4)0.0139 (4)0.0043 (3)0.0058 (3)0.0080 (3)
P20.0156 (4)0.0141 (4)0.0136 (4)0.0045 (3)0.0063 (3)0.0084 (3)
N10.0135 (14)0.0212 (14)0.0138 (13)0.0050 (11)0.0049 (10)0.0073 (11)
C10.0168 (16)0.0153 (15)0.0155 (15)0.0025 (12)0.0057 (12)0.0085 (13)
C20.0175 (17)0.0210 (16)0.0151 (16)0.0036 (13)0.0056 (13)0.0058 (14)
C30.0156 (17)0.0260 (17)0.0147 (15)0.0079 (13)0.0062 (12)0.0086 (14)
C40.0197 (17)0.0199 (16)0.0145 (15)0.0068 (13)0.0062 (13)0.0077 (13)
C50.0224 (18)0.0199 (16)0.0170 (16)0.0042 (13)0.0077 (13)0.0054 (14)
C60.0201 (19)0.0315 (19)0.0225 (18)0.0079 (15)0.0067 (14)0.0057 (16)
C70.028 (2)0.041 (2)0.0168 (17)0.0185 (17)0.0045 (15)0.0091 (16)
C80.035 (2)0.043 (2)0.0243 (19)0.0203 (18)0.0115 (16)0.0225 (18)
C90.027 (2)0.0289 (18)0.0237 (18)0.0109 (15)0.0102 (15)0.0175 (16)
C100.0218 (18)0.0128 (14)0.0159 (15)0.0054 (12)0.0090 (13)0.0080 (12)
C110.0209 (18)0.0190 (16)0.0211 (17)0.0069 (13)0.0052 (14)0.0105 (14)
C120.0243 (19)0.0223 (17)0.0285 (19)0.0087 (14)0.0117 (15)0.0124 (15)
C130.030 (2)0.0157 (15)0.0219 (17)0.0062 (14)0.0130 (15)0.0071 (14)
C140.0243 (19)0.0198 (16)0.0166 (16)0.0027 (14)0.0037 (13)0.0084 (14)
C150.0199 (18)0.0184 (16)0.0200 (16)0.0053 (13)0.0060 (13)0.0108 (14)
C160.0155 (17)0.0200 (16)0.0204 (16)0.0062 (13)0.0053 (12)0.0143 (14)
C170.0193 (18)0.0195 (16)0.0206 (16)0.0062 (13)0.0061 (13)0.0125 (14)
C180.0196 (18)0.0260 (18)0.0286 (19)0.0013 (14)0.0043 (14)0.0185 (16)
C190.0173 (18)0.037 (2)0.0321 (19)0.0067 (15)0.0089 (14)0.0270 (17)
C200.026 (2)0.0334 (19)0.0237 (18)0.0115 (15)0.0123 (15)0.0189 (16)
C210.0233 (18)0.0206 (16)0.0202 (16)0.0052 (13)0.0079 (13)0.0122 (14)
C220.0216 (18)0.0187 (15)0.0169 (15)0.0095 (13)0.0105 (13)0.0113 (13)
C230.0222 (18)0.0218 (17)0.0239 (17)0.0069 (14)0.0073 (14)0.0132 (15)
C240.027 (2)0.032 (2)0.0281 (19)0.0129 (16)0.0090 (15)0.0191 (17)
C250.032 (2)0.0299 (19)0.0308 (19)0.0190 (16)0.0162 (16)0.0216 (17)
C260.030 (2)0.0188 (16)0.0276 (18)0.0067 (14)0.0125 (15)0.0134 (15)
C270.0203 (18)0.0218 (17)0.0244 (17)0.0077 (14)0.0080 (14)0.0142 (15)
C280.0176 (17)0.0152 (14)0.0173 (15)0.0045 (12)0.0047 (12)0.0108 (13)
C290.0180 (17)0.0222 (16)0.0182 (16)0.0062 (13)0.0068 (13)0.0114 (14)
C300.0228 (18)0.0239 (17)0.0165 (16)0.0060 (14)0.0044 (13)0.0104 (14)
C310.0158 (17)0.0238 (17)0.0240 (17)0.0056 (13)0.0027 (13)0.0143 (15)
C320.0203 (18)0.0236 (17)0.0252 (18)0.0114 (14)0.0110 (14)0.0154 (15)
C330.0199 (17)0.0192 (15)0.0199 (16)0.0070 (13)0.0080 (13)0.0132 (14)
C340.0129 (16)0.0172 (15)0.0152 (15)0.0041 (12)0.0048 (12)0.0075 (13)
C350.0275 (19)0.0193 (16)0.0176 (16)0.0062 (13)0.0086 (14)0.0109 (14)
C360.031 (2)0.0309 (19)0.0186 (17)0.0078 (15)0.0111 (14)0.0162 (15)
C370.0231 (18)0.0237 (17)0.0152 (16)0.0053 (14)0.0097 (13)0.0059 (14)
C380.0239 (19)0.0192 (16)0.0224 (17)0.0064 (13)0.0102 (14)0.0093 (14)
C390.0196 (17)0.0208 (16)0.0169 (15)0.0051 (13)0.0068 (13)0.0109 (14)
Cl10.0397 (6)0.0299 (5)0.0451 (6)0.0012 (4)0.0001 (5)0.0112 (5)
Cl20.0608 (7)0.0342 (5)0.0547 (7)0.0180 (5)0.0278 (6)0.0276 (5)
Cl30.0355 (5)0.0420 (5)0.0346 (5)0.0020 (4)0.0028 (4)0.0230 (4)
C400.035 (2)0.030 (2)0.0264 (19)0.0009 (16)0.0048 (16)0.0183 (17)
Geometric parameters (Å, º) top
Au1—P22.2994 (8)C17—H17A0.9500
Au1—P12.3233 (8)C18—C191.388 (6)
Au1—S22.6133 (8)C18—H18A0.9500
Au1—S12.7414 (8)C19—C201.384 (5)
S1—C11.706 (3)C19—H19A0.9500
S2—C11.718 (3)C20—C211.383 (5)
P1—C101.818 (3)C20—H20A0.9500
P1—C41.823 (4)C21—H21A0.9500
P1—C161.825 (3)C22—C231.386 (5)
P2—C341.822 (3)C22—C271.398 (5)
P2—C281.823 (3)C23—C241.393 (5)
P2—C221.829 (3)C23—H23A0.9500
N1—C11.354 (4)C24—C251.382 (6)
N1—C3i1.454 (4)C24—H24A0.9500
N1—C21.460 (4)C25—C261.389 (6)
C2—C31.524 (5)C25—H25A0.9500
C2—H2AB0.9900C26—C271.397 (5)
C2—H2AA0.9900C26—H26A0.9500
C3—N1i1.454 (4)C27—H27A0.9500
C3—H3AA0.9900C28—C331.392 (5)
C3—H3AB0.9900C28—C291.403 (5)
C4—C51.393 (5)C29—C301.385 (5)
C4—C91.405 (5)C29—H29A0.9500
C5—C61.392 (5)C30—C311.387 (5)
C5—H5AA0.9500C30—H30A0.9500
C6—C71.378 (6)C31—C321.381 (5)
C6—H6AA0.9500C31—H31A0.9500
C7—C81.386 (6)C32—C331.397 (5)
C7—H7AA0.9500C32—H32A0.9500
C8—C91.380 (5)C33—H33A0.9500
C8—H8AA0.9500C34—C391.390 (5)
C9—H9AA0.9500C34—C351.400 (5)
C10—C111.381 (5)C35—C361.390 (5)
C10—C151.403 (5)C35—H35A0.9500
C11—C121.402 (5)C36—C371.383 (5)
C11—H11A0.9500C36—H36A0.9500
C12—C131.382 (5)C37—C381.389 (5)
C12—H12A0.9500C37—H37A0.9500
C13—C141.378 (5)C38—C391.392 (5)
C13—H13A0.9500C38—H38A0.9500
C14—C151.390 (5)C39—H39A0.9500
C14—H14A0.9500Cl1—C401.758 (4)
C15—H15A0.9500Cl2—C401.754 (4)
C16—C171.386 (5)Cl3—C401.762 (4)
C16—C211.402 (5)C40—H40A1.0000
C17—C181.398 (5)
P2—Au1—P1134.65 (3)C21—C16—P1116.5 (3)
P2—Au1—S2116.81 (3)C16—C17—C18120.1 (3)
P1—Au1—S2107.10 (3)C16—C17—H17A120.0
P2—Au1—S1107.34 (3)C18—C17—H17A120.0
P1—Au1—S199.39 (3)C19—C18—C17120.2 (3)
S2—Au1—S167.03 (2)C19—C18—H18A119.9
C1—S1—Au184.64 (11)C17—C18—H18A119.9
C1—S2—Au188.55 (12)C20—C19—C18119.6 (3)
C10—P1—C4103.04 (16)C20—C19—H19A120.2
C10—P1—C16106.19 (15)C18—C19—H19A120.2
C4—P1—C16103.85 (15)C21—C20—C19120.6 (3)
C10—P1—Au1113.94 (10)C21—C20—H20A119.7
C4—P1—Au1112.18 (11)C19—C20—H20A119.7
C16—P1—Au1116.33 (11)C20—C21—C16120.1 (3)
C34—P2—C28104.10 (15)C20—C21—H21A120.0
C34—P2—C22104.72 (15)C16—C21—H21A120.0
C28—P2—C22103.69 (15)C23—C22—C27119.1 (3)
C34—P2—Au1113.39 (11)C23—C22—P2118.6 (3)
C28—P2—Au1109.59 (10)C27—C22—P2122.3 (3)
C22—P2—Au1119.85 (11)C22—C23—C24120.6 (3)
C1—N1—C3i123.8 (3)C22—C23—H23A119.7
C1—N1—C2122.7 (3)C24—C23—H23A119.7
C3i—N1—C2113.0 (3)C25—C24—C23120.2 (4)
N1—C1—S1120.2 (2)C25—C24—H24A119.9
N1—C1—S2120.3 (3)C23—C24—H24A119.9
S1—C1—S2119.56 (19)C24—C25—C26119.9 (3)
N1—C2—C3110.7 (3)C24—C25—H25A120.1
N1—C2—H2AB109.5C26—C25—H25A120.1
C3—C2—H2AB109.5C25—C26—C27119.9 (3)
N1—C2—H2AA109.5C25—C26—H26A120.0
C3—C2—H2AA109.5C27—C26—H26A120.0
H2AB—C2—H2AA108.1C26—C27—C22120.2 (3)
N1i—C3—C2110.2 (3)C26—C27—H27A119.9
N1i—C3—H3AA109.6C22—C27—H27A119.9
C2—C3—H3AA109.6C33—C28—C29119.1 (3)
N1i—C3—H3AB109.6C33—C28—P2123.2 (3)
C2—C3—H3AB109.6C29—C28—P2117.7 (3)
H3AA—C3—H3AB108.1C30—C29—C28120.4 (3)
C5—C4—C9119.1 (3)C30—C29—H29A119.8
C5—C4—P1119.3 (3)C28—C29—H29A119.8
C9—C4—P1121.6 (3)C29—C30—C31119.9 (3)
C6—C5—C4120.2 (3)C29—C30—H30A120.0
C6—C5—H5AA119.9C31—C30—H30A120.0
C4—C5—H5AA119.9C32—C31—C30120.5 (3)
C7—C6—C5120.2 (4)C32—C31—H31A119.8
C7—C6—H6AA119.9C30—C31—H31A119.8
C5—C6—H6AA119.9C31—C32—C33119.9 (3)
C6—C7—C8120.0 (4)C31—C32—H32A120.0
C6—C7—H7AA120.0C33—C32—H32A120.0
C8—C7—H7AA120.0C28—C33—C32120.2 (3)
C9—C8—C7120.5 (4)C28—C33—H33A119.9
C9—C8—H8AA119.8C32—C33—H33A119.9
C7—C8—H8AA119.8C39—C34—C35119.2 (3)
C8—C9—C4119.9 (4)C39—C34—P2118.2 (2)
C8—C9—H9AA120.0C35—C34—P2122.6 (2)
C4—C9—H9AA120.0C36—C35—C34120.0 (3)
C11—C10—C15119.0 (3)C36—C35—H35A120.0
C11—C10—P1122.6 (3)C34—C35—H35A120.0
C15—C10—P1118.0 (3)C37—C36—C35120.2 (3)
C10—C11—C12120.6 (3)C37—C36—H36A119.9
C10—C11—H11A119.7C35—C36—H36A119.9
C12—C11—H11A119.7C36—C37—C38120.3 (3)
C13—C12—C11119.8 (3)C36—C37—H37A119.8
C13—C12—H12A120.1C38—C37—H37A119.8
C11—C12—H12A120.1C37—C38—C39119.5 (3)
C14—C13—C12120.1 (3)C37—C38—H38A120.2
C14—C13—H13A120.0C39—C38—H38A120.2
C12—C13—H13A120.0C34—C39—C38120.7 (3)
C13—C14—C15120.4 (3)C34—C39—H39A119.6
C13—C14—H14A119.8C38—C39—H39A119.6
C15—C14—H14A119.8Cl2—C40—Cl1110.6 (2)
C14—C15—C10120.1 (3)Cl2—C40—Cl3110.7 (2)
C14—C15—H15A120.0Cl1—C40—Cl3110.3 (2)
C10—C15—H15A120.0Cl2—C40—H40A108.4
C17—C16—C21119.4 (3)Cl1—C40—H40A108.4
C17—C16—P1124.1 (3)Cl3—C40—H40A108.4
P2—Au1—S1—C1115.18 (11)C13—C14—C15—C100.8 (5)
P1—Au1—S1—C1101.89 (11)C11—C10—C15—C140.7 (5)
S2—Au1—S1—C12.79 (11)P1—C10—C15—C14173.9 (3)
P2—Au1—S2—C1101.30 (11)C10—P1—C16—C177.7 (3)
P1—Au1—S2—C190.39 (11)C4—P1—C16—C17116.0 (3)
S1—Au1—S2—C12.76 (11)Au1—P1—C16—C17120.2 (3)
P2—Au1—P1—C1040.63 (13)C10—P1—C16—C21174.0 (3)
S2—Au1—P1—C10124.64 (13)C4—P1—C16—C2165.7 (3)
S1—Au1—P1—C10166.64 (13)Au1—P1—C16—C2158.0 (3)
P2—Au1—P1—C475.96 (12)C21—C16—C17—C180.4 (5)
S2—Au1—P1—C4118.77 (12)P1—C16—C17—C18178.6 (3)
S1—Au1—P1—C450.05 (12)C16—C17—C18—C190.6 (5)
P2—Au1—P1—C16164.70 (12)C17—C18—C19—C200.4 (5)
S2—Au1—P1—C160.57 (13)C18—C19—C20—C210.7 (5)
S1—Au1—P1—C1669.29 (13)C19—C20—C21—C161.7 (5)
P1—Au1—P2—C3448.64 (13)C17—C16—C21—C201.6 (5)
S2—Au1—P2—C34115.56 (12)P1—C16—C21—C20179.9 (3)
S1—Au1—P2—C34171.92 (12)C34—P2—C22—C2374.3 (3)
P1—Au1—P2—C2867.20 (12)C28—P2—C22—C23176.8 (3)
S2—Au1—P2—C28128.61 (11)Au1—P2—C22—C2354.3 (3)
S1—Au1—P2—C2856.08 (11)C34—P2—C22—C27105.8 (3)
P1—Au1—P2—C22173.21 (13)C28—P2—C22—C273.1 (3)
S2—Au1—P2—C229.01 (13)Au1—P2—C22—C27125.6 (3)
S1—Au1—P2—C2263.52 (13)C27—C22—C23—C242.8 (5)
C3i—N1—C1—S1178.5 (2)P2—C22—C23—C24177.3 (3)
C2—N1—C1—S16.3 (4)C22—C23—C24—C252.4 (6)
C3i—N1—C1—S22.2 (4)C23—C24—C25—C260.1 (6)
C2—N1—C1—S2174.4 (2)C24—C25—C26—C271.8 (5)
Au1—S1—C1—N1174.8 (3)C25—C26—C27—C221.5 (5)
Au1—S1—C1—S24.50 (17)C23—C22—C27—C260.8 (5)
Au1—S2—C1—N1174.6 (3)P2—C22—C27—C26179.3 (3)
Au1—S2—C1—S14.70 (18)C34—P2—C28—C332.9 (3)
C1—N1—C2—C3131.2 (3)C22—P2—C28—C33106.4 (3)
C3i—N1—C2—C355.8 (4)Au1—P2—C28—C33124.5 (2)
N1—C2—C3—N1i54.2 (4)C34—P2—C28—C29175.9 (2)
C10—P1—C4—C592.7 (3)C22—P2—C28—C2974.8 (3)
C16—P1—C4—C5156.7 (3)Au1—P2—C28—C2954.3 (3)
Au1—P1—C4—C530.2 (3)C33—C28—C29—C300.5 (5)
C10—P1—C4—C985.0 (3)P2—C28—C29—C30179.4 (3)
C16—P1—C4—C925.6 (3)C28—C29—C30—C310.6 (5)
Au1—P1—C4—C9152.0 (3)C29—C30—C31—C320.3 (5)
C9—C4—C5—C60.6 (5)C30—C31—C32—C330.1 (5)
P1—C4—C5—C6177.2 (3)C29—C28—C33—C320.1 (5)
C4—C5—C6—C70.7 (5)P2—C28—C33—C32178.9 (2)
C5—C6—C7—C80.1 (6)C31—C32—C33—C280.2 (5)
C6—C7—C8—C90.6 (6)C28—P2—C34—C3986.8 (3)
C7—C8—C9—C40.6 (6)C22—P2—C34—C39164.7 (3)
C5—C4—C9—C80.0 (5)Au1—P2—C34—C3932.3 (3)
P1—C4—C9—C8177.8 (3)C28—P2—C34—C3591.1 (3)
C4—P1—C10—C118.8 (3)C22—P2—C34—C3517.5 (3)
C16—P1—C10—C11117.7 (3)Au1—P2—C34—C35149.9 (3)
Au1—P1—C10—C11113.0 (3)C39—C34—C35—C360.6 (5)
C4—P1—C10—C15178.2 (3)P2—C34—C35—C36177.2 (3)
C16—P1—C10—C1569.4 (3)C34—C35—C36—C370.9 (6)
Au1—P1—C10—C1560.0 (3)C35—C36—C37—C381.0 (6)
C15—C10—C11—C120.0 (5)C36—C37—C38—C390.5 (6)
P1—C10—C11—C12172.9 (3)C35—C34—C39—C382.1 (5)
C10—C11—C12—C130.5 (5)P2—C34—C39—C38175.8 (3)
C11—C12—C13—C140.3 (5)C37—C38—C39—C342.0 (5)
C12—C13—C14—C150.3 (5)
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Au2(C6H8N2S4)(C18H15P)4]·2CHCl3
Mr1918.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)12.8455 (17), 13.2879 (10), 13.4197 (9)
α, β, γ (°)119.572 (2), 101.544 (2), 96.039 (2)
V3)1895.2 (3)
Z1
Radiation typeCu Kα
µ (mm1)11.30
Crystal size (mm)0.44 × 0.35 × 0.29
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.083, 0.140
No. of measured, independent and
observed [I > 2σ(I)] reflections
30338, 7089, 7080
Rint0.031
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.15
No. of reflections7089
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.40, 1.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007), SHELXTL(Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Selected geometric parameters (Å, º) top
Au1—P22.2994 (8)Au1—S22.6133 (8)
Au1—P12.3233 (8)Au1—S12.7414 (8)
P2—Au1—P1134.65 (3)P2—Au1—S1107.34 (3)
P2—Au1—S2116.81 (3)P1—Au1—S199.39 (3)
P1—Au1—S2107.10 (3)S2—Au1—S167.03 (2)
 

Acknowledgements

We acknowledge support from the University of Johannesburg for this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358–1367.  CrossRef CAS Web of Science Google Scholar
First citationFernandez, E. J., Lopez-de-Luzuriaga, J. M., Monge, M., Olmos, E., Gimeno, M. C., Laguna, A. & Jones, P. G. (1998). Inorg. Chem. 37, 5532–5536.  PubMed CAS Google Scholar
First citationGuzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.  Google Scholar
First citationJian, F., Lu, L., Wang, X., Shanmuga Sundara Raj, S., Razak, I. A. & Fun, H.-K. (2000). Acta Cryst. C56, 939–940.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKnight, E. R., Leung, N. H., Lin, Y. H., Cowley, A. R., Watkins, D. J., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009a). Dalton Trans. pp. 3688–3697.  Web of Science CSD CrossRef Google Scholar
First citationKnight, E. R., Leung, N. H., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009b). Inorg. Chem. 48, 3866–3874.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720–2725.  Web of Science CSD CrossRef Google Scholar
First citationOliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852–5864.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRazak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Jian, F., Bei, F., Yang, X., Lu, L. & Wang, X. (2000). Acta Cryst. C56, 666–667.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilton-Ely, J. D. E. T., Solanki, D., Knight, E. R., Holt, K. B., Thompson, A. L. & Hogarth, G. (2008). Inorg. Chem. 47, 9642–9653.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1629-m1630
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds