organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di-tert-butyl-2,8-dimeth­­oxy­dibenzo[b,d]furan

aGwangju Science High School, Gwangju 500-480, Republic of Korea, bDepartment of Chemistry, Sunchon National University, Sunchon 540-742, Republic of Korea, and cDepartment of Chemical Engineering, Sunchon National University, Sunchon 540-742, Republic of Korea
*Correspondence e-mail: chkwak@sunchon.ac.kr

(Received 3 November 2011; accepted 15 November 2011; online 19 November 2011)

In the title compound, C22H28O3, the dihedral angle between the benzene rings is 3.47 (13)° and the five-membered furan ring is essentially planar with a largest deviation of 0.0052 (14) Å. The Csp2—Csp2 bond length between the two benzene rings [1.443 (3) Å] is considerably shorter than those between the benzene and tertiary C atoms [1.538 (3) and 1.530 (3) Å], which are sp2sp3 hybridized. C—H⋯π inter­actions involving the furan and benzene rings are found in the crystal structure.

Related literature

For the synthesis of the title compound, see: Hewgill & Hewitt (1967[Hewgill, F. R. & Hewitt, D. G. (1967). J. Chem. Soc C, pp. 726-730.]); Butsgan et al. (1989[Butsgan, Y., Muto, M., Kawai, M., Araki, S., Murase, Y. & Saito, K. (1989). J. Org. Chem. 54, 4215-4217.]); Malkowsky et al. (2006[Malkowsky, I. M., Rommel, C. E., Froehlich, R., Driesbach, U., Fuetter, H. & Waldvogel, S. R. (2006). Chem. Eur. J. 12, 7482-7488.]). For a related structure, see: Du & Wang (2009[Du, Z.-X. & Wang, L.-Z. (2009). Acta Cryst. E65, o1664.]).

[Scheme 1]

Experimental

Crystal data
  • C22H28O3

  • Mr = 340.44

  • Monoclinic, P 21 /n

  • a = 15.631 (3) Å

  • b = 8.2487 (14) Å

  • c = 16.000 (3) Å

  • β = 105.438 (5)°

  • V = 1988.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.5 × 0.4 × 0.2 mm

Data collection
  • Rigaku R-AXIS RAPID II-S diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2008[Rigaku (2008). RAPIDO-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.985

  • 18260 measured reflections

  • 4563 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.229

  • S = 0.99

  • 4563 reflections

  • 227 parameters

  • H-atom parameters not refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C8/C11/C12 and O1/C9–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15ACg1i 0.96 2.98 3.580 (3) 121
C15—H15BCg2i 0.96 2.65 3.200 (3) 117
C22—H15ACg2ii 0.96 2.99 3.872 (4) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z.

Data collection: RAPID-AUTO (Rigaku, 2008[Rigaku (2008). RAPIDO-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Oxidative coupling of phenyl is a useful synthetic route for the synthesis of natural products (Malkowsky et al., 2006). 2-tert-Butyl-4-methoxyphenol (BHA) is well kwon as an antioxidant and oxidative coupling of it produces di-BHA and benzofuran derivative by the various method of preparation (Hewgill & Hewitt, 1967; Butsgan et al., 1989). The single-crystal structure of di-BHA was reported but that of benzofuran derived from BHA has not been investigated. Here we describe the structure of title compound obtained from pyrolysis method.

The title compound, C22H29O3, forms tricycle adjoined two benzene skeleton in C10 and C11, and C9 and C12 through O1 (Fig. 1). All atoms lies in almost a plane, the dihedral angle between two benzene skeletons is 3.47 (13)° and 5-membered furan ring is a plane with the largest deviation of 0.0052 (14) Å. The bond distance of C10—C11 [1.443 (3) Å] in sp2sp2 hybridization, which connects two benzene skeleton, is considerably shorter than that of C1—C13 [1.538 (3) Å] or C8—C14 [1.530 (3) Å] in sp2-sp3 hybridization. C15—H15A···π (3/2 - x, 1/2 + y, 1/2 - z) interaction involving the benzene ring (C5-C8/C11-C12) and, C15—H15B···π and C22—H22A···π (2 - x, 2 - y, -z) interactions involing furan ring (O1/C9—C12) are found in the crystal structure (Fig. 2 and Table 1). No classical hydrogen bond is found in the crystal structure.

Related literature top

For the synthesis of the title compound, see: Hewgill & Hewitt (1967); Butsgan et al. (1989); Malkowsky et al. (2006). For a related structure, see: Du & Wang (2009).

Experimental top

A mixture of BHA (1.20 g, 6.65 mmol) and iron (0.95 g) and copper (0.89 g) powder in a Schlenk tube was heated under argon gas until BHA was melt and this mixture keep ca 170°C for 24 h. Dissolving the product with 30 ml CH2Cl2 for 3 times, the solution was chromatographed on Al2O3 eluting with CH2Cl2/n-hexane(1:1) to afford the title compound. Single crystals of the compound for X-ray analysis were obtained by recrystallization from CH2Cl2/n-hexane (1:1) at -20°C. 13C-NMR (THF-d5) δ 29.245 (C(CH3)3), 32.843 ((O-CH3), 54.707 (C(CH3)3), 11.825, 113.253, 128.572, 139.625, 145.875, 153.619 (Phenyl). ESI-MS (M/z) C22H28O3; Observed (cal'd): [M+H]+ = 341.2186 (340.46).

Refinement top

The H atoms were positioned geometrically and ride on their respective parent atoms. C—H Distance is 0.93 Å (CH, sp2) with Uiso = 1.2Ueq(C) and 0.96 Å (CH3) with Uiso = 1.5Ueq(C).

Structure description top

Oxidative coupling of phenyl is a useful synthetic route for the synthesis of natural products (Malkowsky et al., 2006). 2-tert-Butyl-4-methoxyphenol (BHA) is well kwon as an antioxidant and oxidative coupling of it produces di-BHA and benzofuran derivative by the various method of preparation (Hewgill & Hewitt, 1967; Butsgan et al., 1989). The single-crystal structure of di-BHA was reported but that of benzofuran derived from BHA has not been investigated. Here we describe the structure of title compound obtained from pyrolysis method.

The title compound, C22H29O3, forms tricycle adjoined two benzene skeleton in C10 and C11, and C9 and C12 through O1 (Fig. 1). All atoms lies in almost a plane, the dihedral angle between two benzene skeletons is 3.47 (13)° and 5-membered furan ring is a plane with the largest deviation of 0.0052 (14) Å. The bond distance of C10—C11 [1.443 (3) Å] in sp2sp2 hybridization, which connects two benzene skeleton, is considerably shorter than that of C1—C13 [1.538 (3) Å] or C8—C14 [1.530 (3) Å] in sp2-sp3 hybridization. C15—H15A···π (3/2 - x, 1/2 + y, 1/2 - z) interaction involving the benzene ring (C5-C8/C11-C12) and, C15—H15B···π and C22—H22A···π (2 - x, 2 - y, -z) interactions involing furan ring (O1/C9—C12) are found in the crystal structure (Fig. 2 and Table 1). No classical hydrogen bond is found in the crystal structure.

For the synthesis of the title compound, see: Hewgill & Hewitt (1967); Butsgan et al. (1989); Malkowsky et al. (2006). For a related structure, see: Du & Wang (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2008); cell refinement: RAPID-AUTO (Rigaku, 2008); data reduction: RAPID-AUTO (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Dashed lines represent C—H···π interactions.
6,10-di-tert-butyl-4,12-dimethoxy-8-oxatricyclo[7.4.0.02,7]trideca- 1(9),2(7),3,5,10,12-hexaene top
Crystal data top
C22H28O3F(000) = 736
Mr = 340.44Dx = 1.137 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.631 (3) ÅCell parameters from 18260 reflections
b = 8.2487 (14) Åθ = 3.2–27.5°
c = 16.000 (3) ŵ = 0.07 mm1
β = 105.438 (5)°T = 100 K
V = 1988.5 (6) Å3Block, brown
Z = 40.5 × 0.4 × 0.2 mm
Data collection top
Rigaku R-AXIS RAPID II-S
diffractometer
4563 independent reflections
Radiation source: fine-focus sealed tube2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2008)
h = 2020
Tmin = 0.965, Tmax = 0.985k = 910
18260 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters not refined
S = 0.99 w = 1/[σ2(Fo2) + (0.1073P)2]
where P = (Fo2 + 2Fc2)/3
4563 reflections(Δ/σ)max = 0.009
227 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H28O3V = 1988.5 (6) Å3
Mr = 340.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.631 (3) ŵ = 0.07 mm1
b = 8.2487 (14) ÅT = 100 K
c = 16.000 (3) Å0.5 × 0.4 × 0.2 mm
β = 105.438 (5)°
Data collection top
Rigaku R-AXIS RAPID II-S
diffractometer
4563 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2008)
2123 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.985Rint = 0.107
18260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.229H-atom parameters not refined
S = 0.99Δρmax = 0.24 e Å3
4563 reflectionsΔρmin = 0.21 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.90422 (11)0.83006 (19)0.11113 (11)0.0570 (5)
O20.87127 (14)1.1093 (2)0.41186 (12)0.0787 (6)
C110.81556 (16)1.0573 (3)0.08804 (16)0.0515 (6)
C100.84681 (16)1.0295 (3)0.18023 (17)0.0524 (6)
C120.85219 (16)0.9345 (3)0.04927 (17)0.0528 (6)
O30.68536 (15)1.2535 (2)0.11118 (13)0.0805 (6)
C50.75816 (17)1.1710 (3)0.03733 (17)0.0585 (7)
H50.73231.25320.06210.070*
C40.83376 (17)1.1096 (3)0.25353 (17)0.0560 (6)
H40.79901.20240.24830.067*
C30.87496 (17)1.0440 (3)0.33359 (17)0.0592 (7)
C10.93919 (17)0.8188 (3)0.27084 (18)0.0589 (7)
C70.78180 (18)1.0324 (3)0.08857 (18)0.0633 (7)
H70.76971.02870.14870.076*
C90.89907 (17)0.8908 (3)0.19084 (17)0.0551 (6)
C60.74191 (18)1.1549 (3)0.05084 (18)0.0610 (7)
C80.83866 (17)0.9163 (3)0.03992 (17)0.0563 (6)
C140.87778 (18)0.7790 (3)0.08242 (18)0.0617 (7)
C20.92504 (17)0.9010 (3)0.34121 (18)0.0633 (7)
H20.94990.85950.39640.076*
C130.9922 (2)0.6597 (3)0.2794 (2)0.0734 (8)
C150.8178 (2)1.2486 (4)0.4088 (2)0.0791 (9)
H15A0.81971.28190.46680.119*
H15B0.75771.22380.37790.119*
H15C0.83971.33450.37970.119*
C180.9331 (2)0.5255 (3)0.2286 (2)0.0874 (10)
H18A0.91230.55660.16880.131*
H18B0.88340.50880.25210.131*
H18C0.96670.42690.23300.131*
C220.9777 (2)0.7683 (5)0.0432 (3)0.1029 (13)
H22A1.00510.86700.05470.154*
H22B1.00100.67870.06860.154*
H22C0.99000.75240.01830.154*
C160.6289 (2)1.3589 (4)0.0816 (2)0.0826 (9)
H16A0.59371.42000.12950.124*
H16B0.66391.43170.03920.124*
H16C0.59071.29680.05580.124*
C191.0732 (2)0.6880 (4)0.2426 (3)0.1032 (12)
H19A1.05310.72580.18380.155*
H19B1.10500.58810.24390.155*
H19C1.11160.76760.27710.155*
C200.8357 (2)0.6196 (4)0.0658 (2)0.0952 (11)
H20A0.84300.60670.00470.143*
H20B0.86400.53120.08700.143*
H20C0.77360.62070.09540.143*
C210.8591 (3)0.8028 (5)0.1807 (2)0.1160 (14)
H21A0.88400.90410.19230.174*
H21B0.79620.80350.20630.174*
H21C0.88550.71570.20490.174*
C171.0251 (3)0.6062 (4)0.3745 (2)0.1147 (14)
H17A1.05700.50600.37780.172*
H17B0.97520.59130.39810.172*
H17C1.06360.68800.40710.172*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0590 (10)0.0531 (10)0.0617 (12)0.0046 (8)0.0209 (9)0.0053 (8)
O20.0938 (15)0.0840 (13)0.0594 (12)0.0314 (11)0.0220 (11)0.0055 (10)
C110.0529 (13)0.0463 (12)0.0617 (16)0.0036 (10)0.0262 (12)0.0047 (11)
C100.0525 (14)0.0471 (12)0.0619 (16)0.0012 (10)0.0225 (12)0.0034 (11)
C120.0525 (13)0.0456 (12)0.0644 (16)0.0011 (10)0.0230 (12)0.0009 (12)
O30.0993 (15)0.0751 (13)0.0708 (13)0.0233 (12)0.0293 (12)0.0033 (10)
C50.0650 (16)0.0509 (13)0.0654 (17)0.0050 (12)0.0275 (13)0.0009 (12)
C40.0599 (15)0.0498 (13)0.0628 (16)0.0045 (11)0.0240 (13)0.0023 (12)
C30.0636 (16)0.0601 (15)0.0578 (16)0.0047 (12)0.0226 (13)0.0073 (13)
C10.0559 (14)0.0522 (14)0.0683 (18)0.0053 (11)0.0159 (13)0.0020 (13)
C70.0722 (17)0.0631 (16)0.0608 (16)0.0004 (14)0.0286 (14)0.0035 (13)
C90.0559 (14)0.0493 (13)0.0631 (16)0.0016 (11)0.0209 (12)0.0076 (12)
C60.0662 (16)0.0562 (14)0.0654 (17)0.0056 (12)0.0258 (14)0.0056 (13)
C80.0588 (15)0.0542 (14)0.0615 (16)0.0036 (12)0.0261 (13)0.0076 (12)
C140.0662 (16)0.0605 (15)0.0666 (18)0.0005 (13)0.0317 (14)0.0107 (13)
C20.0664 (16)0.0594 (15)0.0632 (16)0.0100 (13)0.0158 (13)0.0003 (13)
C130.079 (2)0.0594 (16)0.078 (2)0.0187 (14)0.0146 (16)0.0048 (15)
C150.085 (2)0.084 (2)0.0688 (19)0.0247 (16)0.0222 (16)0.0115 (16)
C180.105 (2)0.0525 (16)0.101 (3)0.0133 (16)0.022 (2)0.0001 (16)
C220.069 (2)0.124 (3)0.125 (3)0.0018 (19)0.041 (2)0.056 (2)
C160.092 (2)0.0692 (18)0.087 (2)0.0197 (16)0.0261 (18)0.0021 (17)
C190.069 (2)0.095 (2)0.143 (4)0.0249 (18)0.024 (2)0.020 (2)
C200.110 (3)0.0655 (19)0.121 (3)0.0122 (18)0.051 (2)0.0273 (19)
C210.176 (4)0.109 (3)0.078 (2)0.046 (3)0.059 (3)0.009 (2)
C170.151 (4)0.086 (2)0.086 (2)0.054 (2)0.004 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C91.393 (3)C13—C181.529 (4)
O1—C121.398 (3)C13—C171.536 (4)
O2—C31.378 (3)C13—C191.549 (5)
O2—C151.413 (3)C15—H15A0.9600
C11—C121.389 (3)C15—H15B0.9600
C11—C51.398 (3)C15—H15C0.9600
C11—C101.443 (3)C18—H18A0.9600
C10—C91.390 (3)C18—H18B0.9600
C10—C41.407 (3)C18—H18C0.9600
C12—C81.394 (3)C22—H22A0.9600
O3—C61.386 (3)C22—H22B0.9600
O3—C161.408 (3)C22—H22C0.9600
C5—C61.372 (4)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C4—C31.382 (4)C16—H16C0.9600
C4—H40.9300C19—H19A0.9600
C3—C21.403 (3)C19—H19B0.9600
C1—C21.382 (4)C19—H19C0.9600
C1—C91.399 (4)C20—H20A0.9600
C1—C131.538 (3)C20—H20B0.9600
C7—C81.395 (4)C20—H20C0.9600
C7—C61.405 (4)C21—H21A0.9600
C7—H70.9300C21—H21B0.9600
C8—C141.530 (3)C21—H21C0.9600
C14—C221.523 (4)C17—H17A0.9600
C14—C201.524 (4)C17—H17B0.9600
C14—C211.533 (4)C17—H17C0.9600
C2—H20.9300
C9—O1—C12105.20 (18)C1—C13—C19108.2 (2)
C3—O2—C15117.0 (2)O2—C15—H15A109.5
C12—C11—C5120.5 (2)O2—C15—H15B109.5
C12—C11—C10105.8 (2)H15A—C15—H15B109.5
C5—C11—C10133.6 (2)O2—C15—H15C109.5
C9—C10—C4119.7 (2)H15A—C15—H15C109.5
C9—C10—C11106.5 (2)H15B—C15—H15C109.5
C4—C10—C11133.8 (2)C13—C18—H18A109.5
C11—C12—C8124.6 (2)C13—C18—H18B109.5
C11—C12—O1111.4 (2)H18A—C18—H18B109.5
C8—C12—O1124.0 (2)C13—C18—H18C109.5
C6—O3—C16117.9 (2)H18A—C18—H18C109.5
C6—C5—C11116.5 (2)H18B—C18—H18C109.5
C6—C5—H5121.7C14—C22—H22A109.5
C11—C5—H5121.7C14—C22—H22B109.5
C3—C4—C10117.0 (2)H22A—C22—H22B109.5
C3—C4—H4121.5C14—C22—H22C109.5
C10—C4—H4121.5H22A—C22—H22C109.5
O2—C3—C4124.6 (2)H22B—C22—H22C109.5
O2—C3—C2114.0 (2)O3—C16—H16A109.5
C4—C3—C2121.4 (2)O3—C16—H16B109.5
C2—C1—C9114.0 (2)H16A—C16—H16B109.5
C2—C1—C13123.1 (2)O3—C16—H16C109.5
C9—C1—C13122.9 (2)H16A—C16—H16C109.5
C8—C7—C6123.0 (3)H16B—C16—H16C109.5
C8—C7—H7118.5C13—C19—H19A109.5
C6—C7—H7118.5C13—C19—H19B109.5
C10—C9—O1111.1 (2)H19A—C19—H19B109.5
C10—C9—C1124.6 (2)C13—C19—H19C109.5
O1—C9—C1124.3 (2)H19A—C19—H19C109.5
C5—C6—O3124.7 (2)H19B—C19—H19C109.5
C5—C6—C7122.0 (3)C14—C20—H20A109.5
O3—C6—C7113.3 (2)C14—C20—H20B109.5
C12—C8—C7113.4 (2)H20A—C20—H20B109.5
C12—C8—C14124.4 (2)C14—C20—H20C109.5
C7—C8—C14122.1 (2)H20A—C20—H20C109.5
C22—C14—C20108.7 (3)H20B—C20—H20C109.5
C22—C14—C8110.3 (2)C14—C21—H21A109.5
C20—C14—C8108.6 (2)C14—C21—H21B109.5
C22—C14—C21108.9 (3)H21A—C21—H21B109.5
C20—C14—C21108.4 (3)C14—C21—H21C109.5
C8—C14—C21111.8 (2)H21A—C21—H21C109.5
C1—C2—C3123.3 (3)H21B—C21—H21C109.5
C1—C2—H2118.4C13—C17—H17A109.5
C3—C2—H2118.4C13—C17—H17B109.5
C18—C13—C17108.3 (3)H17A—C17—H17B109.5
C18—C13—C1109.6 (2)C13—C17—H17C109.5
C17—C13—C1111.3 (2)H17A—C17—H17C109.5
C18—C13—C19110.2 (3)H17B—C17—H17C109.5
C17—C13—C19109.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C8/C11/C12 and O1/C9–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i0.962.983.580 (3)121
C15—H15B···Cg2i0.962.653.200 (3)117
C22—H15A···Cg2iiii0.962.993.872 (4)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC22H28O3
Mr340.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.631 (3), 8.2487 (14), 16.000 (3)
β (°) 105.438 (5)
V3)1988.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID II-S
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 2008)
Tmin, Tmax0.965, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18260, 4563, 2123
Rint0.107
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.229, 0.99
No. of reflections4563
No. of parameters227
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: RAPID-AUTO (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C8/C11/C12 and O1/C9–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i0.962.983.580 (3)121
C15—H15B···Cg2i0.962.653.200 (3)117
C22—H15A···Cg2iiii0.962.993.872 (4)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+2, z.
 

Acknowledgements

This work was supported financially by the RIC, 2011, and the Non-Directional Fund of Sunchon National University, 2005.

References

First citationButsgan, Y., Muto, M., Kawai, M., Araki, S., Murase, Y. & Saito, K. (1989). J. Org. Chem. 54, 4215–4217.  Google Scholar
First citationDu, Z.-X. & Wang, L.-Z. (2009). Acta Cryst. E65, o1664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHewgill, F. R. & Hewitt, D. G. (1967). J. Chem. Soc C, pp. 726-730.  Google Scholar
First citationMalkowsky, I. M., Rommel, C. E., Froehlich, R., Driesbach, U., Fuetter, H. & Waldvogel, S. R. (2006). Chem. Eur. J. 12, 7482–7488.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2008). RAPIDO-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds