organic compounds
Bis[2-(4-aminophenyl)-4,5-dihydro-1H-imidazol-3-ium] dichloride monohydrate
aLaboratory of Chemical and Biological Crystallography, Department of Physical Chemistry, Rudjer Bošković Institute, POB-180, HR-10002 Zagreb, Croatia, and bDepartment of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
*Correspondence e-mail: kmolcano@irb.hr
The 9H12N3+·2Cl−·H2O, comprises two molecules, two chloride anions and one molecule of crystal water. In the imidazolinium ring, the protonation contributes to delocalization of the positive charge over the two C—N bonds. Both chloride anions are acceptors of four hydrogen bonds in a flattened tetrahedron environment. The donors are NH2 groups, the NH groups of the imidazolinium rings and the water molecule. These hydrogen bonds and N—H⋯O(H2O) hydrogen bonds form a three-dimensional network.
of the title compound, 2CRelated literature
For background and the biological activity of aromatic et al. (2010); Hu et al. (2009); Del Poeta et al. (1998); Baraldi et al. (2004); Jarak et al. (2011); Neidle (2001); Stolić et al. (2011). For the synthesis, see Widra et al. (1990). For related compounds see: Jarak et al. (2005); Legrand et al. (2008). For puckering parameters, see: Cremer & Pople (1975);
see: ChenExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811050070/bq2316sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811050070/bq2316Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811050070/bq2316Isup3.cml
The crude imidate ester hydrochloride (2.39 g, 12.8 mmol) prepared from 4-aminobenzonitrile (1.66 g, 14.1 mmol) in anhydrous methanol by Pinner reaction was suspended in anhydrous methanol (50 ml), 1,2-diaminoethane (12 ml) was added and mixture was refluxed for 12 h under the nitrogen atmosphere. The solvent was removed under reduced pressure and residue was recrystallized from ethanol-diethyl ether to yield 1.27 g (50.5%) of pale brown powder, m.p. 473 K; IR (νmax/cm-1): 3353, 3099, 1582, 1502, 1364, 1191, 949, 835; 1H NMR (DMSO-d6) δ/p.p.m.: 10.12 (s, 2H, NH), 7.76 (s, 2H, NH2), 6.65 (s, 2H, ArH), 6.46 (s, 2H, ArH), 2.50 (s, 4H, CH2).
The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and 0.97 Å for C and 0.86 Å for N atom and Uiso(H) = 1.2Ueq(C,N). The H atoms of water were located in difference map and then allowed to ride on their parent atoms, with O—H = 0.95 Å and 1.5Ueq(O).
Nucleic acids are important targets for many biomolecules and small molecules. Many anticancer drugs are known to exert their biological activity through bonding into minor groove of DNA. Aromatic
which bind strongly into the DNA minor groove exhibit outstandindg antiparasitic (Chen et al., 2010), antibacterial (Hu et al., 2009), antifungal (Del Poeta et al., 1998), and antitumor activity (Baraldi et al., 2004). The amidinium moiety is known to contribute to DNA binding of small molecules by electrostatic, van der Waals and hydrogen bonding interactions (Neidle, 2001). Aminobenzamidine derivatives are very useful building blocks for construction of target complex molecules (Jarak et al., 2011). We found out that 4,5-dihydroimidazoles with cyclic amidine moiety at the terminal positions show sometimes better antitumor activity than corresponding unsubstituted or alkyl substituted (Stolić et al., 2011). Detail analysis of interactions of these compounds with can help to design more potent agents against different types of diseases.The Θ being 3.2° and 0.6° for A and B molecules, respectively. The cations, however, are not planar, since mean planes of six- and five-membered rings are tilted by 9.3° and 14.8°, respectively. Both imino nitrogen atoms of the imidazolinium ring are protonated, since the imidazole is stronger proton acceptor than the amine nitrogen. The positive charge is delocalized over the two C—N bonds in the five-membered ring (Scheme 1, Fig. 1), further stabilizing the cation. The chloride anions are acceptors of four hydrogen bonds in the shapes of flattened tetrahedra with different donor groups: Cl1 accepts hydrogen bonds from two NH group of the imidazolinium ring, one NH2 group and a water molecule; Cl2 is surrounded by two NH2 groups, one imidazolinium NH and a water molecule. The molecule of crystal water is a proton donor to chloride ions and acceptor of N—H···O bonds. Thus, crystal packing comprises three-dimensional hydrogen bonding network (Fig. 2, Table 1).
of I comprises two molecules (labeled as A and B) and a single molecule of crystal water (Fig. 1). The five-membered rings of the cations are almost planar, the Cremer-Pople (Cremer & Pople, 1975) puckering parametersFor background and the biological activity of aromatic
see: Chen et al. (2010); Hu et al. (2009); Del Poeta et al. (1998); Baraldi et al. (2004); Jarak et al. (2011); Neidle (2001); Stolić et al. (2011). For the synthesis, see Widra et al. (1990). For related compounds see: Jarak et al. (2005); Legrand et al. (2008). For puckering parameters, see: Cremer & Pople (1975);Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of I. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are depicted as spheres of arbitrary radii. | |
Fig. 2. Hydrogen bonding in I. Symmetry operators: (i) x + 1/2, -y + 1/2, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, y - 3/2, -z + 1/2; (iv) x, y - 1, z; (v) - x + 1, -y, -z + 1. |
2C9H12N3+·2Cl−·H2O | F(000) = 1744 |
Mr = 413.35 | Dx = 1.294 Mg m−3 |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4375 reflections |
a = 10.5307 (2) Å | θ = 3.2–76.0° |
b = 17.9659 (4) Å | µ = 2.91 mm−1 |
c = 22.4290 (5) Å | T = 293 K |
V = 4243.42 (16) Å3 | Prism, colourless |
Z = 8 | 0.4 × 0.05 × 0.04 mm |
Oxford Xcalibur Nova R Ruby diffractometer | 3054 reflections with I > 2σ(I) |
CCD detector, ω scans | Rint = 0.030 |
Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2010) | θmax = 76.2°, θmin = 3.9° |
Tmin = 0.389, Tmax = 0.892 | h = −10→13 |
13695 measured reflections | k = −22→18 |
4375 independent reflections | l = −12→27 |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1666P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.116 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.24 e Å−3 |
4375 reflections | Δρmin = −0.13 e Å−3 |
348 parameters |
2C9H12N3+·2Cl−·H2O | V = 4243.42 (16) Å3 |
Mr = 413.35 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 10.5307 (2) Å | µ = 2.91 mm−1 |
b = 17.9659 (4) Å | T = 293 K |
c = 22.4290 (5) Å | 0.4 × 0.05 × 0.04 mm |
Oxford Xcalibur Nova R Ruby diffractometer | 4375 independent reflections |
Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2010) | 3054 reflections with I > 2σ(I) |
Tmin = 0.389, Tmax = 0.892 | Rint = 0.030 |
13695 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 3 restraints |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.24 e Å−3 |
4375 reflections | Δρmin = −0.13 e Å−3 |
348 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.15472 (18) | 0.24466 (12) | 0.46353 (9) | 0.0591 (4) | |
C2A | 0.2329 (2) | 0.20468 (13) | 0.50240 (9) | 0.0677 (5) | |
H2A | 0.2799 | 0.1647 | 0.488 | 0.081* | |
C3A | 0.2413 (2) | 0.22367 (13) | 0.56166 (9) | 0.0649 (5) | |
H3A | 0.2947 | 0.1966 | 0.5866 | 0.078* | |
C4A | 0.17150 (17) | 0.28251 (10) | 0.58513 (8) | 0.0529 (4) | |
C5A | 0.09206 (18) | 0.32174 (11) | 0.54635 (9) | 0.0590 (4) | |
H5A | 0.0434 | 0.3609 | 0.561 | 0.071* | |
C6A | 0.08469 (19) | 0.30346 (12) | 0.48693 (9) | 0.0630 (5) | |
H6A | 0.032 | 0.3309 | 0.4619 | 0.076* | |
C7A | 0.17897 (17) | 0.30141 (10) | 0.64793 (8) | 0.0536 (4) | |
C8A | 0.2419 (2) | 0.29987 (16) | 0.74592 (10) | 0.0797 (6) | |
H811 | 0.3175 | 0.3238 | 0.7616 | 0.096* | |
H812 | 0.2177 | 0.2594 | 0.7722 | 0.096* | |
C9A | 0.1344 (2) | 0.35524 (14) | 0.73860 (10) | 0.0759 (6) | |
H911 | 0.0625 | 0.3423 | 0.7636 | 0.091* | |
H912 | 0.1618 | 0.4054 | 0.7481 | 0.091* | |
N1A | 0.1465 (2) | 0.22627 (13) | 0.40482 (8) | 0.0825 (6) | |
H11 | 0.0974 | 0.2511 | 0.3815 | 0.099* | |
H12 | 0.1904 | 0.1898 | 0.391 | 0.099* | |
N2A | 0.26224 (17) | 0.27362 (11) | 0.68540 (8) | 0.0705 (5) | |
H2C | 0.3218 | 0.2434 | 0.6753 | 0.085* | |
N3A | 0.10317 (17) | 0.34793 (10) | 0.67552 (8) | 0.0671 (4) | |
H3C | 0.0421 | 0.3714 | 0.6584 | 0.081* | |
C1B | 0.7185 (2) | 0.49540 (12) | 0.38839 (10) | 0.0699 (5) | |
C2B | 0.7994 (2) | 0.48300 (13) | 0.43669 (11) | 0.0726 (6) | |
H2B | 0.8718 | 0.4542 | 0.4314 | 0.087* | |
C3B | 0.7741 (2) | 0.51242 (13) | 0.49165 (10) | 0.0677 (5) | |
H3B | 0.8288 | 0.5024 | 0.5232 | 0.081* | |
C4B | 0.66745 (19) | 0.55730 (11) | 0.50120 (9) | 0.0597 (4) | |
C5B | 0.5881 (2) | 0.57082 (13) | 0.45265 (11) | 0.0679 (5) | |
H5B | 0.5171 | 0.601 | 0.4577 | 0.082* | |
C6B | 0.6124 (2) | 0.54067 (14) | 0.39764 (11) | 0.0738 (6) | |
H6B | 0.5576 | 0.5505 | 0.3661 | 0.089* | |
C7B | 0.64277 (17) | 0.58804 (11) | 0.55951 (10) | 0.0593 (5) | |
C8B | 0.6543 (2) | 0.60604 (14) | 0.66131 (11) | 0.0752 (6) | |
H821 | 0.7238 | 0.632 | 0.6807 | 0.09* | |
H822 | 0.6143 | 0.5728 | 0.6897 | 0.09* | |
C9B | 0.5585 (2) | 0.66057 (15) | 0.63481 (12) | 0.0809 (7) | |
H921 | 0.4744 | 0.6527 | 0.6512 | 0.097* | |
H922 | 0.5839 | 0.7117 | 0.6419 | 0.097* | |
N1B | 0.7415 (2) | 0.46400 (14) | 0.33459 (10) | 0.0947 (7) | |
H21 | 0.8067 | 0.4359 | 0.3298 | 0.114* | |
H22 | 0.6908 | 0.4722 | 0.3053 | 0.114* | |
N2B | 0.69789 (18) | 0.56590 (11) | 0.60876 (8) | 0.0702 (5) | |
H2D | 0.7541 | 0.5312 | 0.6099 | 0.084* | |
N3B | 0.56234 (18) | 0.64252 (11) | 0.57148 (9) | 0.0762 (5) | |
H3D | 0.5174 | 0.6648 | 0.5449 | 0.091* | |
Cl1 | 0.33702 (5) | 0.08741 (3) | 0.36842 (2) | 0.06847 (16) | |
Cl2 | 0.48675 (5) | 0.16106 (3) | 0.68365 (3) | 0.08017 (19) | |
O1 | 0.4366 (2) | 0.99224 (11) | 0.26032 (8) | 0.0905 (5) | |
H1A | 0.461 (3) | 0.9475 (12) | 0.2776 (14) | 0.136* | |
H1B | 0.396 (3) | 1.0191 (15) | 0.2913 (12) | 0.136* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.0660 (10) | 0.0683 (11) | 0.0431 (10) | −0.0008 (9) | 0.0021 (9) | 0.0024 (9) |
C2A | 0.0789 (12) | 0.0720 (13) | 0.0522 (12) | 0.0194 (10) | 0.0007 (10) | −0.0040 (10) |
C3A | 0.0728 (11) | 0.0716 (12) | 0.0503 (11) | 0.0160 (10) | −0.0065 (9) | −0.0001 (9) |
C4A | 0.0563 (9) | 0.0563 (10) | 0.0461 (10) | −0.0010 (8) | 0.0003 (8) | 0.0006 (8) |
C5A | 0.0666 (10) | 0.0577 (10) | 0.0527 (11) | 0.0084 (9) | 0.0027 (9) | 0.0007 (8) |
C6A | 0.0677 (10) | 0.0707 (12) | 0.0506 (11) | 0.0092 (10) | −0.0040 (9) | 0.0071 (9) |
C7A | 0.0588 (9) | 0.0527 (9) | 0.0492 (10) | −0.0024 (8) | −0.0012 (8) | 0.0008 (8) |
C8A | 0.0945 (15) | 0.0948 (17) | 0.0499 (12) | 0.0214 (13) | −0.0123 (11) | −0.0105 (11) |
C9A | 0.0898 (14) | 0.0868 (15) | 0.0511 (12) | 0.0187 (13) | −0.0059 (11) | −0.0109 (11) |
N1A | 0.1041 (14) | 0.0982 (15) | 0.0453 (10) | 0.0272 (12) | −0.0067 (10) | −0.0056 (9) |
N2A | 0.0768 (10) | 0.0855 (12) | 0.0491 (10) | 0.0234 (9) | −0.0076 (8) | −0.0075 (8) |
N3A | 0.0762 (10) | 0.0756 (11) | 0.0496 (10) | 0.0201 (9) | −0.0077 (8) | −0.0088 (8) |
C1B | 0.0866 (13) | 0.0648 (12) | 0.0582 (12) | −0.0045 (11) | 0.0046 (11) | 0.0040 (10) |
C2B | 0.0807 (13) | 0.0690 (13) | 0.0682 (14) | 0.0124 (11) | 0.0058 (11) | 0.0054 (11) |
C3B | 0.0758 (12) | 0.0672 (12) | 0.0601 (13) | 0.0098 (10) | −0.0006 (10) | 0.0069 (10) |
C4B | 0.0647 (10) | 0.0540 (10) | 0.0606 (12) | −0.0013 (9) | 0.0017 (9) | 0.0084 (9) |
C5B | 0.0686 (11) | 0.0669 (12) | 0.0684 (14) | 0.0044 (10) | −0.0027 (10) | 0.0054 (10) |
C6B | 0.0821 (13) | 0.0794 (15) | 0.0600 (13) | −0.0002 (12) | −0.0092 (11) | 0.0080 (11) |
C7B | 0.0587 (9) | 0.0559 (10) | 0.0634 (12) | 0.0002 (8) | 0.0003 (9) | 0.0057 (9) |
C8B | 0.0797 (13) | 0.0808 (15) | 0.0652 (14) | 0.0153 (12) | 0.0023 (11) | −0.0055 (11) |
C9B | 0.0854 (14) | 0.0821 (15) | 0.0753 (16) | 0.0220 (13) | 0.0018 (13) | −0.0069 (12) |
N1B | 0.1131 (15) | 0.1059 (17) | 0.0651 (13) | 0.0179 (14) | −0.0007 (12) | −0.0067 (12) |
N2B | 0.0787 (10) | 0.0727 (11) | 0.0592 (10) | 0.0204 (9) | −0.0019 (9) | −0.0008 (8) |
N3B | 0.0819 (11) | 0.0759 (11) | 0.0707 (12) | 0.0247 (10) | −0.0048 (10) | 0.0015 (9) |
Cl1 | 0.0833 (3) | 0.0644 (3) | 0.0577 (3) | −0.0134 (2) | 0.0066 (2) | −0.0012 (2) |
Cl2 | 0.0760 (3) | 0.0766 (3) | 0.0879 (4) | 0.0119 (3) | 0.0061 (3) | 0.0194 (3) |
O1 | 0.1249 (14) | 0.0828 (11) | 0.0637 (10) | 0.0098 (11) | 0.0000 (10) | 0.0030 (8) |
C1A—N1A | 1.360 (3) | C1B—C2B | 1.396 (3) |
C1A—C6A | 1.391 (3) | C1B—C6B | 1.397 (3) |
C1A—C2A | 1.398 (3) | C2B—C3B | 1.367 (3) |
C2A—C3A | 1.375 (3) | C2B—H2B | 0.93 |
C2A—H2A | 0.93 | C3B—C4B | 1.399 (3) |
C3A—C4A | 1.391 (3) | C3B—H3B | 0.93 |
C3A—H3A | 0.93 | C4B—C5B | 1.394 (3) |
C4A—C5A | 1.398 (3) | C4B—C7B | 1.443 (3) |
C4A—C7A | 1.451 (3) | C5B—C6B | 1.372 (3) |
C5A—C6A | 1.375 (3) | C5B—H5B | 0.93 |
C5A—H5A | 0.93 | C6B—H6B | 0.93 |
C6A—H6A | 0.93 | C7B—N2B | 1.310 (3) |
C7A—N3A | 1.311 (2) | C7B—N3B | 1.322 (3) |
C7A—N2A | 1.313 (2) | C8B—N2B | 1.456 (3) |
C8A—N2A | 1.453 (3) | C8B—C9B | 1.527 (3) |
C8A—C9A | 1.516 (3) | C8B—H821 | 0.97 |
C8A—H811 | 0.97 | C8B—H822 | 0.97 |
C8A—H812 | 0.97 | C9B—N3B | 1.458 (3) |
C9A—N3A | 1.458 (3) | C9B—H921 | 0.97 |
C9A—H911 | 0.97 | C9B—H922 | 0.97 |
C9A—H912 | 0.97 | N1B—H21 | 0.86 |
N1A—H11 | 0.86 | N1B—H22 | 0.86 |
N1A—H12 | 0.86 | N2B—H2D | 0.86 |
N2A—H2C | 0.86 | N3B—H3D | 0.86 |
N3A—H3C | 0.86 | O1—H1A | 0.928 (17) |
C1B—N1B | 1.354 (3) | O1—H1B | 0.947 (17) |
N1A—C1A—C6A | 121.06 (19) | N1B—C1B—C6B | 121.2 (2) |
N1A—C1A—C2A | 121.1 (2) | C2B—C1B—C6B | 117.7 (2) |
C6A—C1A—C2A | 117.84 (19) | C3B—C2B—C1B | 121.3 (2) |
C3A—C2A—C1A | 120.9 (2) | C3B—C2B—H2B | 119.4 |
C3A—C2A—H2A | 119.6 | C1B—C2B—H2B | 119.4 |
C1A—C2A—H2A | 119.6 | C2B—C3B—C4B | 121.1 (2) |
C2A—C3A—C4A | 121.37 (19) | C2B—C3B—H3B | 119.4 |
C2A—C3A—H3A | 119.3 | C4B—C3B—H3B | 119.4 |
C4A—C3A—H3A | 119.3 | C5B—C4B—C3B | 117.5 (2) |
C3A—C4A—C5A | 117.64 (18) | C5B—C4B—C7B | 122.24 (19) |
C3A—C4A—C7A | 121.11 (17) | C3B—C4B—C7B | 120.26 (19) |
C5A—C4A—C7A | 121.23 (17) | C6B—C5B—C4B | 121.5 (2) |
C6A—C5A—C4A | 121.10 (19) | C6B—C5B—H5B | 119.3 |
C6A—C5A—H5A | 119.4 | C4B—C5B—H5B | 119.3 |
C4A—C5A—H5A | 119.4 | C5B—C6B—C1B | 120.8 (2) |
C5A—C6A—C1A | 121.15 (19) | C5B—C6B—H6B | 119.6 |
C5A—C6A—H6A | 119.4 | C1B—C6B—H6B | 119.6 |
C1A—C6A—H6A | 119.4 | N2B—C7B—N3B | 109.7 (2) |
N3A—C7A—N2A | 110.29 (18) | N2B—C7B—C4B | 124.63 (18) |
N3A—C7A—C4A | 125.06 (17) | N3B—C7B—C4B | 125.64 (19) |
N2A—C7A—C4A | 124.64 (18) | N2B—C8B—C9B | 102.17 (19) |
N2A—C8A—C9A | 102.81 (17) | N2B—C8B—H821 | 111.3 |
N2A—C8A—H811 | 111.2 | C9B—C8B—H821 | 111.3 |
C9A—C8A—H811 | 111.2 | N2B—C8B—H822 | 111.3 |
N2A—C8A—H812 | 111.2 | C9B—C8B—H822 | 111.3 |
C9A—C8A—H812 | 111.2 | H821—C8B—H822 | 109.2 |
H811—C8A—H812 | 109.1 | N3B—C9B—C8B | 102.61 (18) |
N3A—C9A—C8A | 102.38 (17) | N3B—C9B—H921 | 111.2 |
N3A—C9A—H911 | 111.3 | C8B—C9B—H921 | 111.2 |
C8A—C9A—H911 | 111.3 | N3B—C9B—H922 | 111.2 |
N3A—C9A—H912 | 111.3 | C8B—C9B—H922 | 111.2 |
C8A—C9A—H912 | 111.3 | H921—C9B—H922 | 109.2 |
H911—C9A—H912 | 109.2 | C1B—N1B—H21 | 120 |
C1A—N1A—H11 | 120 | C1B—N1B—H22 | 120 |
C1A—N1A—H12 | 120 | H21—N1B—H22 | 120 |
H11—N1A—H12 | 120 | C7B—N2B—C8B | 113.13 (18) |
C7A—N2A—C8A | 112.10 (18) | C7B—N2B—H2D | 123.4 |
C7A—N2A—H2C | 124 | C8B—N2B—H2D | 123.4 |
C8A—N2A—H2C | 124 | C7B—N3B—C9B | 112.36 (19) |
C7A—N3A—C9A | 112.22 (17) | C7B—N3B—H3D | 123.8 |
C7A—N3A—H3C | 123.9 | C9B—N3B—H3D | 123.8 |
C9A—N3A—H3C | 123.9 | H1A—O1—H1B | 105 (2) |
N1B—C1B—C2B | 121.1 (2) | ||
N1A—C1A—C2A—C3A | 179.7 (2) | N1B—C1B—C2B—C3B | −177.6 (2) |
C6A—C1A—C2A—C3A | −0.8 (3) | C6B—C1B—C2B—C3B | 1.7 (4) |
C1A—C2A—C3A—C4A | 0.7 (4) | C1B—C2B—C3B—C4B | −1.3 (4) |
C2A—C3A—C4A—C5A | 0.1 (3) | C2B—C3B—C4B—C5B | 0.0 (3) |
C2A—C3A—C4A—C7A | 178.9 (2) | C2B—C3B—C4B—C7B | −179.8 (2) |
C3A—C4A—C5A—C6A | −0.9 (3) | C3B—C4B—C5B—C6B | 0.8 (3) |
C7A—C4A—C5A—C6A | −179.66 (19) | C7B—C4B—C5B—C6B | −179.5 (2) |
C4A—C5A—C6A—C1A | 0.9 (3) | C4B—C5B—C6B—C1B | −0.3 (4) |
N1A—C1A—C6A—C5A | 179.4 (2) | N1B—C1B—C6B—C5B | 178.4 (2) |
C2A—C1A—C6A—C5A | 0.0 (3) | C2B—C1B—C6B—C5B | −0.9 (3) |
C3A—C4A—C7A—N3A | −169.1 (2) | C5B—C4B—C7B—N2B | 165.7 (2) |
C5A—C4A—C7A—N3A | 9.6 (3) | C3B—C4B—C7B—N2B | −14.6 (3) |
C3A—C4A—C7A—N2A | 10.2 (3) | C5B—C4B—C7B—N3B | −14.6 (3) |
C5A—C4A—C7A—N2A | −171.1 (2) | C3B—C4B—C7B—N3B | 165.2 (2) |
N2A—C8A—C9A—N3A | 4.1 (3) | N2B—C8B—C9B—N3B | 0.3 (3) |
N3A—C7A—N2A—C8A | 2.6 (3) | N3B—C7B—N2B—C8B | 0.8 (3) |
C4A—C7A—N2A—C8A | −176.8 (2) | C4B—C7B—N2B—C8B | −179.5 (2) |
C9A—C8A—N2A—C7A | −4.3 (3) | C9B—C8B—N2B—C7B | −0.7 (3) |
N2A—C7A—N3A—C9A | 0.5 (3) | N2B—C7B—N3B—C9B | −0.6 (3) |
C4A—C7A—N3A—C9A | 179.9 (2) | C4B—C7B—N3B—C9B | 179.7 (2) |
C8A—C9A—N3A—C7A | −3.1 (3) | C8B—C9B—N3B—C7B | 0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H11···Cl2i | 0.86 | 2.45 | 3.296 (2) | 170 |
N1A—H12···Cl1 | 0.86 | 2.45 | 3.304 (2) | 170 |
N1B—H21···Cl2ii | 0.86 | 2.59 | 3.448 (2) | 174 |
N1B—H22···O1iii | 0.86 | 2.02 | 2.882 (3) | 177 |
N2A—H2C···Cl2 | 0.86 | 2.29 | 3.1113 (18) | 160 |
N2B—H2D···Cl1ii | 0.86 | 2.35 | 3.1615 (19) | 157 |
N3A—H3C···Cl1i | 0.86 | 2.36 | 3.1900 (17) | 162 |
O1—H1A···Cl2iv | 0.93 (2) | 2.21 (2) | 3.1329 (19) | 178 (3) |
O1—H1B···Cl1v | 0.95 (2) | 2.21 (2) | 3.147 (2) | 170 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | 2C9H12N3+·2Cl−·H2O |
Mr | 413.35 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 10.5307 (2), 17.9659 (4), 22.4290 (5) |
V (Å3) | 4243.42 (16) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 2.91 |
Crystal size (mm) | 0.4 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Oxford Xcalibur Nova R Ruby |
Absorption correction | Multi-scan (ABSPACK; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.389, 0.892 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13695, 4375, 3054 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.116, 1.00 |
No. of reflections | 4375 |
No. of parameters | 348 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.13 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H11···Cl2i | 0.86 | 2.45 | 3.296 (2) | 169.8 |
N1A—H12···Cl1 | 0.86 | 2.45 | 3.304 (2) | 169.7 |
N1B—H21···Cl2ii | 0.86 | 2.59 | 3.448 (2) | 173.8 |
N1B—H22···O1iii | 0.86 | 2.02 | 2.882 (3) | 176.7 |
N2A—H2C···Cl2 | 0.86 | 2.29 | 3.1113 (18) | 160 |
N2B—H2D···Cl1ii | 0.86 | 2.35 | 3.1615 (19) | 156.7 |
N3A—H3C···Cl1i | 0.86 | 2.36 | 3.1900 (17) | 162.2 |
O1—H1A···Cl2iv | 0.928 (17) | 2.206 (17) | 3.1329 (19) | 178 (3) |
O1—H1B···Cl1v | 0.947 (17) | 2.210 (18) | 3.147 (2) | 170 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z. |
Acknowledgements
This research was funded by the Croatian Ministry of Science, Education and Sports, grant Nos. 098–1191344-2943 and 053–0982914-2965.
References
Baraldi, P. G., Bovero, A., Fruttarolo, F., Preti, D., Tabrizi, M. A., Pavani, M. G. & Romagnoli, R. (2004). Med. Res. Rev. 24, 475–528. Web of Science CrossRef PubMed CAS Google Scholar
Chen, X., Orser, B. A. & MacDonald, J. F. (2010). Eur. J. Pharmacol. 648, 15–23. Web of Science CrossRef CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S. K., Tidwell, R. R., Czarny, A., Bajić, M., Bajić, Ma., Kumar, A., Boykin, D. W. & Perfect, J. R. (1998). Antimicrob. Agents Chemother. 42, 2495–2502. Web of Science CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hu, L., Kully, M. L., Boykin, D. W. & Abood, N. (2009). Bioorg. Med. Chem. Lett. 19, 4626–4629. Web of Science CrossRef PubMed CAS Google Scholar
Jarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98–o100. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jarak, I., Marjanović, M., Piantanida, I., Kralj, M. & Karminski-Zamola, G. (2011). Eur. J. Med. Chem. 46, 2807–2815. Web of Science CrossRef CAS PubMed Google Scholar
Legrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967–o968. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Neidle, S. (2001). Nat. Prod. Rep. 18, 291–309. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). ABSPACK and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stolić, I., Mišković, K., Piantanida, I., Baus Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743–755. Web of Science PubMed Google Scholar
Widra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803–805. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nucleic acids are important targets for many biomolecules and small molecules. Many anticancer drugs are known to exert their biological activity through bonding into minor groove of DNA. Aromatic amidines which bind strongly into the DNA minor groove exhibit outstandindg antiparasitic (Chen et al., 2010), antibacterial (Hu et al., 2009), antifungal (Del Poeta et al., 1998), and antitumor activity (Baraldi et al., 2004). The amidinium moiety is known to contribute to DNA binding of small molecules by electrostatic, van der Waals and hydrogen bonding interactions (Neidle, 2001). Aminobenzamidine derivatives are very useful building blocks for construction of target complex molecules (Jarak et al., 2011). We found out that 4,5-dihydroimidazoles with cyclic amidine moiety at the terminal positions show sometimes better antitumor activity than corresponding unsubstituted or alkyl substituted amidines (Stolić et al., 2011). Detail analysis of interactions of these compounds with nucleic acids can help to design more potent agents against different types of diseases.
The asymmetric unit of I comprises two molecules (labeled as A and B) and a single molecule of crystal water (Fig. 1). The five-membered rings of the cations are almost planar, the Cremer-Pople (Cremer & Pople, 1975) puckering parameters Θ being 3.2° and 0.6° for A and B molecules, respectively. The cations, however, are not planar, since mean planes of six- and five-membered rings are tilted by 9.3° and 14.8°, respectively. Both imino nitrogen atoms of the imidazolinium ring are protonated, since the imidazole is stronger proton acceptor than the amine nitrogen. The positive charge is delocalized over the two C—N bonds in the five-membered ring (Scheme 1, Fig. 1), further stabilizing the cation. The chloride anions are acceptors of four hydrogen bonds in the shapes of flattened tetrahedra with different donor groups: Cl1 accepts hydrogen bonds from two NH group of the imidazolinium ring, one NH2 group and a water molecule; Cl2 is surrounded by two NH2 groups, one imidazolinium NH and a water molecule. The molecule of crystal water is a proton donor to chloride ions and acceptor of N—H···O bonds. Thus, crystal packing comprises three-dimensional hydrogen bonding network (Fig. 2, Table 1).