organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(1,3-thia­zol-2-yl)methyl­ene­di­amine

aDepartment of Chemistry, Faculty of Science, Ardabil Branch, Islamic Azad University, Ardabil, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: salimif@yahoo.com

(Received 5 November 2011; accepted 10 November 2011; online 16 November 2011)

In the title compound, C7H8N4S2, the dihedral angle between the thia­zoline rings is 71.25 (13)°. In the crystal, inter­molecular N—H⋯N hydrogen bonds connect the mol­ecules into zigzag chains parallel to the ab plane.

Related literature

For applications of thia­zole compounds see: Raman et al. (2000[Raman, P., Razavi, H. & Kelly, J. W. (2000). Org. Lett. 2, 3289-3292.]); Karimian (2009[Karimian, K. (2009). Exp. Opin. Ther. Pat. 19, 369-371.]); Shi et al. (1996[Shi, D.-F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375-3384.]). For related structures containing an amino­thia­zole moiety, see: Odabaşoğlu & Büyükgüngör, (2006[Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2866-o2868.]); Zhao et al. (2006[Zhao, J.-H., Cheng, J.-L., Huang, Y.-K. & Zhu, G.-N. (2006). Acta Cryst. E62, o4840-o4841.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N4S2

  • Mr = 212.31

  • Monoclinic, P 21 /n

  • a = 7.8598 (16) Å

  • b = 8.9291 (18) Å

  • c = 13.672 (3) Å

  • β = 96.39 (3)°

  • V = 953.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 298 K

  • 0.45 × 0.35 × 0.3 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 7352 measured reflections

  • 2551 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.162

  • S = 1.10

  • 2551 reflections

  • 126 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.85 (2) 2.07 (2) 2.918 (4) 171 (4)
N3—H3A⋯N4ii 0.85 (2) 2.07 (2) 2.919 (3) 179 (4)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The thiazole ring and its derivatives are of great importance in biological systems due to their vast range of biological activities such as anti-inflammatory, analgesic and antipyretic (Raman et al., 2000; Karimian, 2009), especially against certain breast carcinoma cell lines (Shi et al. 1996).

The asymmetric unit of the title compound (Fig. 1) is composed of one N,N'-bis(2-thiazol-yl)methylenediamin molecule. Bond lengths are in the normal range of thiazole compounds (Odabaşoğlu & Büyükgüngör, 2006; Zhao, et al. 2006). The crystal structure is stabilized by intermolecular N—H···N hydrogen bonds, which link the molecules into zigzag chains (Table 1 & Fig. 2).

Related literature top

For applications of thiazole compounds see: Raman et al. (2000); Karimian (2009); Shi et al. (1996). For related structures containing an aminothiazole moiety, see: Odabaşoğlu & Büyükgüngör, (2006); Zhao et al. (2006).

Experimental top

A mixture of formaldehyde (5 mmol) and 2-aminothiazole (10 mmol) and formic acid (0.88 mmol) was added with stirring at room temperature for 24 hrs.The resulting yellow solid was filtered and washed with cold acetonitrile. Single crystals of the title compound were obtained by recrystallization of the colorless solid from acetonitrile.

Refinement top

The hydrogen atoms of the N—H groups were found in difference Fourier map and refined isotropically with a distance restraint of N—H 0.850 (19) and 0.850 (18) Å for H2A and H3A, respectively. Hydrogen atoms attached to carbon atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for thiazole rings and C—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C) for methylene group.

Structure description top

The thiazole ring and its derivatives are of great importance in biological systems due to their vast range of biological activities such as anti-inflammatory, analgesic and antipyretic (Raman et al., 2000; Karimian, 2009), especially against certain breast carcinoma cell lines (Shi et al. 1996).

The asymmetric unit of the title compound (Fig. 1) is composed of one N,N'-bis(2-thiazol-yl)methylenediamin molecule. Bond lengths are in the normal range of thiazole compounds (Odabaşoğlu & Büyükgüngör, 2006; Zhao, et al. 2006). The crystal structure is stabilized by intermolecular N—H···N hydrogen bonds, which link the molecules into zigzag chains (Table 1 & Fig. 2).

For applications of thiazole compounds see: Raman et al. (2000); Karimian (2009); Shi et al. (1996). For related structures containing an aminothiazole moiety, see: Odabaşoğlu & Büyükgüngör, (2006); Zhao et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. The intermolecular N—H···N hydrogen bonds are shown as green dashed lines.
N,N'-Bis(1,3-thiazol-2-yl)methylenediamine top
Crystal data top
C7H8N4S2F(000) = 440
Mr = 212.31Dx = 1.479 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2551 reflections
a = 7.8598 (16) Åθ = 2.9–29.2°
b = 8.9291 (18) ŵ = 0.52 mm1
c = 13.672 (3) ÅT = 298 K
β = 96.39 (3)°Block, colorless
V = 953.6 (3) Å30.45 × 0.35 × 0.3 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
1544 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 29.2°, θmin = 2.9°
Detector resolution: 0.15 mm pixels mm-1h = 1010
rotation method scansk = 1012
7352 measured reflectionsl = 1816
2551 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0781P)2]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
C7H8N4S2V = 953.6 (3) Å3
Mr = 212.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8598 (16) ŵ = 0.52 mm1
b = 8.9291 (18) ÅT = 298 K
c = 13.672 (3) Å0.45 × 0.35 × 0.3 mm
β = 96.39 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
1544 reflections with I > 2σ(I)
7352 measured reflectionsRint = 0.055
2551 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.35 e Å3
2551 reflectionsΔρmin = 0.33 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17187 (10)0.85527 (11)0.66273 (7)0.0600 (3)
S20.38487 (10)0.58898 (11)0.36382 (7)0.0638 (3)
N20.2786 (3)0.9024 (3)0.4824 (2)0.0534 (7)
N30.1223 (3)0.6689 (3)0.4651 (2)0.0517 (7)
N40.1924 (3)0.4157 (3)0.4539 (2)0.0503 (6)
C10.3071 (4)0.9249 (3)0.5804 (2)0.0458 (7)
C50.2187 (3)0.5568 (3)0.4343 (2)0.0445 (6)
N10.4391 (3)0.9984 (3)0.6235 (2)0.0540 (7)
C30.4335 (4)1.0032 (4)0.7244 (3)0.0609 (9)
H30.51771.05210.76580.073*
C40.1332 (4)0.8213 (4)0.4347 (3)0.0543 (8)
H4A0.02940.87270.44760.065*
H4B0.13860.82340.36420.065*
C60.3067 (4)0.3273 (4)0.4103 (3)0.0596 (9)
H60.30660.22360.41610.072*
C20.3025 (4)0.9349 (5)0.7596 (3)0.0663 (10)
H20.28410.93060.82550.080*
C70.4177 (4)0.3987 (4)0.3592 (3)0.0637 (9)
H70.50040.35230.32610.076*
H3A0.031 (3)0.645 (4)0.489 (2)0.053 (9)*
H2A0.358 (4)0.924 (5)0.447 (3)0.084 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0549 (4)0.0643 (6)0.0650 (5)0.0030 (4)0.0247 (4)0.0069 (4)
S20.0533 (5)0.0637 (6)0.0801 (6)0.0071 (4)0.0333 (4)0.0008 (5)
N20.0617 (15)0.0475 (16)0.0529 (16)0.0179 (12)0.0145 (12)0.0007 (12)
N30.0445 (13)0.0392 (15)0.0749 (18)0.0073 (10)0.0228 (12)0.0046 (12)
N40.0464 (13)0.0423 (15)0.0648 (17)0.0020 (10)0.0173 (11)0.0001 (12)
C10.0502 (15)0.0326 (15)0.0568 (18)0.0012 (11)0.0156 (13)0.0033 (13)
C50.0365 (12)0.0482 (17)0.0498 (16)0.0050 (11)0.0098 (11)0.0066 (14)
N10.0539 (15)0.0482 (16)0.0615 (16)0.0081 (11)0.0131 (12)0.0041 (13)
C30.0624 (19)0.066 (2)0.0543 (19)0.0030 (16)0.0080 (15)0.0124 (16)
C40.0527 (16)0.0458 (18)0.065 (2)0.0034 (13)0.0072 (14)0.0001 (15)
C60.0561 (16)0.0466 (19)0.078 (2)0.0090 (14)0.0169 (15)0.0049 (17)
C20.067 (2)0.084 (3)0.0508 (19)0.0105 (18)0.0172 (16)0.0026 (18)
C70.0522 (17)0.067 (2)0.075 (2)0.0116 (15)0.0218 (16)0.0061 (18)
Geometric parameters (Å, º) top
S1—C21.735 (4)N4—C61.380 (4)
S1—C11.746 (3)C1—N11.311 (4)
S2—C71.721 (4)N1—C31.385 (5)
S2—C51.731 (3)C3—C21.332 (5)
N2—C11.349 (4)C3—H30.9300
N2—C41.446 (4)C4—H4A0.9700
N2—H2A0.850 (19)C4—H4B0.9700
N3—C51.351 (4)C6—C71.338 (5)
N3—C41.428 (4)C6—H60.9300
N3—H3A0.850 (18)C2—H20.9300
N4—C51.309 (4)C7—H70.9300
C2—S1—C189.70 (17)C2—C3—H3121.4
C7—S2—C588.96 (16)N1—C3—H3121.4
C1—N2—C4123.9 (3)N3—C4—N2114.6 (3)
C1—N2—H2A118 (3)N3—C4—H4A108.6
C4—N2—H2A117 (3)N2—C4—H4A108.6
C5—N3—C4124.1 (3)N3—C4—H4B108.6
C5—N3—H3A117 (2)N2—C4—H4B108.6
C4—N3—H3A116 (2)H4A—C4—H4B107.6
C5—N4—C6109.7 (3)C7—C6—N4116.5 (3)
N1—C1—N2123.8 (3)C7—C6—H6121.7
N1—C1—S1113.4 (2)N4—C6—H6121.7
N2—C1—S1122.8 (2)C3—C2—S1109.1 (3)
N4—C5—N3122.8 (2)C3—C2—H2125.4
N4—C5—S2114.8 (2)S1—C2—H2125.4
N3—C5—S2122.3 (2)C6—C7—S2110.0 (2)
C1—N1—C3110.6 (3)C6—C7—H7125.0
C2—C3—N1117.2 (3)S2—C7—H7125.0
C4—N2—C1—N1179.9 (3)N2—C1—N1—C3179.9 (3)
C4—N2—C1—S11.1 (4)S1—C1—N1—C31.1 (3)
C2—S1—C1—N11.1 (3)C1—N1—C3—C20.5 (5)
C2—S1—C1—N2179.9 (3)C5—N3—C4—N277.4 (4)
C6—N4—C5—N3178.0 (3)C1—N2—C4—N360.5 (4)
C6—N4—C5—S20.9 (4)C5—N4—C6—C70.3 (5)
C4—N3—C5—N4171.6 (3)N1—C3—C2—S10.3 (4)
C4—N3—C5—S27.2 (5)C1—S1—C2—C30.8 (3)
C7—S2—C5—N41.0 (3)N4—C6—C7—S20.4 (5)
C7—S2—C5—N3177.9 (3)C5—S2—C7—C60.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.85 (2)2.07 (2)2.918 (4)171 (4)
N3—H3A···N4ii0.85 (2)2.07 (2)2.919 (3)179 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H8N4S2
Mr212.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.8598 (16), 8.9291 (18), 13.672 (3)
β (°) 96.39 (3)
V3)953.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.45 × 0.35 × 0.3
Data collection
DiffractometerStoe IPDS 2T
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7352, 2551, 1544
Rint0.055
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.162, 1.10
No. of reflections2551
No. of parameters126
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.33

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.850 (19)2.07 (2)2.918 (4)171 (4)
N3—H3A···N4ii0.850 (18)2.070 (18)2.919 (3)179 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

We are grateful to the Islamic Azad University, Ardabil Branch, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKarimian, K. (2009). Exp. Opin. Ther. Pat. 19, 369–371.  Web of Science CrossRef CAS Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2866–o2868.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaman, P., Razavi, H. & Kelly, J. W. (2000). Org. Lett. 2, 3289–3292.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375–3384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZhao, J.-H., Cheng, J.-L., Huang, Y.-K. & Zhu, G.-N. (2006). Acta Cryst. E62, o4840–o4841.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds