organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­methyl-N,N′-bis­­(pyridin-2-yl)methane­di­amine

aDepartment of Chemistry, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea, bNational Creative Research Initiative Center for Smart Supramolecules (CSS), Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea, cSchool of Semiconductor and Chemical Engineering & Solar Energy Research Center, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea, and dThe Department of Chemistry, College of Science and Technology, Kunsan National University, 68 Miryong-Dong, Kusan, Jeollabuk-Do 573-701, Republic of Korea
*Correspondence e-mail: , parkg@kunsan.ac.kr

(Received 22 October 2011; accepted 3 November 2011; online 9 November 2011)

The title compound, C13H16N4, consists of two pyridine rings which are linked by an N,N′-dimethyl­methane­amine chain. The pyridine rings adopt a twist conformation and the dihedral angle between them is 60.85 (5)°. The crystal packing is stabilized by weak C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Kahn et al. (1945[Kahn, H. J., Petrow, V. A., Wien, R. & Harrison, J. (1945). J. Chem. Soc. pp. 858-861]). For applications of heteroaromatic amines, see: Mehrkhodavandi & Schrock (2001[Mehrkhodavandi, P. & Schrock, R. R. (2001). J. Am. Chem. Soc. 123, 10746-10747.]); Hall et al. (1998[Hall, J., Haner, R., Aime, S., Botta, M., Faulkner, S., Parker, D. & de Sousa, S. S. (1998). New J. Chem. pp. 627-631.]); Lee (2003[Lee, D.-H. (2003). J. Kor. Chem. Soc. 47, 427-431.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N4

  • Mr = 228.30

  • Monoclinic, P 21 /n

  • a = 11.6652 (7) Å

  • b = 8.3921 (5) Å

  • c = 12.8966 (7) Å

  • β = 106.634 (2)°

  • V = 1209.69 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.12 × 0.08 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.986

  • 27844 measured reflections

  • 2516 independent reflections

  • 2105 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.125

  • S = 0.96

  • 2516 reflections

  • 218 parameters

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C5 and N4/C9–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg2i 0.99 (2) 2.64 (2) 3.484 (1) 143 (1)
C6—H7⋯Cg2ii 1.00 (2) 2.75 (2) 3.545 (2) 137 (1)
C10—H13⋯Cg1iii 0.95 (2) 2.90 (1) 3.637 (1) 135 (1)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heteroaromatic amines based metal complexes have been extensively studied due to their numerous potential applications as catalysts, drugs, biomimetic chemistry, and so on. (Mehrkhodavandi, et al., (2001) , Hall, et al.,(1998), Lee, (2003). We are interested in the use of chelates containing pyridylamine. We report here the crystal structure of the title compound, Fig. 1, which consists of two 2-pyridyl rings which are linked together by a N,N'-dimethylmethaneamine chain .The pyridine rings adopt a twist conformation and the dihedral angle between them is 60.85 (5)°. The crystal packing is stabilized by weak C—H···π interactions, Fig. 2, Table 1.

Related literature top

For the synthesis of the title compound, see: Kahn et al. (1945). For applications of heteroaromatic amines, see: Mehrkhodavandi & Schrock (2001); Hall et al. (1998); Lee (2003).

Experimental top

N,N'-dimethyl-N,N'-di(pyridin-2-yl)methanediamine was prepared by a reported method, Kahn, et al., (1945). A solution of 2-(methylamino)pyridine (5.00 g, 4.62 × 10 -2 mol) in water (50 ml) was added dropwise to 37% formaldehyde solution (1.83 ml, 2.31 × 10-2 mol) at 0°C. The reation mixture was stirred at room temperature for overnight and the white precipitate formed was filtered,washed with water and dried. It was dissolved in acetone, dried over MgSO4 and concentrated. It was recrystallized in acetonitrile. Yield: 92% (4.88 g)

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for the aryl, 0.99 Å for the methylene, and 0.00 Å for the methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms, and 1.5Ueq(C) for the methyl H atoms.

Structure description top

Heteroaromatic amines based metal complexes have been extensively studied due to their numerous potential applications as catalysts, drugs, biomimetic chemistry, and so on. (Mehrkhodavandi, et al., (2001) , Hall, et al.,(1998), Lee, (2003). We are interested in the use of chelates containing pyridylamine. We report here the crystal structure of the title compound, Fig. 1, which consists of two 2-pyridyl rings which are linked together by a N,N'-dimethylmethaneamine chain .The pyridine rings adopt a twist conformation and the dihedral angle between them is 60.85 (5)°. The crystal packing is stabilized by weak C—H···π interactions, Fig. 2, Table 1.

For the synthesis of the title compound, see: Kahn et al. (1945). For applications of heteroaromatic amines, see: Mehrkhodavandi & Schrock (2001); Hall et al. (1998); Lee (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the labelling of the atoms. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the formation of a C—H···π interactions.
N,N'-Dimethyl-N,N'-bis(pyridin-2-yl)methanediamine top
Crystal data top
C13H16N4F(000) = 488
Mr = 228.30Dx = 1.254 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 2516 reflections
a = 11.6652 (7) Åθ = 2.1–26.5°
b = 8.3921 (5) ŵ = 0.08 mm1
c = 12.8966 (7) ÅT = 100 K
β = 106.634 (2)°Rod, colourless
V = 1209.69 (12) Å30.12 × 0.08 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 26.5°, θmin = 2.1°
θ/2φ scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.963, Tmax = 0.986l = 1614
27844 measured reflections4 standard reflections every 30 min
2516 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125All H-atom parameters refined
S = 0.96 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2516 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H16N4V = 1209.69 (12) Å3
Mr = 228.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6652 (7) ŵ = 0.08 mm1
b = 8.3921 (5) ÅT = 100 K
c = 12.8966 (7) Å0.12 × 0.08 × 0.08 mm
β = 106.634 (2)°
Data collection top
Bruker APEXII
diffractometer
2105 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.050
Tmin = 0.963, Tmax = 0.9864 standard reflections every 30 min
27844 measured reflections intensity decay: 0.0%
2516 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.125All H-atom parameters refined
S = 0.96Δρmax = 0.23 e Å3
2516 reflectionsΔρmin = 0.21 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43474 (8)0.22148 (11)0.82931 (7)0.0194 (3)
N20.61745 (8)0.11262 (11)0.82658 (8)0.0203 (3)
N30.59838 (8)0.15394 (11)0.89105 (8)0.0189 (3)
N40.79220 (8)0.22454 (12)0.98754 (7)0.0182 (3)
C10.34526 (10)0.32394 (15)0.78856 (9)0.0211 (3)
C20.33876 (11)0.42500 (14)0.70242 (9)0.0214 (3)
C30.43186 (10)0.41792 (14)0.65514 (9)0.0200 (3)
C40.52555 (10)0.31431 (14)0.69472 (9)0.0173 (3)
C50.52473 (10)0.21664 (13)0.78366 (9)0.0160 (3)
C60.71691 (12)0.09942 (17)0.78056 (12)0.0272 (3)
C70.62117 (10)0.01339 (13)0.91939 (9)0.0173 (3)
C80.47475 (11)0.19594 (16)0.83643 (11)0.0240 (3)
C90.67862 (10)0.27049 (13)0.94043 (8)0.0163 (3)
C100.64315 (11)0.43154 (14)0.93928 (9)0.0205 (3)
C110.72811 (12)0.54307 (15)0.98755 (9)0.0248 (3)
C120.84533 (12)0.49686 (15)1.03581 (9)0.0255 (3)
C130.87199 (11)0.33721 (14)1.03368 (9)0.0221 (3)
H10.2816 (13)0.3259 (16)0.8256 (12)0.031 (4)*
H20.2701 (12)0.4955 (17)0.6790 (10)0.029 (4)*
H30.4313 (12)0.4841 (17)0.5946 (11)0.028 (4)*
H40.5883 (13)0.3065 (16)0.6629 (11)0.025 (3)*
H50.7601 (15)0.201 (2)0.7856 (14)0.048 (5)*
H60.7696 (15)0.022 (2)0.8232 (13)0.047 (4)*
H70.6898 (15)0.059 (2)0.7046 (14)0.045 (4)*
H80.5576 (11)0.0536 (14)0.9520 (10)0.018 (3)*
H90.6997 (13)0.0194 (15)0.9712 (11)0.023 (3)*
H100.4350 (13)0.1019 (18)0.8023 (12)0.032 (4)*
H110.4723 (12)0.2806 (19)0.7818 (13)0.035 (4)*
H120.4316 (13)0.2327 (17)0.8900 (12)0.033 (4)*
H130.5616 (13)0.4628 (16)0.9100 (11)0.028 (4)*
H140.7042 (13)0.6532 (18)0.9862 (12)0.032 (4)*
H150.9091 (13)0.5706 (18)1.0696 (11)0.033 (4)*
H160.9557 (12)0.3009 (15)1.0693 (11)0.021 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0190 (5)0.0203 (5)0.0189 (5)0.0021 (4)0.0054 (4)0.0009 (4)
N20.0208 (5)0.0187 (5)0.0239 (5)0.0052 (4)0.0102 (4)0.0059 (4)
N30.0177 (5)0.0145 (5)0.0211 (5)0.0003 (4)0.0003 (4)0.0002 (4)
N40.0185 (5)0.0185 (5)0.0166 (5)0.0017 (4)0.0035 (4)0.0008 (4)
C10.0178 (6)0.0235 (6)0.0218 (6)0.0025 (5)0.0051 (5)0.0018 (5)
C20.0200 (6)0.0186 (6)0.0218 (6)0.0038 (5)0.0002 (5)0.0010 (5)
C30.0260 (6)0.0146 (6)0.0170 (6)0.0035 (5)0.0021 (5)0.0005 (4)
C40.0186 (6)0.0159 (6)0.0177 (6)0.0029 (4)0.0055 (5)0.0019 (4)
C50.0178 (6)0.0133 (6)0.0162 (5)0.0015 (4)0.0037 (4)0.0029 (4)
C60.0236 (7)0.0254 (7)0.0363 (8)0.0077 (6)0.0145 (6)0.0075 (6)
C70.0197 (6)0.0149 (6)0.0159 (6)0.0004 (5)0.0030 (5)0.0000 (4)
C80.0196 (6)0.0204 (7)0.0274 (7)0.0006 (5)0.0007 (5)0.0002 (5)
C90.0208 (6)0.0172 (6)0.0120 (5)0.0008 (5)0.0063 (4)0.0005 (4)
C100.0254 (7)0.0185 (6)0.0178 (6)0.0024 (5)0.0067 (5)0.0015 (4)
C110.0400 (8)0.0151 (6)0.0208 (6)0.0022 (5)0.0111 (6)0.0001 (5)
C120.0342 (7)0.0219 (6)0.0202 (6)0.0119 (5)0.0072 (5)0.0039 (5)
C130.0224 (6)0.0258 (7)0.0173 (6)0.0063 (5)0.0044 (5)0.0011 (5)
Geometric parameters (Å, º) top
N1—C11.3382 (15)C4—H40.938 (15)
N1—C51.3431 (15)C6—H50.983 (17)
N2—C51.3769 (15)C6—H60.951 (18)
N2—C71.4485 (14)C6—H70.998 (17)
N2—C61.4508 (15)C7—H81.010 (13)
N3—C91.3773 (15)C7—H90.968 (14)
N3—C81.4556 (15)C8—H100.957 (16)
N3—C71.4563 (15)C8—H110.996 (16)
N4—C131.3406 (15)C8—H121.012 (16)
N4—C91.3463 (15)C9—C101.4123 (16)
C1—C21.3823 (17)C10—C111.3756 (17)
C1—H10.992 (15)C10—H130.954 (14)
C2—C31.3907 (17)C11—C121.3858 (19)
C2—H20.972 (14)C11—H140.964 (15)
C3—C41.3753 (17)C12—C131.3775 (18)
C3—H30.957 (15)C12—H150.969 (15)
C4—C51.4121 (16)C13—H161.001 (14)
C1—N1—C5117.83 (10)H6—C6—H7108.0 (13)
C5—N2—C7122.07 (9)N2—C7—N3112.76 (9)
C5—N2—C6120.81 (10)N2—C7—H8107.5 (7)
C7—N2—C6117.12 (9)N3—C7—H8108.9 (7)
C9—N3—C8119.99 (10)N2—C7—H9109.8 (8)
C9—N3—C7121.18 (9)N3—C7—H9107.0 (8)
C8—N3—C7116.06 (10)H8—C7—H9111.0 (10)
C13—N4—C9117.83 (10)N3—C8—H10107.8 (9)
N1—C1—C2124.54 (11)N3—C8—H11109.9 (8)
N1—C1—H1115.4 (8)H10—C8—H11110.5 (12)
C2—C1—H1120.0 (8)N3—C8—H12111.2 (8)
C1—C2—C3117.13 (11)H10—C8—H12107.2 (12)
C1—C2—H2118.3 (8)H11—C8—H12110.2 (13)
C3—C2—H2124.6 (8)N4—C9—N3117.13 (10)
C4—C3—C2120.11 (11)N4—C9—C10121.76 (10)
C4—C3—H3119.2 (9)N3—C9—C10121.10 (10)
C2—C3—H3120.7 (9)C11—C10—C9118.39 (11)
C3—C4—C5118.62 (11)C11—C10—H13119.9 (9)
C3—C4—H4121.2 (9)C9—C10—H13121.6 (8)
C5—C4—H4120.1 (9)C10—C11—C12120.22 (12)
N1—C5—N2117.75 (10)C10—C11—H14118.5 (9)
N1—C5—C4121.76 (10)C12—C11—H14121.3 (9)
N2—C5—C4120.49 (10)C13—C12—C11117.55 (11)
N2—C6—H5111.2 (10)C13—C12—H15118.8 (9)
N2—C6—H6106.0 (10)C11—C12—H15123.7 (9)
H5—C6—H6108.4 (14)N4—C13—C12124.25 (12)
N2—C6—H7111.2 (10)N4—C13—H16116.8 (7)
H5—C6—H7111.7 (14)C12—C13—H16118.9 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and N4/C9–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg2i0.99 (2)2.64 (2)3.484 (1)143 (1)
C6—H7···Cg2ii1.00 (2)2.75 (2)3.545 (2)137 (1)
C10—H13···Cg1iii0.95 (2)2.90 (1)3.637 (1)135 (1)
Symmetry codes: (i) x+1, y, z+2; (ii) x+3/2, y+1/2, z+3/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H16N4
Mr228.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.6652 (7), 8.3921 (5), 12.8966 (7)
β (°) 106.634 (2)
V3)1209.69 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.08 × 0.08
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
27844, 2516, 2105
Rint0.050
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.125, 0.96
No. of reflections2516
No. of parameters218
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and N4/C9–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg2i0.99 (2)2.64 (2)3.484 (1)143 (1)
C6—H7···Cg2ii1.00 (2)2.75 (2)3.545 (2)137 (1)
C10—H13···Cg1iii0.95 (2)2.90 (1)3.637 (1)135 (1)
Symmetry codes: (i) x+1, y, z+2; (ii) x+3/2, y+1/2, z+3/2; (iii) x, y1, z.
 

Acknowledgements

This work was supported by the "Human Resource Development (project name: Advanced track for Si-based solar cell materials and devices, project No. 201040100660)" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government Ministry of Knowledge Economy.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, J., Haner, R., Aime, S., Botta, M., Faulkner, S., Parker, D. & de Sousa, S. S. (1998). New J. Chem. pp. 627–631.  Web of Science CrossRef Google Scholar
First citationKahn, H. J., Petrow, V. A., Wien, R. & Harrison, J. (1945). J. Chem. Soc. pp. 858–861  CrossRef Google Scholar
First citationLee, D.-H. (2003). J. Kor. Chem. Soc. 47, 427–431.  CAS Google Scholar
First citationMehrkhodavandi, P. & Schrock, R. R. (2001). J. Am. Chem. Soc. 123, 10746–10747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds