organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[6-(3,5-Di­methyl-1H-pyrazol-1-yl)-1,2,4,5-tetra­zin-3-yl]butano­hydrazide

aDepartment of Biological &Chemical Engineering, Taizhou Vocational & Technical college, Taizhou, 318000, People's Republic of China
*Correspondence e-mail: xufeng901@126.com

(Received 4 November 2011; accepted 11 November 2011; online 16 November 2011)

In the title compound, C11H16N8O, the tetra­zine and pyrazole rings form a dihedral angle of 48.75 (2)°. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into layers parallel to (101).

Related literature

For related structures, see: Xu et al. (2010[Xu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem. 30, 260-265.], 2011[Xu, F., Yang, Z. Z., Zhang, S. J. & Hu, W. X. (2011). Synth. Commun. 41, 3367-3375.]). For applications of 1,2,4,5-tetra­zine derivatives, see: Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford, England: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16N8O

  • Mr = 276.32

  • Monoclinic, P 21 /n

  • a = 10.977 (3) Å

  • b = 7.688 (2) Å

  • c = 15.887 (5) Å

  • β = 99.798 (5)°

  • V = 1321.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 103 K

  • 0.40 × 0.37 × 0.33 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 11624 measured reflections

  • 3019 independent reflections

  • 2570 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.00

  • 3019 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14N⋯O17i 0.903 (15) 1.923 (16) 2.8221 (15) 173.8 (14)
N15—H15N⋯N8ii 0.880 (16) 2.008 (16) 2.8851 (16) 174.5 (15)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4,5-Tetrazine derivatives exhibit a wide spectrum of antiviral and antitumor properties. They have been used in pesticides and herbicides (Sauer, 1996). In continuation of our search for the structure-activity relationships of 1,2,4,5-tetrazine derivatives (Xu et al., 2010; 2011), we present here the title compound (I).

In (I) (Fig.1), the tetrazine and pyrazole rings form a dihedral angle of 48.75 (2)°. The N14/N15/C16/O17 and C16/C18/C19 planes make the dihedral angles of 82.56 (2)° and 83.83 (2)°, respectively, with the tetrazine ring. Intermolecular N—H—N and N—H—O hydrogen bonds (Table 1) link molecules into layers parallel to (101) plane (Fig. 2).

Related literature top

For related structures, see: Xu et al. (2010, 2011). For applications of 1,2,4,5-tetrazine derivatives, see: Sauer (1996).

Experimental top

3,6-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine (3.0 mmol), chloroform (10 ml) and pyridine(0.25 ml,3.1 mmol) were mixed. Butyryl chloride(3.0 mmol) in chloroform (10 ml) was added dropwise with stirring at room temperature. After the starting 1,2,4,5-tetrazine was completely consumed (the reaction courses was monitored by TLC, ethyl acetate system), evaporation of the chloroform, crude product was obtained and purified by preparative thin-layer chromatography over silica gel GF254(2 mm) (dichloromethane: petroleum ether=1:1). The solution of the compound in anhydrous ethanol was concentrated gradually at room temperature to afford single crystals, which was suitable for X-ray diffraction.

Refinement top

N-bound H atoms were located on a difference map and isotropically refined with N—H bond length restrained to 0.89 (2) Å. Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, with Uiso(H) = 1.5Ueq(C). Other C-bound H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode, with Uiso(H) = 1.2Ueq(C).

Structure description top

1,2,4,5-Tetrazine derivatives exhibit a wide spectrum of antiviral and antitumor properties. They have been used in pesticides and herbicides (Sauer, 1996). In continuation of our search for the structure-activity relationships of 1,2,4,5-tetrazine derivatives (Xu et al., 2010; 2011), we present here the title compound (I).

In (I) (Fig.1), the tetrazine and pyrazole rings form a dihedral angle of 48.75 (2)°. The N14/N15/C16/O17 and C16/C18/C19 planes make the dihedral angles of 82.56 (2)° and 83.83 (2)°, respectively, with the tetrazine ring. Intermolecular N—H—N and N—H—O hydrogen bonds (Table 1) link molecules into layers parallel to (101) plane (Fig. 2).

For related structures, see: Xu et al. (2010, 2011). For applications of 1,2,4,5-tetrazine derivatives, see: Sauer (1996).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the b axis. N—H···O and N—H···N hydrogen bonds are shown as dashed lines.
N'-[6-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazin-3-yl]butanohydrazide top
Crystal data top
C11H16N8OF(000) = 584
Mr = 276.32Dx = 1.389 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3486 reflections
a = 10.977 (3) Åθ = 3.3–27.5°
b = 7.688 (2) ŵ = 0.10 mm1
c = 15.887 (5) ÅT = 103 K
β = 99.798 (5)°Block, red
V = 1321.2 (6) Å30.40 × 0.37 × 0.33 mm
Z = 4
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2570 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 28.5714 pixels mm-1h = 1314
phi and ω scansk = 99
11624 measured reflectionsl = 2020
3019 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.316P]
where P = (Fo2 + 2Fc2)/3
3019 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H16N8OV = 1321.2 (6) Å3
Mr = 276.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.977 (3) ŵ = 0.10 mm1
b = 7.688 (2) ÅT = 103 K
c = 15.887 (5) Å0.40 × 0.37 × 0.33 mm
β = 99.798 (5)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2570 reflections with I > 2σ(I)
11624 measured reflectionsRint = 0.025
3019 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
3019 reflectionsΔρmin = 0.22 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O170.66813 (8)0.18530 (11)0.72170 (5)0.0179 (2)
N10.36379 (9)0.45388 (13)0.57707 (6)0.0166 (2)
N20.48309 (9)0.41717 (13)0.58523 (6)0.0165 (2)
N40.52508 (9)0.63680 (13)0.69398 (6)0.0178 (2)
N50.40619 (9)0.67242 (13)0.68429 (6)0.0178 (2)
N70.20565 (9)0.62907 (13)0.61117 (6)0.0153 (2)
N80.14658 (9)0.65755 (13)0.52903 (6)0.0159 (2)
N140.68389 (9)0.49646 (13)0.64665 (6)0.0149 (2)
N150.73094 (9)0.34414 (13)0.61788 (6)0.0150 (2)
C30.56031 (11)0.51505 (15)0.64082 (7)0.0142 (2)
C60.33149 (11)0.58299 (15)0.62452 (7)0.0147 (2)
C90.03300 (11)0.70598 (15)0.53650 (8)0.0167 (2)
C100.01821 (11)0.70610 (16)0.62297 (8)0.0195 (3)
H100.05480.73450.64470.023*
C110.12946 (11)0.65738 (15)0.66942 (8)0.0175 (3)
C120.16684 (13)0.62803 (19)0.76288 (8)0.0249 (3)
H12A0.09500.64370.79130.030*
H12B0.23130.71160.78600.030*
H12C0.19880.50940.77290.030*
C130.05815 (11)0.75347 (17)0.45905 (8)0.0205 (3)
H13A0.06310.88040.45380.025*
H13B0.13960.70690.46430.025*
H13C0.03160.70430.40820.025*
C160.72224 (10)0.19424 (15)0.65988 (7)0.0146 (2)
C180.78094 (11)0.03842 (15)0.62567 (7)0.0170 (3)
H18A0.82200.03320.67410.020*
H18B0.84510.07830.59320.020*
C190.68652 (12)0.07353 (16)0.56757 (8)0.0192 (3)
H19A0.72370.18860.56010.023*
H19B0.61380.09220.59570.023*
C200.64377 (12)0.00742 (17)0.48013 (8)0.0217 (3)
H20A0.60480.12010.48690.026*
H20B0.58390.06990.44580.026*
H20C0.71510.02420.45130.026*
H14N0.7349 (14)0.550 (2)0.6894 (10)0.028 (4)*
H15N0.7670 (15)0.351 (2)0.5726 (10)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O170.0175 (4)0.0219 (4)0.0153 (4)0.0035 (3)0.0055 (3)0.0029 (3)
N10.0149 (5)0.0183 (5)0.0168 (5)0.0010 (4)0.0032 (4)0.0008 (4)
N20.0146 (5)0.0180 (5)0.0169 (5)0.0016 (4)0.0023 (4)0.0015 (4)
N40.0161 (5)0.0196 (5)0.0175 (5)0.0025 (4)0.0019 (4)0.0026 (4)
N50.0160 (5)0.0198 (5)0.0174 (5)0.0027 (4)0.0021 (4)0.0013 (4)
N70.0152 (5)0.0187 (5)0.0125 (5)0.0019 (4)0.0037 (4)0.0006 (4)
N80.0146 (5)0.0191 (5)0.0141 (5)0.0013 (4)0.0025 (4)0.0015 (4)
N140.0146 (5)0.0152 (5)0.0150 (5)0.0011 (4)0.0024 (4)0.0027 (4)
N150.0163 (5)0.0157 (5)0.0142 (5)0.0021 (4)0.0058 (4)0.0011 (4)
C30.0168 (6)0.0138 (5)0.0121 (5)0.0009 (4)0.0029 (4)0.0028 (4)
C60.0158 (5)0.0153 (6)0.0133 (5)0.0009 (4)0.0034 (4)0.0019 (4)
C90.0142 (5)0.0149 (6)0.0216 (6)0.0001 (4)0.0048 (5)0.0000 (4)
C100.0178 (6)0.0200 (6)0.0228 (6)0.0028 (5)0.0092 (5)0.0002 (5)
C110.0200 (6)0.0166 (6)0.0180 (6)0.0006 (5)0.0088 (5)0.0009 (5)
C120.0294 (7)0.0297 (7)0.0175 (6)0.0039 (6)0.0096 (5)0.0015 (5)
C130.0145 (6)0.0218 (6)0.0246 (6)0.0018 (5)0.0017 (5)0.0007 (5)
C160.0113 (5)0.0186 (6)0.0131 (5)0.0012 (4)0.0001 (4)0.0005 (4)
C180.0168 (6)0.0182 (6)0.0163 (5)0.0036 (5)0.0037 (4)0.0012 (5)
C190.0216 (6)0.0164 (6)0.0199 (6)0.0004 (5)0.0048 (5)0.0000 (5)
C200.0216 (6)0.0240 (7)0.0189 (6)0.0028 (5)0.0023 (5)0.0015 (5)
Geometric parameters (Å, º) top
O17—C161.2332 (14)C10—H100.9500
N1—N21.3243 (14)C11—C121.4887 (17)
N1—C61.3304 (15)C12—H12A0.9800
N2—C31.3453 (16)C12—H12B0.9800
N4—N51.3166 (14)C12—H12C0.9800
N4—C31.3602 (15)C13—H13A0.9800
N5—C61.3349 (15)C13—H13B0.9800
N7—C111.3663 (15)C13—H13C0.9800
N7—N81.3723 (13)C16—C181.5049 (16)
N7—C61.4068 (15)C18—C191.5301 (17)
N8—C91.3258 (15)C18—H18A0.9900
N14—C31.3515 (15)C18—H18B0.9900
N14—N151.3883 (14)C19—C201.5216 (17)
N14—H14N0.904 (16)C19—H19A0.9900
N15—C161.3432 (15)C19—H19B0.9900
N15—H15N0.880 (17)C20—H20A0.9800
C9—C101.4104 (17)C20—H20B0.9800
C9—C131.4932 (17)C20—H20C0.9800
C10—C111.3674 (17)
N2—N1—C6117.26 (10)H12A—C12—H12B109.5
N1—N2—C3116.57 (10)C11—C12—H12C109.5
N5—N4—C3116.84 (10)H12A—C12—H12C109.5
N4—N5—C6116.92 (10)H12B—C12—H12C109.5
C11—N7—N8111.97 (10)C9—C13—H13A109.5
C11—N7—C6129.54 (10)C9—C13—H13B109.5
N8—N7—C6118.45 (9)H13A—C13—H13B109.5
C9—N8—N7105.01 (9)C9—C13—H13C109.5
C3—N14—N15119.47 (10)H13A—C13—H13C109.5
C3—N14—H14N119.3 (10)H13B—C13—H13C109.5
N15—N14—H14N114.6 (10)O17—C16—N15121.87 (11)
C16—N15—N14119.89 (10)O17—C16—C18122.49 (11)
C16—N15—H15N122.5 (10)N15—C16—C18115.63 (10)
N14—N15—H15N117.6 (10)C16—C18—C19112.20 (10)
N2—C3—N14119.92 (10)C16—C18—H18A109.2
N2—C3—N4125.35 (11)C19—C18—H18A109.2
N14—C3—N4114.73 (10)C16—C18—H18B109.2
N1—C6—N5126.63 (11)C19—C18—H18B109.2
N1—C6—N7116.88 (10)H18A—C18—H18B107.9
N5—C6—N7116.49 (10)C20—C19—C18113.12 (10)
N8—C9—C10110.69 (11)C20—C19—H19A109.0
N8—C9—C13120.23 (10)C18—C19—H19A109.0
C10—C9—C13129.07 (11)C20—C19—H19B109.0
C11—C10—C9106.57 (11)C18—C19—H19B109.0
C11—C10—H10126.7H19A—C19—H19B107.8
C9—C10—H10126.7C19—C20—H20A109.5
N7—C11—C10105.75 (10)C19—C20—H20B109.5
N7—C11—C12123.70 (11)H20A—C20—H20B109.5
C10—C11—C12130.47 (11)C19—C20—H20C109.5
C11—C12—H12A109.5H20A—C20—H20C109.5
C11—C12—H12B109.5H20B—C20—H20C109.5
C6—N1—N2—C30.22 (15)C11—N7—C6—N546.50 (17)
C3—N4—N5—C61.40 (16)N8—N7—C6—N5130.92 (11)
C11—N7—N8—C90.71 (13)N7—N8—C9—C100.93 (13)
C6—N7—N8—C9177.14 (10)N7—N8—C9—C13178.23 (10)
C3—N14—N15—C1668.57 (14)N8—C9—C10—C110.84 (14)
N1—N2—C3—N14173.71 (10)C13—C9—C10—C11178.22 (12)
N1—N2—C3—N46.04 (17)N8—N7—C11—C100.20 (14)
N15—N14—C3—N220.85 (16)C6—N7—C11—C10177.35 (11)
N15—N14—C3—N4159.37 (10)N8—N7—C11—C12176.86 (11)
N5—N4—C3—N26.68 (17)C6—N7—C11—C125.59 (19)
N5—N4—C3—N14173.08 (10)C9—C10—C11—N70.36 (13)
N2—N1—C6—N55.02 (18)C9—C10—C11—C12177.15 (13)
N2—N1—C6—N7175.72 (10)N14—N15—C16—O173.44 (17)
N4—N5—C6—N14.37 (18)N14—N15—C16—C18177.48 (9)
N4—N5—C6—N7176.37 (10)O17—C16—C18—C1980.97 (14)
C11—N7—C6—N1132.83 (12)N15—C16—C18—C1998.10 (12)
N8—N7—C6—N149.75 (15)C16—C18—C19—C2074.42 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14N···O17i0.903 (15)1.923 (16)2.8221 (15)173.8 (14)
N15—H15N···N8ii0.880 (16)2.008 (16)2.8851 (16)174.5 (15)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H16N8O
Mr276.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)103
a, b, c (Å)10.977 (3), 7.688 (2), 15.887 (5)
β (°) 99.798 (5)
V3)1321.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.37 × 0.33
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11624, 3019, 2570
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.00
No. of reflections3019
No. of parameters192
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14N···O17i0.903 (15)1.923 (16)2.8221 (15)173.8 (14)
N15—H15N···N8ii0.880 (16)2.008 (16)2.8851 (16)174.5 (15)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

We are very grateful to the Foundation of Taizhou Vocational and Technical College for support (grant No. 2012ZD05).

References

First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford, England: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem. 30, 260–265.  CAS Google Scholar
First citationXu, F., Yang, Z. Z., Zhang, S. J. & Hu, W. X. (2011). Synth. Commun. 41, 3367–3375.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds