metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(1-vinyl-1H-imidazol-2-yl-κN3)methanamine-κN]copper(II) bis­­(hexa­fluoridophosphate)

aInstitute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Humboldtstrasse 8, 07743 Jena, Germany, and bInstitut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH-LCS, CH-1015 Lausanne, Switzerland
*Correspondence e-mail: alexander.schiller@uni-jena.de

(Received 11 October 2011; accepted 22 November 2011; online 25 November 2011)

In the title compound, [Cu(C6H9N3)2](PF6)2, the Cu atom is located on a crystallographic center of inversion. The coordination environment of the Cu atom is square-planar with two amino and two imidazole N atoms bonded to the metal in a trans configuration.

Related literature

For the title ligand as a building block for tripodal tetra­amine ligands, see: Blackman (2005[Blackman, A. G. (2005). Polyhedron, 24, 1-39.]). For catalytic activity of copper(II) complexes with similar mulidendate N-donor ligands, see: Schiller et al. (2005[Schiller, A., Scopelliti, R., Benmelouka, M. & Severin, K. (2005). Inorg. Chem. 44, 6482-6492.], 2006[Schiller, A., Scopelliti, R. & Severin, K. (2006). Dalton Trans. pp. 3858-3867.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H9N3)2](PF6)2

  • Mr = 599.80

  • Monoclinic, P 21 /c

  • a = 11.543 (2) Å

  • b = 12.282 (2) Å

  • c = 8.2793 (14) Å

  • β = 96.476 (15)°

  • V = 1166.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 140 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Oxford Diffraction KM-4/Sapphire CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.657, Tmax = 1.000

  • 6439 measured reflections

  • 1955 independent reflections

  • 1396 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 0.97

  • 1955 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]).

Supporting information


Comment top

The described ligand has been used as a building block for the synthesis of the chelate ligand tris[(1-vinylimidazole-2-yl)methyl]amine (L). The complexes [Zn(L)Cl]PF6 and [Cu(L)Cl]PF6 were obtained upon reaction with L and immobilized by co-polymerization with ethylene glycol dimethacrylate. The supported complexes were found to be efficient heterogenous catalysts for the hydrolysis of bis(p-nitrophenyl)phosphate (Schiller et al., 2006).

The structure of the title compound feature Cu on an inversion centre (Wyckoff position 2a). Two ligands coordinate to it in a trans fashion (Fig. 1).

Related literature top

For the title ligand as a building block for tripodal tetraamine ligands, see: Blackman (2005). For catalytic activity of copper(II) complexes with similar mulidendate N-donor ligands, see: Schiller et al. (2005, 2006).

Experimental top

Synthesis of the metal complex. Anhydrous copper(II) chloride (25.0 mg, 0.186 mmol) was added to a solution of (1-vinyl-1H-imidazol-2-yl)-methylamine (45.8 mg, 0.372 mmol) in ethanol (4 ml). NH4PF6 (60.6 mg, 0.372 mmol) was added and pink crystals were formed after 2 h. The product was isolated, washed with ethanol, and dried in a vacuum (yield: 83.7 mg, 75%). IR: ν (cm-1) = 3368/3314/3205 (w, NH), 1652 (vs, CH=CH2), 822 (vs, PF6).

Refinement top

Hydrogen atoms have been placed in calculated positions with C–H distances of 0.99Å for the methylene group and 0.95Å for all other hydrogen atoms bonded to carbon and 0.92Å for the amino function. Refinement was performed using a riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

The described ligand has been used as a building block for the synthesis of the chelate ligand tris[(1-vinylimidazole-2-yl)methyl]amine (L). The complexes [Zn(L)Cl]PF6 and [Cu(L)Cl]PF6 were obtained upon reaction with L and immobilized by co-polymerization with ethylene glycol dimethacrylate. The supported complexes were found to be efficient heterogenous catalysts for the hydrolysis of bis(p-nitrophenyl)phosphate (Schiller et al., 2006).

The structure of the title compound feature Cu on an inversion centre (Wyckoff position 2a). Two ligands coordinate to it in a trans fashion (Fig. 1).

For the title ligand as a building block for tripodal tetraamine ligands, see: Blackman (2005). For catalytic activity of copper(II) complexes with similar mulidendate N-donor ligands, see: Schiller et al. (2005, 2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Second ligand is created by (i): -x, -y, -z. Ellipsoids are depicted on the 50% probability level.
Bis[(1-vinyl-1H-imidazol-2-yl-κN3)methanamine- κN]copper(II) bis(hexafluoridophosphate) top
Crystal data top
[Cu(C6H9N3)2](PF6)2F(000) = 598
Mr = 599.80Dx = 1.708 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3520 reflections
a = 11.543 (2) Åθ = 2.4–26.6°
b = 12.282 (2) ŵ = 1.18 mm1
c = 8.2793 (14) ÅT = 140 K
β = 96.476 (15)°Prismatic, pink
V = 1166.3 (4) Å30.24 × 0.20 × 0.16 mm
Z = 2
Data collection top
Oxford Diffraction KM-4/Sapphire CCD
diffractometer
1955 independent reflections
Radiation source: fine-focus sealed tube1396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1313
Tmin = 0.657, Tmax = 1.000k = 1414
6439 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
1955 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu(C6H9N3)2](PF6)2V = 1166.3 (4) Å3
Mr = 599.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.543 (2) ŵ = 1.18 mm1
b = 12.282 (2) ÅT = 140 K
c = 8.2793 (14) Å0.24 × 0.20 × 0.16 mm
β = 96.476 (15)°
Data collection top
Oxford Diffraction KM-4/Sapphire CCD
diffractometer
1955 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1396 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 1.000Rint = 0.088
6439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.97Δρmax = 0.91 e Å3
1955 reflectionsΔρmin = 0.46 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.0228 (2)
N10.1254 (3)0.1059 (2)0.0384 (4)0.0259 (8)
N20.3038 (3)0.1375 (2)0.1192 (4)0.0274 (8)
N30.1108 (3)0.1091 (2)0.0966 (4)0.0266 (8)
H3A0.11380.17250.03700.032*
H3B0.08110.12580.20150.032*
C10.2219 (3)0.0595 (3)0.0873 (5)0.0222 (9)
C20.2538 (4)0.2409 (3)0.0848 (6)0.0315 (11)
H20.28860.31040.09400.038*
C30.1460 (4)0.2200 (3)0.0360 (5)0.0296 (10)
H30.09330.27360.00540.036*
C40.4149 (4)0.1189 (3)0.1822 (5)0.0316 (10)
H40.43110.04710.21600.038*
C50.4952 (4)0.1947 (4)0.1960 (7)0.0474 (14)
H5A0.48210.26750.16340.057*
H5B0.56580.17630.23830.057*
C60.2332 (3)0.0645 (3)0.0967 (5)0.0227 (9)
H6A0.26610.08600.19740.027*
H6B0.28470.09240.00210.027*
P10.19988 (10)0.57233 (7)0.90769 (13)0.0244 (3)
F10.0883 (2)0.51137 (19)0.8082 (3)0.0463 (8)
F20.2875 (2)0.50369 (17)0.8029 (3)0.0392 (7)
F30.1923 (3)0.66853 (17)0.7698 (3)0.0472 (8)
F40.3113 (2)0.6338 (2)1.0077 (3)0.0531 (8)
F50.1112 (2)0.64221 (17)1.0131 (3)0.0396 (7)
F60.2065 (2)0.47717 (17)1.0447 (3)0.0365 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0264 (4)0.0165 (3)0.0261 (5)0.0009 (3)0.0056 (3)0.0002 (3)
N10.029 (2)0.0210 (15)0.028 (2)0.0045 (14)0.0070 (16)0.0020 (14)
N20.0282 (19)0.0216 (16)0.034 (2)0.0003 (14)0.0092 (17)0.0042 (14)
N30.031 (2)0.0185 (15)0.031 (2)0.0002 (14)0.0089 (17)0.0000 (14)
C10.025 (2)0.0223 (19)0.020 (2)0.0004 (16)0.0026 (19)0.0021 (16)
C20.037 (3)0.0180 (19)0.041 (3)0.0049 (17)0.010 (2)0.0024 (18)
C30.033 (2)0.0182 (18)0.039 (3)0.0005 (17)0.010 (2)0.0044 (17)
C40.029 (2)0.032 (2)0.035 (3)0.0010 (19)0.009 (2)0.0055 (19)
C50.031 (3)0.043 (3)0.070 (4)0.001 (2)0.016 (3)0.008 (3)
C60.024 (2)0.0181 (19)0.027 (2)0.0029 (15)0.0081 (19)0.0022 (16)
P10.0330 (6)0.0177 (5)0.0230 (6)0.0002 (4)0.0053 (5)0.0003 (4)
F10.0429 (17)0.0558 (17)0.0388 (18)0.0141 (13)0.0018 (14)0.0081 (13)
F20.0548 (18)0.0329 (13)0.0336 (16)0.0120 (12)0.0212 (14)0.0019 (11)
F30.084 (2)0.0240 (12)0.0376 (17)0.0114 (13)0.0255 (15)0.0086 (11)
F40.0495 (17)0.0613 (17)0.050 (2)0.0274 (14)0.0112 (15)0.0192 (14)
F50.0579 (17)0.0311 (12)0.0329 (16)0.0117 (12)0.0193 (13)0.0003 (11)
F60.0568 (18)0.0257 (12)0.0277 (15)0.0051 (11)0.0080 (14)0.0052 (10)
Geometric parameters (Å, º) top
Cu1—N11.998 (3)C2—H20.9500
Cu1—N1i1.998 (3)C3—H30.9500
Cu1—N32.074 (3)C4—C51.328 (6)
Cu1—N3i2.074 (3)C4—H40.9500
N1—C11.352 (5)C5—H5A0.9500
N1—C31.421 (4)C5—H5B0.9500
N2—C11.392 (5)C6—H6A0.9900
N2—C21.436 (5)C6—H6B0.9900
N2—C41.456 (5)P1—F61.625 (2)
N3—C61.516 (5)P1—F11.631 (3)
N3—H3A0.9200P1—F41.634 (3)
N3—H3B0.9200P1—F21.638 (3)
C1—C61.531 (5)P1—F31.638 (3)
C2—C31.375 (6)P1—F51.658 (3)
N1—Cu1—N1i180.00 (13)C5—C4—N2124.9 (4)
N1—Cu1—N382.53 (13)C5—C4—H4117.6
N1i—Cu1—N397.47 (13)N2—C4—H4117.6
N1—Cu1—N3i97.47 (13)C4—C5—H5A120.0
N1i—Cu1—N3i82.53 (13)C4—C5—H5B120.0
N3—Cu1—N3i180.0H5A—C5—H5B120.0
C1—N1—C3106.1 (3)N3—C6—C1106.0 (3)
C1—N1—Cu1114.2 (2)N3—C6—H6A110.5
C3—N1—Cu1139.7 (3)C1—C6—H6A110.5
C1—N2—C2105.9 (3)N3—C6—H6B110.5
C1—N2—C4127.2 (3)C1—C6—H6B110.5
C2—N2—C4126.8 (3)H6A—C6—H6B108.7
C6—N3—Cu1112.4 (2)F6—P1—F189.70 (14)
C6—N3—H3A109.1F6—P1—F490.34 (15)
Cu1—N3—H3A109.1F1—P1—F4179.76 (17)
C6—N3—H3B109.1F6—P1—F290.94 (13)
Cu1—N3—H3B109.1F1—P1—F289.76 (15)
H3A—N3—H3B107.8F4—P1—F290.48 (15)
N1—C1—N2111.5 (3)F6—P1—F3179.61 (16)
N1—C1—C6120.8 (3)F1—P1—F390.11 (15)
N2—C1—C6127.7 (3)F4—P1—F389.84 (15)
C3—C2—N2106.8 (3)F2—P1—F389.41 (13)
C3—C2—H2126.6F6—P1—F589.31 (13)
N2—C2—H2126.6F1—P1—F590.23 (15)
C2—C3—N1109.6 (4)F4—P1—F589.53 (14)
C2—C3—H3125.2F2—P1—F5179.75 (14)
N1—C3—H3125.2F3—P1—F590.34 (13)
N1i—Cu1—N1—C164.0 (4)C4—N2—C1—N1176.5 (4)
N3—Cu1—N1—C16.8 (3)C2—N2—C1—C6177.1 (4)
N3i—Cu1—N1—C1173.2 (3)C4—N2—C1—C65.6 (6)
N1i—Cu1—N1—C3113.2 (6)C1—N2—C2—C30.4 (4)
N3—Cu1—N1—C3170.4 (4)C4—N2—C2—C3176.9 (4)
N3i—Cu1—N1—C39.6 (4)N2—C2—C3—N10.1 (5)
N1—Cu1—N3—C616.6 (3)C1—N1—C3—C20.6 (5)
N1i—Cu1—N3—C6163.4 (3)Cu1—N1—C3—C2176.8 (3)
N3i—Cu1—N3—C641 (3)C1—N2—C4—C5173.1 (4)
C3—N1—C1—N20.9 (4)C2—N2—C4—C510.1 (7)
Cu1—N1—C1—N2177.2 (2)Cu1—N3—C6—C121.4 (4)
C3—N1—C1—C6177.2 (3)N1—C1—C6—N317.6 (5)
Cu1—N1—C1—C64.7 (5)N2—C1—C6—N3164.7 (4)
C2—N2—C1—N10.8 (4)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H9N3)2](PF6)2
Mr599.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)140
a, b, c (Å)11.543 (2), 12.282 (2), 8.2793 (14)
β (°) 96.476 (15)
V3)1166.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerOxford Diffraction KM-4/Sapphire CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.657, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6439, 1955, 1396
Rint0.088
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 0.97
No. of reflections1955
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.46

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

AS thanks the Carl–Zeiss foundation for a Junior Professor Fellowship.

References

First citationBlackman, A. G. (2005). Polyhedron, 24, 1–39.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSchiller, A., Scopelliti, R., Benmelouka, M. & Severin, K. (2005). Inorg. Chem. 44, 6482–6492.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchiller, A., Scopelliti, R. & Severin, K. (2006). Dalton Trans. pp. 3858–3867.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds