organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Glutaric acid–2-(pyridin-4-yl)-1H-benzimidazole (1/1)

aNortheast Dianli University, Jilin 132012, People's Republic of China
*Correspondence e-mail: songzhulin@hotmail.com

(Received 13 October 2011; accepted 21 November 2011; online 30 November 2011)

The crystal structure of the title co-crystal, C12H9N3·C5H8O4, N—H⋯O and O—H⋯N hydrogen bonds link the components. There are also ππ stacking inter­actions between the imidazole rings, between the imidazole and pyridine rings and between the pyridine and benzene rings [centroid–centroid distances = 3.643 (2), 3.573 (2) and 3.740 (1)Å, respectively].

Related literature

For background to hydrogen bonds, see: Moorthy et al. (2002[Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530-6531.]); Muthuraman et al. (2000[Muthuraman, M., Fur, Y. L., Bagiur-Beucher, M., Masse, R., Nicoud, J.-F., George, S., Nangia, A. & Desiraju, G. R. (2000). J. Solid State Chem. 152, 221-228.]); Nangia & Desiraju (1999[Nangia, A. & Desiraju, G. R. (1999). J. Mol. Struct. 474, 65-79.]); Bhattacharjya et al. (2004[Bhattacharjya, G., Savithaa, G. & Ramanathan, G. (2004). CrystEngComm, 6(40), 233-235.]). For related structures, see: Bei et al. (2000[Bei, F., Jian, F., Yang, X., Lu, L., Wang, X., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 718-719.]); Ozbey et al. (1998[Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N3·C5H8O4

  • Mr = 327.34

  • Triclinic, [P \overline 1]

  • a = 7.4384 (15) Å

  • b = 8.9911 (18) Å

  • c = 11.868 (2) Å

  • α = 86.67 (3)°

  • β = 81.66 (3)°

  • γ = 85.57 (3)°

  • V = 782.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 6041 measured reflections

  • 2664 independent reflections

  • 1657 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.149

  • S = 1.11

  • 2664 reflections

  • 226 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.10 2.957 (3) 176
O1—H2⋯N3ii 0.87 (1) 1.75 (1) 2.615 (3) 173 (4)
O4—H1⋯N2 1.02 (4) 1.71 (4) 2.686 (3) 158 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The strong (O—H···O) and weak (C—H···O) hydrogen bonds, the halogen bond (C—X···O) and the weak C—H···π interaction, have been well characterized and exploited in the design of molecular assemblies (Moorthy et al., 2002; Muthuraman et al., 2000; Nangia and Desiraju, 1999; Bhattacharjya et al., 2004). Our interest in benzimidazole stems from their biological activity (Bei et al., 2000; Ozbey et al., 1998). In this paper, we sysnthesized the title compound and report its structure.

Scheme I

The compound consists of 2-(pyridin-4-yl)-1H-benzimidazole and glutaric acid. In the title compound, the dihedral angle between the imidazole and the benzene was 1.40 (2)°, while the benzimidazole and the pyridine was 5.25 (1)°. It results that the all atoms in the 2-(pyridin-4-yl)-1H-benzimidazole are not coplanar strictly. In the part of glutaric acid, four atoms O1, O2, C13, C14 are lying in a same plane (p1) with the maximum diviation of 0.002° for C13, while other four atoms O3, O4, C16, C17 lying in another plane (p2) with the maximum diviation of 0.001% for O3. The dihedral angle between p1 and p2 is 10.50 (2)°.

In the lattice, there exist some kinds of hydrogen bonds. It forms one-dimension stairway structure between 2-(pyridin-4-yl)-1H-benzimidazole and glutaric acid via N—H···O, O—H···N hydrogen bonds (figure 2a and 2 b). Two adjacent strairway chains formed two dimension structure via the C—H···O intermolecular interaction.

In addition, there exists some ππ interactions between the rings [Cg1···Cg1=3.643 (2), Cg1···Cg2= 3.573 (2) and Cg2···Cg3=3.740 (1), respectively (Cg1, Cg2, Cg3 refer to the centroid of imidazole N1, C1, C6, N2, C7; the pyridine N3, C8, C9, C10, C11, C12 and the phenyl ring C1, C2, C3, C4, C5, C6, respectively)]. The ππ interaction, as well as the inter- and intra- hydrogen bond stabilized the crystal structure.

Related literature top

For background to hydrogen bonds, see: Moorthy et al. (2002); Muthuraman et al. (2000); Nangia & Desiraju (1999); Bhattacharjya et al. (2004). For related structures, see: Bei et al. (2000); Ozbey et al. (1998).

Experimental top

The title compound was obtained by 2-Pyridin-4-yl-1H-benzoimidazole (0.020 g, 0.1 mmol) and glutaric acid (0.013 g, 0.1 mmol) dissolved in 30 ml solution mixed with ethanol and water by 2:1(V/V) was heated to refluxed for 6 h and cooled to the room temperature. Single crystals suitable for x-ray measurements were obtained by recrystallization at room temperature.

Refinement top

The positions of H atoms, H1,H2, were found in a difference Fourier map. All the other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.93–0.97 Å, N—H distance=0.86Å and with Uiso=1.2–1.5Ueq.

Structure description top

The strong (O—H···O) and weak (C—H···O) hydrogen bonds, the halogen bond (C—X···O) and the weak C—H···π interaction, have been well characterized and exploited in the design of molecular assemblies (Moorthy et al., 2002; Muthuraman et al., 2000; Nangia and Desiraju, 1999; Bhattacharjya et al., 2004). Our interest in benzimidazole stems from their biological activity (Bei et al., 2000; Ozbey et al., 1998). In this paper, we sysnthesized the title compound and report its structure.

Scheme I

The compound consists of 2-(pyridin-4-yl)-1H-benzimidazole and glutaric acid. In the title compound, the dihedral angle between the imidazole and the benzene was 1.40 (2)°, while the benzimidazole and the pyridine was 5.25 (1)°. It results that the all atoms in the 2-(pyridin-4-yl)-1H-benzimidazole are not coplanar strictly. In the part of glutaric acid, four atoms O1, O2, C13, C14 are lying in a same plane (p1) with the maximum diviation of 0.002° for C13, while other four atoms O3, O4, C16, C17 lying in another plane (p2) with the maximum diviation of 0.001% for O3. The dihedral angle between p1 and p2 is 10.50 (2)°.

In the lattice, there exist some kinds of hydrogen bonds. It forms one-dimension stairway structure between 2-(pyridin-4-yl)-1H-benzimidazole and glutaric acid via N—H···O, O—H···N hydrogen bonds (figure 2a and 2 b). Two adjacent strairway chains formed two dimension structure via the C—H···O intermolecular interaction.

In addition, there exists some ππ interactions between the rings [Cg1···Cg1=3.643 (2), Cg1···Cg2= 3.573 (2) and Cg2···Cg3=3.740 (1), respectively (Cg1, Cg2, Cg3 refer to the centroid of imidazole N1, C1, C6, N2, C7; the pyridine N3, C8, C9, C10, C11, C12 and the phenyl ring C1, C2, C3, C4, C5, C6, respectively)]. The ππ interaction, as well as the inter- and intra- hydrogen bond stabilized the crystal structure.

For background to hydrogen bonds, see: Moorthy et al. (2002); Muthuraman et al. (2000); Nangia & Desiraju (1999); Bhattacharjya et al. (2004). For related structures, see: Bei et al. (2000); Ozbey et al. (1998).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. One-dimensional bend structure of the title compound.
[Figure 3] Fig. 3. Two-dimensional structure of the title compound.
Pentane-1,5-dioic acid–2-(pyridin-4-yl)-1H-benzimidazole (1/1) top
Crystal data top
C12H9N3·C5H8O4Z = 2
Mr = 327.34F(000) = 344
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4384 (15) ÅCell parameters from 25 reflections
b = 8.9911 (18) Åθ = 4–14°
c = 11.868 (2) ŵ = 0.10 mm1
α = 86.67 (3)°T = 293 K
β = 81.66 (3)°Block, colorless
γ = 85.57 (3)°0.20 × 0.17 × 0.15 mm
V = 782.1 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 3.1°
Graphite monochromatorh = 77
ω scansk = 1010
6041 measured reflectionsl = 1413
2664 independent reflections3 standard reflections every 100 reflections
1657 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.020P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2664 reflectionsΔρmax = 0.35 e Å3
226 parametersΔρmin = 0.32 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (5)
Crystal data top
C12H9N3·C5H8O4γ = 85.57 (3)°
Mr = 327.34V = 782.1 (3) Å3
Triclinic, P1Z = 2
a = 7.4384 (15) ÅMo Kα radiation
b = 8.9911 (18) ŵ = 0.10 mm1
c = 11.868 (2) ÅT = 293 K
α = 86.67 (3)°0.20 × 0.17 × 0.15 mm
β = 81.66 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
6041 measured reflections3 standard reflections every 100 reflections
2664 independent reflections intensity decay: none
1657 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.35 e Å3
2664 reflectionsΔρmin = 0.32 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2659 (2)0.5349 (2)0.58023 (17)0.0435 (5)
H1A0.29400.60380.62060.052*
N20.2164 (2)0.4197 (2)0.42719 (17)0.0432 (5)
N30.4250 (3)0.9193 (2)0.24990 (19)0.0526 (6)
C10.1814 (3)0.3243 (2)0.5230 (2)0.0403 (6)
C20.1261 (3)0.1787 (3)0.5328 (2)0.0478 (6)
H2B0.10370.13090.46930.057*
C30.1057 (3)0.1083 (3)0.6392 (2)0.0515 (7)
H3B0.06900.01120.64770.062*
C40.1387 (3)0.1791 (3)0.7345 (2)0.0540 (7)
H4A0.12510.12750.80510.065*
C50.1912 (3)0.3235 (3)0.7273 (2)0.0508 (7)
H5A0.21170.37070.79150.061*
C60.2117 (3)0.3952 (3)0.6200 (2)0.0408 (6)
C70.2664 (3)0.5429 (2)0.4655 (2)0.0405 (6)
C80.3189 (3)0.6750 (3)0.3922 (2)0.0416 (6)
C90.3303 (3)0.6703 (3)0.2746 (2)0.0502 (7)
H9A0.30250.58510.24160.060*
C100.3835 (3)0.7942 (3)0.2073 (2)0.0563 (7)
H10A0.39080.79030.12860.068*
C110.4129 (3)0.9229 (3)0.3626 (2)0.0520 (7)
H11A0.44081.00970.39340.062*
C120.3614 (3)0.8050 (3)0.4361 (2)0.0488 (6)
H12A0.35530.81250.51440.059*
O10.3978 (3)0.1206 (2)0.12019 (17)0.0654 (6)
O20.3751 (2)0.2383 (2)0.27704 (16)0.0599 (5)
O30.2390 (4)0.3965 (3)0.1101 (2)0.1041 (9)
O40.1264 (3)0.2629 (2)0.26029 (18)0.0776 (7)
C130.3421 (3)0.2273 (3)0.1748 (2)0.0490 (6)
C140.2312 (4)0.3340 (3)0.0967 (2)0.0618 (8)
H14A0.18520.40400.14290.074*
H14B0.31100.39080.04970.074*
C150.0728 (4)0.2637 (3)0.0197 (2)0.0597 (7)
H15A0.01950.34040.03270.072*
H15B0.11760.19140.02520.072*
C160.0758 (4)0.1854 (3)0.0833 (2)0.0619 (8)
H16A0.02440.10630.13400.074*
H16B0.17140.14050.02880.074*
C170.1557 (4)0.2930 (3)0.1513 (3)0.0601 (8)
H10.173 (5)0.338 (4)0.308 (3)0.123 (13)*
H20.456 (4)0.058 (4)0.167 (3)0.133 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0502 (11)0.0392 (11)0.0437 (13)0.0103 (8)0.0095 (9)0.0083 (9)
N20.0464 (11)0.0400 (12)0.0465 (13)0.0084 (9)0.0127 (9)0.0063 (10)
N30.0573 (12)0.0472 (13)0.0568 (15)0.0157 (10)0.0133 (10)0.0024 (11)
C10.0380 (12)0.0384 (13)0.0466 (15)0.0042 (9)0.0102 (10)0.0064 (11)
C20.0524 (14)0.0402 (14)0.0547 (17)0.0087 (11)0.0144 (11)0.0120 (12)
C30.0589 (15)0.0391 (14)0.0592 (18)0.0121 (11)0.0122 (12)0.0039 (13)
C40.0646 (16)0.0458 (15)0.0515 (17)0.0079 (12)0.0054 (13)0.0029 (13)
C50.0653 (16)0.0461 (15)0.0427 (16)0.0088 (12)0.0079 (12)0.0089 (12)
C60.0403 (12)0.0364 (13)0.0472 (15)0.0047 (9)0.0075 (10)0.0084 (11)
C70.0375 (12)0.0408 (13)0.0454 (15)0.0066 (10)0.0098 (10)0.0061 (11)
C80.0387 (12)0.0406 (13)0.0475 (15)0.0064 (9)0.0089 (10)0.0071 (11)
C90.0582 (15)0.0474 (15)0.0499 (16)0.0168 (11)0.0160 (12)0.0054 (12)
C100.0678 (17)0.0572 (17)0.0500 (17)0.0221 (13)0.0207 (13)0.0012 (13)
C110.0566 (15)0.0448 (15)0.0569 (18)0.0151 (11)0.0064 (12)0.0102 (13)
C120.0523 (14)0.0485 (15)0.0470 (16)0.0128 (11)0.0049 (11)0.0082 (12)
O10.0996 (15)0.0540 (12)0.0469 (12)0.0322 (11)0.0076 (10)0.0088 (10)
O20.0784 (12)0.0601 (12)0.0441 (12)0.0230 (9)0.0063 (9)0.0081 (9)
O30.170 (2)0.0867 (17)0.0689 (16)0.0736 (17)0.0346 (15)0.0149 (13)
O40.1193 (18)0.0732 (15)0.0487 (14)0.0464 (13)0.0185 (12)0.0038 (11)
C130.0623 (15)0.0415 (14)0.0453 (17)0.0102 (11)0.0097 (12)0.0044 (12)
C140.090 (2)0.0469 (16)0.0497 (17)0.0231 (14)0.0054 (15)0.0005 (13)
C150.0806 (18)0.0623 (18)0.0390 (16)0.0253 (14)0.0061 (13)0.0068 (13)
C160.088 (2)0.0522 (17)0.0492 (18)0.0181 (14)0.0124 (14)0.0107 (14)
C170.0833 (19)0.0498 (17)0.0520 (19)0.0205 (14)0.0195 (14)0.0043 (14)
Geometric parameters (Å, º) top
N1—C71.359 (3)C9—H9A0.9300
N1—C61.385 (3)C10—H10A0.9300
N1—H1A0.8600C11—C121.375 (3)
N2—C71.320 (3)C11—H11A0.9300
N2—C11.390 (3)C12—H12A0.9300
N3—C111.330 (3)O1—C131.313 (3)
N3—C101.334 (3)O1—H20.866 (10)
C1—C21.396 (3)O2—C131.211 (3)
C1—C61.402 (3)O3—C171.199 (3)
C2—C31.373 (3)O4—C171.296 (3)
C2—H2B0.9300O4—H11.02 (4)
C3—C41.390 (4)C13—C141.503 (3)
C3—H3B0.9300C14—C151.504 (4)
C4—C51.379 (4)C14—H14A0.9700
C4—H4A0.9300C14—H14B0.9700
C5—C61.387 (4)C15—C161.532 (4)
C5—H5A0.9300C15—H15A0.9700
C7—C81.475 (3)C15—H15B0.9700
C8—C121.383 (3)C16—C171.503 (4)
C8—C91.389 (4)C16—H16A0.9700
C9—C101.381 (3)C16—H16B0.9700
C7—N1—C6107.18 (19)C9—C10—H10A118.5
C7—N1—H1A126.4N3—C11—C12123.4 (2)
C6—N1—H1A126.4N3—C11—H11A118.3
C7—N2—C1105.23 (19)C12—C11—H11A118.3
C11—N3—C10117.5 (2)C11—C12—C8119.2 (2)
N2—C1—C2130.2 (2)C11—C12—H12A120.4
N2—C1—C6109.62 (19)C8—C12—H12A120.4
C2—C1—C6120.2 (2)C13—O1—H2111 (3)
C3—C2—C1117.8 (2)C17—O4—H1114 (2)
C3—C2—H2B121.1O2—C13—O1123.9 (2)
C1—C2—H2B121.1O2—C13—C14123.5 (2)
C2—C3—C4121.4 (2)O1—C13—C14112.6 (2)
C2—C3—H3B119.3C13—C14—C15115.5 (2)
C4—C3—H3B119.3C13—C14—H14A108.4
C5—C4—C3121.9 (2)C15—C14—H14A108.4
C5—C4—H4A119.0C13—C14—H14B108.4
C3—C4—H4A119.0C15—C14—H14B108.4
C4—C5—C6116.9 (2)H14A—C14—H14B107.5
C4—C5—H5A121.6C14—C15—C16113.8 (2)
C6—C5—H5A121.6C14—C15—H15A108.8
N1—C6—C5133.1 (2)C16—C15—H15A108.8
N1—C6—C1105.2 (2)C14—C15—H15B108.8
C5—C6—C1121.7 (2)C16—C15—H15B108.8
N2—C7—N1112.81 (19)H15A—C15—H15B107.7
N2—C7—C8124.0 (2)C17—C16—C15111.4 (2)
N1—C7—C8123.2 (2)C17—C16—H16A109.3
C12—C8—C9117.8 (2)C15—C16—H16A109.3
C12—C8—C7122.3 (2)C17—C16—H16B109.3
C9—C8—C7119.9 (2)C15—C16—H16B109.3
C10—C9—C8118.9 (2)H16A—C16—H16B108.0
C10—C9—H9A120.5O3—C17—O4122.6 (3)
C8—C9—H9A120.5O3—C17—C16124.1 (3)
N3—C10—C9123.1 (3)O4—C17—C16113.3 (2)
N3—C10—H10A118.5
C7—N2—C1—C2179.2 (2)N2—C7—C8—C12176.6 (2)
C7—N2—C1—C60.2 (2)N1—C7—C8—C124.0 (3)
N2—C1—C2—C3178.4 (2)N2—C7—C8—C94.7 (3)
C6—C1—C2—C31.0 (3)N1—C7—C8—C9174.8 (2)
C1—C2—C3—C40.0 (4)C12—C8—C9—C100.2 (4)
C2—C3—C4—C50.8 (4)C7—C8—C9—C10178.6 (2)
C3—C4—C5—C60.7 (4)C11—N3—C10—C90.3 (4)
C7—N1—C6—C5178.0 (2)C8—C9—C10—N30.0 (4)
C7—N1—C6—C10.0 (2)C10—N3—C11—C120.4 (4)
C4—C5—C6—N1178.0 (2)N3—C11—C12—C80.2 (4)
C4—C5—C6—C10.2 (3)C9—C8—C12—C110.1 (3)
N2—C1—C6—N10.1 (2)C7—C8—C12—C11178.7 (2)
C2—C1—C6—N1179.4 (2)O2—C13—C14—C15126.6 (3)
N2—C1—C6—C5178.4 (2)O1—C13—C14—C1552.9 (3)
C2—C1—C6—C51.1 (3)C13—C14—C15—C1664.9 (3)
C1—N2—C7—N10.2 (2)C14—C15—C16—C1760.6 (3)
C1—N2—C7—C8179.28 (19)C15—C16—C17—O364.2 (4)
C6—N1—C7—N20.2 (2)C15—C16—C17—O4116.1 (3)
C6—N1—C7—C8179.33 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.102.957 (3)176
O1—H2···N3ii0.87 (1)1.75 (1)2.615 (3)173 (4)
O4—H1···N21.02 (4)1.71 (4)2.686 (3)158 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC12H9N3·C5H8O4
Mr327.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4384 (15), 8.9911 (18), 11.868 (2)
α, β, γ (°)86.67 (3), 81.66 (3), 85.57 (3)
V3)782.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6041, 2664, 1657
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.149, 1.11
No. of reflections2664
No. of parameters226
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.102.957 (3)176.3
O1—H2···N3ii0.866 (10)1.752 (12)2.615 (3)173 (4)
O4—H1···N21.02 (4)1.71 (4)2.686 (3)158 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z.
 

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (51003010) and the Natural Science Foundation of Jilin Province (201115178).

References

First citationBei, F., Jian, F., Yang, X., Lu, L., Wang, X., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 718–719.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhattacharjya, G., Savithaa, G. & Ramanathan, G. (2004). CrystEngComm, 6(40), 233–235.  Web of Science CSD CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMoorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530–6531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMuthuraman, M., Fur, Y. L., Bagiur-Beucher, M., Masse, R., Nicoud, J.-F., George, S., Nangia, A. & Desiraju, G. R. (2000). J. Solid State Chem. 152, 221–228.  Web of Science CSD CrossRef CAS Google Scholar
First citationNangia, A. & Desiraju, G. R. (1999). J. Mol. Struct. 474, 65–79.  Web of Science CrossRef CAS Google Scholar
First citationOzbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds