organic compounds
N,N′-Dibenzyl-N,N′-dimethyl-N′′-(2-phenylacetyl)phosphoric triamide
aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo–CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es
The P atom in the title molecule, C24H28N3O2P, is in a distorted tetrahedral P(=O)(N)(N)2 environment. The phosphoryl group and the NH unit adopt a syn orientation with respect to each other and the N atoms have sp2 character. The P—N bonds in the P(O)[N(CH3)(CH2C6H5)]2 unit are shorter than the P—N bond in the C(=O)NHP(=O) fragment. An intramolecular C—H⋯O hydrogen bond occurs. In the crystal, pairs of P=O⋯H—N hydrogen bonds form centrosymmetric dimers. C—H⋯O contacts are also observed. Four C atoms of two benzene rings are disordered over two alternative sites with an occupancy ratio of 0.523 (12):0.427 (12).
Related literature
For hydrogen-bond patterns in compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2, see: Toghraee et al. (2011). For hydrogen-bond strengths and for bond lengths and angles in a related structure, see: Pourayoubi et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
Supporting information
https://doi.org/10.1107/S1600536811049178/fy2027sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811049178/fy2027Isup2.hkl
Reaction of phosphorus pentachloride (1.85 mmol) and 2-phenylacetamide (1.85 mmol) in dry CCl4 (15 ml) at 353 K (3 h) followed by treatment with formic acid (1.85 mmol) at room temperature leads to the formation of C6H5CH2C(O)NHP(O)Cl2 as a solid-oily product (stage I). A solution of N-methylbenzylamine (7.4 mmol) in CHCl3 (5 ml) was added dropwise to a solution containing the total product of stage I in CHCl3 (15 ml) at 273 K. After 6 h of stirring, the solvent was evaporated in vacuum. The obtained solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH3CN after slow evaporation at room temperature. The crystals were washed with CCl4 to remove the oily layer from the surface of the crystals.
At the end of the
the highest peak in the electron density was 1.300 e Å -3, while the deepest hole was -0.460 e Å -3. In order to refine the disorder shown by the C9, C21, C22 and C23 atoms, EADP restraints were used and the distances C23A–C21A, C21A–C22A, C22A–C23A, C9A–H9A, C23A–H23A and C22A–H23A had to be fixed. Flat group restraints were used to fix the geometry of the atoms labeled with A, i.e., those belonging to the minor disorder component. The occupancy of these atoms refined to 0.427 (12). H atoms labeled H9A, H21A and H23A were located in a difference map and were allowed to ride on the parent atom with Uiso(H) = 1.2 Ueq(C). The rest of the H atoms were geometrically placed and refined in riding mode with isotropic displacements calculated from the Ueq of the parent atom.The hydrogen bond patterns and strengths in two subclasses of acetyl phosphoric triamide compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2 were analyzed, respectively, by Toghraee et al. (2011) and by Pourayoubi et al. (2011).
The ═O)NHP(═O)(N)2 skeleton, which belong to the phosphoric triamide family.
of the title molecule, C6H5CH2C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 (Fig. 1), was performed because of our interest in the structural characteristics of new compounds with a C(Single crystals of the title molecule were obtained from CH3CN after slow evaporation at room temperature. The P atom is placed in a distorted tetrahedral P(═O)(N)(N)2 environment with the surrounding bond angles in the range of 106.38 (13)°-112.48 (17)°. The P—N bond in the C(O)NHP(O) moiety (with length of 1.681 (3) Å) is longer than the two other P—N bonds (1.621 (3) Å & 1.633 (3) Å). The P═O bond length is standard for this family of phosphoramidate compounds (Pourayoubi et al., 2011).
The angles at the tertiary N atoms confirm their sp2 character. Moreover, the C—N—P angle in the C(O)NHP(O) fragment is 126.3 (2)°.
The hydrogen atom of the C(═O)NHP(═O) group is involved in an intermolecular –P═O···H—N– hydrogen bond (see Table 1). A pair of this hydrogen bond forms a centrosymmetric dimer, see Figure 2, which is a usual H-bond pattern for compounds of the formula RC(O)NHP(O)[NR'R"]2, where R' and R" ≠ H, and in the case of a syn orientation of P═O versus N—H (Toghraee et al., 2011).
For hydrogen-bond patterns in compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2, see: Toghraee et al. (2011). For hydrogen-bond strengths and for bond lengths and angles in a related structure, see: Pourayoubi et al. (2011).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level. | |
Fig. 2. A view of the centrosymmetric dimer formed by H-bonding. |
C24H28N3O2P | F(000) = 896 |
Mr = 421.46 | Dx = 1.232 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 4446 reflections |
a = 12.4823 (4) Å | θ = 3.6–70.4° |
b = 10.3535 (3) Å | µ = 1.26 mm−1 |
c = 20.0392 (5) Å | T = 120 K |
β = 118.646 (3)° | Prismatic, colourless |
V = 2272.78 (13) Å3 | 0.21 × 0.08 × 0.04 mm |
Z = 4 |
Agilent Xcalibur Gemini R diffractometer | 4244 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3366 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.6°, θmin = 4.0° |
ω scans | h = −15→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −8→12 |
Tmin = 0.852, Tmax = 1.000 | l = −21→24 |
10604 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.216 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.117P)2 + 2.5265P] where P = (Fo2 + 2Fc2)/3 |
4244 reflections | (Δ/σ)max < 0.001 |
287 parameters | Δρmax = 1.30 e Å−3 |
13 restraints | Δρmin = −0.46 e Å−3 |
C24H28N3O2P | V = 2272.78 (13) Å3 |
Mr = 421.46 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 12.4823 (4) Å | µ = 1.26 mm−1 |
b = 10.3535 (3) Å | T = 120 K |
c = 20.0392 (5) Å | 0.21 × 0.08 × 0.04 mm |
β = 118.646 (3)° |
Agilent Xcalibur Gemini R diffractometer | 4244 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 3366 reflections with I > 2σ(I) |
Tmin = 0.852, Tmax = 1.000 | Rint = 0.034 |
10604 measured reflections |
R[F2 > 2σ(F2)] = 0.073 | 13 restraints |
wR(F2) = 0.216 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 1.30 e Å−3 |
4244 reflections | Δρmin = −0.46 e Å−3 |
287 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.61467 (7) | 0.09793 (8) | 0.61667 (4) | 0.0349 (3) | |
O2 | 0.6047 (2) | −0.0406 (2) | 0.59532 (13) | 0.0495 (7) | |
O3 | 0.6162 (2) | 0.3822 (2) | 0.57253 (13) | 0.0433 (6) | |
N4 | 0.7567 (2) | 0.1457 (3) | 0.65817 (14) | 0.0348 (6) | |
N5 | 0.5375 (2) | 0.1807 (3) | 0.53507 (14) | 0.0332 (6) | |
H5 | 0.4775 | 0.1415 | 0.4982 | 0.040* | |
N6 | 0.5563 (2) | 0.1285 (3) | 0.67185 (15) | 0.0454 (8) | |
C7 | 0.3578 (4) | 0.2146 (5) | 0.6449 (2) | 0.0633 (12) | |
C8 | 0.3112 (5) | 0.2069 (7) | 0.6953 (3) | 0.0907 (15) | |
H8 | 0.3664 | 0.2167 | 0.7467 | 0.109* | |
C9A | 0.1977 (19) | 0.1873 (19) | 0.6773 (11) | 0.0907 (15) | 0.427 (12) |
C9B | 0.1788 (14) | 0.1750 (18) | 0.6644 (8) | 0.0907 (15) | 0.573 (12) |
H9B | 0.1479 | 0.1622 | 0.6979 | 0.109* | 0.573 (12) |
C10 | 0.1089 (4) | 0.1652 (7) | 0.5943 (3) | 0.092 (2) | |
H10 | 0.0252 | 0.1561 | 0.5757 | 0.110* | |
C11 | 0.1562 (4) | 0.1681 (7) | 0.5449 (3) | 0.0878 (19) | |
H11 | 0.1045 | 0.1539 | 0.4934 | 0.105* | |
C12 | 0.2785 (4) | 0.1914 (7) | 0.5696 (3) | 0.0835 (18) | |
H12 | 0.3075 | 0.1914 | 0.5347 | 0.100* | |
C13 | 0.9382 (3) | 0.2014 (3) | 0.77852 (16) | 0.0331 (7) | |
C14 | 0.9627 (3) | 0.0783 (3) | 0.80961 (18) | 0.0385 (7) | |
H14 | 0.8996 | 0.0188 | 0.7954 | 0.046* | |
C15 | 1.0808 (3) | 0.0436 (4) | 0.86178 (19) | 0.0463 (9) | |
H15 | 1.0964 | −0.0390 | 0.8825 | 0.056* | |
C16 | 1.1755 (3) | 0.1300 (4) | 0.88326 (19) | 0.0486 (9) | |
H16 | 1.2548 | 0.1056 | 0.9178 | 0.058* | |
C17 | 1.1521 (3) | 0.2529 (4) | 0.85324 (19) | 0.0497 (9) | |
H17 | 1.2154 | 0.3121 | 0.8677 | 0.060* | |
C18 | 1.0334 (3) | 0.2883 (4) | 0.80124 (18) | 0.0402 (8) | |
H18 | 1.0179 | 0.3716 | 0.7815 | 0.048* | |
C19 | 0.6284 (3) | 0.3206 (4) | 0.42633 (17) | 0.0441 (9) | |
C20 | 0.6540 (4) | 0.2006 (5) | 0.4061 (2) | 0.0624 (12) | |
H20 | 0.5970 | 0.1367 | 0.3988 | 0.075* | |
C21A | 0.7823 (16) | 0.2127 (17) | 0.4086 (9) | 0.054 (3) | 0.427 (12) |
C21B | 0.7447 (9) | 0.1624 (14) | 0.3957 (6) | 0.054 (3) | 0.573 (12) |
H21B | 0.7512 | 0.0794 | 0.3802 | 0.065* | 0.573 (12) |
C22A | 0.8510 (17) | 0.3232 (19) | 0.4241 (9) | 0.068 (4) | 0.427 (12) |
H22A | 0.9253 | 0.3190 | 0.4240 | 0.081* | 0.427 (12) |
C22B | 0.8303 (12) | 0.2587 (18) | 0.4101 (6) | 0.068 (4) | 0.573 (12) |
H22B | 0.8991 | 0.2415 | 0.4051 | 0.081* | 0.573 (12) |
C23A | 0.815 (2) | 0.4403 (17) | 0.4398 (13) | 0.068 (4) | 0.427 (12) |
C23B | 0.8133 (15) | 0.3803 (14) | 0.4321 (9) | 0.068 (4) | 0.573 (12) |
H23B | 0.8743 | 0.4410 | 0.4426 | 0.082* | 0.573 (12) |
C24 | 0.7078 (4) | 0.4224 (6) | 0.4403 (2) | 0.0715 (14) | |
H24 | 0.6962 | 0.5056 | 0.4531 | 0.086* | |
C25 | 0.4943 (4) | 0.2442 (5) | 0.6716 (2) | 0.0622 (11) | |
H25A | 0.5009 | 0.3069 | 0.6378 | 0.075* | |
H25B | 0.5317 | 0.2808 | 0.7224 | 0.075* | |
C26 | 0.8104 (3) | 0.2404 (3) | 0.72085 (17) | 0.0358 (7) | |
H26A | 0.7600 | 0.2464 | 0.7454 | 0.043* | |
H26B | 0.8124 | 0.3249 | 0.7005 | 0.043* | |
C27 | 0.5609 (3) | 0.3046 (3) | 0.52156 (17) | 0.0356 (7) | |
C28 | 0.5195 (3) | 0.3363 (3) | 0.43859 (18) | 0.0391 (7) | |
H28A | 0.4547 | 0.2782 | 0.4056 | 0.047* | |
H28B | 0.4892 | 0.4242 | 0.4273 | 0.047* | |
C29 | 0.5840 (4) | 0.0350 (5) | 0.7340 (2) | 0.0641 (12) | |
H29A | 0.6264 | −0.0379 | 0.7283 | 0.096* | |
H29B | 0.5093 | 0.0066 | 0.7320 | 0.096* | |
H29C | 0.6344 | 0.0758 | 0.7821 | 0.096* | |
C30 | 0.8230 (3) | 0.1331 (4) | 0.61473 (19) | 0.0427 (8) | |
H30A | 0.7832 | 0.0701 | 0.5753 | 0.064* | |
H30B | 0.9053 | 0.1062 | 0.6480 | 0.064* | |
H30C | 0.8238 | 0.2149 | 0.5924 | 0.064* | |
H9A | 0.168 (8) | 0.191 (6) | 0.713 (4) | 0.051* | 0.427 (12) |
H21A | 0.822 (10) | 0.137 (10) | 0.401 (4) | 0.051* | 0.427 (12) |
H23A | 0.861 (5) | 0.514 (3) | 0.446 (4) | 0.051* | 0.427 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0263 (4) | 0.0470 (5) | 0.0224 (4) | −0.0029 (3) | 0.0044 (3) | 0.0020 (3) |
O2 | 0.0433 (13) | 0.0463 (14) | 0.0315 (12) | −0.0076 (11) | −0.0041 (10) | 0.0055 (10) |
O3 | 0.0459 (13) | 0.0424 (13) | 0.0314 (12) | 0.0012 (10) | 0.0103 (10) | −0.0030 (10) |
N4 | 0.0264 (12) | 0.0477 (16) | 0.0241 (12) | −0.0019 (11) | 0.0071 (10) | −0.0054 (11) |
N5 | 0.0267 (12) | 0.0445 (15) | 0.0233 (12) | −0.0008 (11) | 0.0078 (10) | −0.0001 (11) |
N6 | 0.0292 (13) | 0.077 (2) | 0.0259 (13) | −0.0014 (13) | 0.0098 (11) | 0.0075 (13) |
C7 | 0.054 (2) | 0.088 (3) | 0.052 (2) | 0.017 (2) | 0.0293 (19) | 0.012 (2) |
C8 | 0.057 (3) | 0.169 (5) | 0.054 (3) | 0.016 (3) | 0.033 (2) | −0.009 (3) |
C9A | 0.057 (3) | 0.169 (5) | 0.054 (3) | 0.016 (3) | 0.033 (2) | −0.009 (3) |
C9B | 0.057 (3) | 0.169 (5) | 0.054 (3) | 0.016 (3) | 0.033 (2) | −0.009 (3) |
C10 | 0.038 (2) | 0.178 (6) | 0.062 (3) | 0.020 (3) | 0.025 (2) | 0.006 (3) |
C11 | 0.038 (2) | 0.167 (6) | 0.056 (3) | 0.011 (3) | 0.021 (2) | 0.001 (3) |
C12 | 0.043 (2) | 0.155 (6) | 0.054 (3) | 0.007 (3) | 0.024 (2) | −0.009 (3) |
C13 | 0.0286 (15) | 0.0447 (18) | 0.0227 (14) | 0.0003 (13) | 0.0097 (12) | −0.0038 (12) |
C14 | 0.0361 (16) | 0.0420 (18) | 0.0328 (16) | −0.0027 (14) | 0.0128 (13) | −0.0052 (14) |
C15 | 0.0473 (19) | 0.047 (2) | 0.0336 (17) | 0.0094 (16) | 0.0107 (15) | −0.0002 (15) |
C16 | 0.0313 (16) | 0.072 (3) | 0.0304 (17) | 0.0061 (16) | 0.0049 (13) | −0.0038 (17) |
C17 | 0.0321 (17) | 0.072 (3) | 0.0333 (17) | −0.0121 (17) | 0.0064 (14) | −0.0045 (17) |
C18 | 0.0352 (16) | 0.0476 (19) | 0.0300 (15) | −0.0057 (14) | 0.0094 (13) | 0.0010 (14) |
C19 | 0.0342 (16) | 0.071 (2) | 0.0194 (14) | 0.0019 (16) | 0.0068 (12) | 0.0086 (15) |
C20 | 0.062 (2) | 0.092 (3) | 0.0348 (18) | 0.027 (2) | 0.0248 (18) | 0.016 (2) |
C21A | 0.038 (6) | 0.087 (8) | 0.039 (4) | 0.008 (4) | 0.020 (4) | 0.011 (5) |
C21B | 0.038 (6) | 0.087 (8) | 0.039 (4) | 0.008 (4) | 0.020 (4) | 0.011 (5) |
C22A | 0.031 (5) | 0.136 (15) | 0.031 (5) | −0.008 (7) | 0.009 (4) | 0.021 (6) |
C22B | 0.031 (5) | 0.136 (15) | 0.031 (5) | −0.008 (7) | 0.009 (4) | 0.021 (6) |
C23A | 0.053 (3) | 0.106 (12) | 0.037 (4) | −0.038 (9) | 0.015 (3) | 0.002 (8) |
C23B | 0.053 (3) | 0.106 (12) | 0.037 (4) | −0.038 (9) | 0.015 (3) | 0.002 (8) |
C24 | 0.064 (3) | 0.112 (4) | 0.0321 (19) | −0.030 (3) | 0.0173 (18) | 0.005 (2) |
C25 | 0.064 (3) | 0.085 (3) | 0.043 (2) | 0.018 (2) | 0.0297 (19) | 0.009 (2) |
C26 | 0.0300 (15) | 0.0428 (18) | 0.0286 (15) | −0.0003 (13) | 0.0093 (12) | −0.0031 (13) |
C27 | 0.0288 (14) | 0.0449 (18) | 0.0291 (15) | 0.0055 (13) | 0.0106 (12) | 0.0005 (14) |
C28 | 0.0340 (16) | 0.0467 (19) | 0.0286 (15) | 0.0033 (14) | 0.0086 (12) | 0.0049 (14) |
C29 | 0.066 (3) | 0.081 (3) | 0.042 (2) | −0.004 (2) | 0.0234 (19) | 0.007 (2) |
C30 | 0.0329 (16) | 0.062 (2) | 0.0305 (16) | −0.0016 (15) | 0.0134 (13) | −0.0055 (15) |
P1—O2 | 1.484 (3) | C17—C18 | 1.391 (5) |
P1—N6 | 1.621 (3) | C17—H17 | 0.9300 |
P1—N4 | 1.633 (3) | C18—H18 | 0.9300 |
P1—N5 | 1.681 (3) | C19—C24 | 1.380 (6) |
O3—C27 | 1.221 (4) | C19—C20 | 1.391 (6) |
N4—C30 | 1.466 (4) | C19—C28 | 1.502 (5) |
N4—C26 | 1.477 (4) | C20—C21B | 1.307 (12) |
N5—C27 | 1.371 (4) | C20—H20 | 0.9300 |
N5—H5 | 0.8600 | C21A—C22A | 1.373 (14) |
N6—C25 | 1.425 (5) | C21A—H21A | 0.97 (11) |
N6—C29 | 1.482 (5) | C21B—C22B | 1.387 (14) |
C7—C12 | 1.371 (6) | C21B—H21B | 0.9300 |
C7—C8 | 1.389 (6) | C21B—H21A | 0.95 (11) |
C7—C25 | 1.552 (6) | C22A—C23A | 1.380 (17) |
C8—C9A | 1.30 (2) | C22A—H22A | 0.9300 |
C8—C9B | 1.498 (18) | C22B—C23B | 1.38 (2) |
C8—H8 | 0.9300 | C22B—H22B | 0.9300 |
C9A—H9A | 0.94 (2) | C22B—H21A | 1.27 (11) |
C9B—C10 | 1.254 (14) | C23A—H23A | 0.92 (2) |
C9B—H9B | 0.9300 | C23B—C24 | 1.470 (19) |
C9B—H9A | 1.05 (5) | C23B—H23B | 0.9300 |
C10—C11 | 1.375 (7) | C24—H24 | 0.9300 |
C10—H10 | 0.9300 | C25—H25A | 0.9700 |
C11—C12 | 1.382 (6) | C25—H25B | 0.9700 |
C11—H11 | 0.9300 | C26—H26A | 0.9700 |
C12—H12 | 0.9300 | C26—H26B | 0.9700 |
C13—C18 | 1.382 (5) | C27—C28 | 1.522 (4) |
C13—C14 | 1.387 (5) | C28—H28A | 0.9700 |
C13—C26 | 1.508 (4) | C28—H28B | 0.9700 |
C14—C15 | 1.385 (5) | C29—H29A | 0.9600 |
C14—H14 | 0.9300 | C29—H29B | 0.9600 |
C15—C16 | 1.376 (6) | C29—H29C | 0.9600 |
C15—H15 | 0.9300 | C30—H30A | 0.9600 |
C16—C17 | 1.378 (6) | C30—H30B | 0.9600 |
C16—H16 | 0.9300 | C30—H30C | 0.9600 |
O2—P1—N6 | 112.48 (17) | C21B—C20—H20 | 114.6 |
O2—P1—N4 | 111.09 (15) | C19—C20—H20 | 114.6 |
N6—P1—N4 | 109.09 (14) | C22A—C21A—H21A | 114 (7) |
O2—P1—N5 | 106.38 (13) | C20—C21B—C22B | 112.9 (12) |
N6—P1—N5 | 109.18 (14) | C20—C21B—H21B | 123.6 |
N4—P1—N5 | 108.50 (14) | C22B—C21B—H21B | 123.6 |
C30—N4—C26 | 114.1 (3) | C20—C21B—H21A | 166 (5) |
C30—N4—P1 | 117.0 (2) | C22B—C21B—H21A | 63 (7) |
C26—N4—P1 | 125.0 (2) | H21B—C21B—H21A | 62.5 |
C27—N5—P1 | 126.3 (2) | C21A—C22A—C23A | 123.2 (15) |
C27—N5—H5 | 116.9 | C21A—C22A—H22A | 118.4 |
P1—N5—H5 | 116.9 | C23A—C22A—H22A | 118.4 |
C25—N6—C29 | 117.4 (3) | C23B—C22B—C21B | 120.1 (12) |
C25—N6—P1 | 125.7 (3) | C23B—C22B—H22B | 120.0 |
C29—N6—P1 | 116.5 (3) | C21B—C22B—H22B | 120.0 |
C12—C7—C8 | 117.2 (4) | C23B—C22B—H21A | 159 (5) |
C12—C7—C25 | 120.6 (4) | C21B—C22B—H21A | 42 (5) |
C8—C7—C25 | 122.2 (4) | H22B—C22B—H21A | 79.3 |
C9A—C8—C7 | 126.0 (10) | C22A—C23A—H23A | 121 (3) |
C9A—C8—C9B | 8.3 (14) | C22B—C23B—C24 | 126.0 (9) |
C7—C8—C9B | 118.4 (7) | C22B—C23B—H23B | 117.0 |
C9A—C8—H8 | 117.0 | C24—C23B—H23B | 117.0 |
C7—C8—H8 | 117.0 | C22B—C23B—H23A | 144 (3) |
C9B—C8—H8 | 124.5 | C24—C23B—H23A | 90 (2) |
C8—C9A—H9A | 124 (6) | H23B—C23B—H23A | 27.8 |
C10—C9B—C8 | 121.2 (14) | C19—C24—C23B | 110.2 (7) |
C10—C9B—H9B | 119.4 | C19—C24—H24 | 124.9 |
C8—C9B—H9B | 119.4 | C23B—C24—H24 | 124.9 |
C10—C9B—H9A | 136 (6) | N6—C25—C7 | 109.8 (4) |
C8—C9B—H9A | 101 (5) | N6—C25—H25A | 109.7 |
H9B—C9B—H9A | 22.8 | C7—C25—H25A | 109.7 |
C9B—C10—C11 | 119.8 (10) | N6—C25—H25B | 109.7 |
C9B—C10—H10 | 120.1 | C7—C25—H25B | 109.7 |
C11—C10—H10 | 120.1 | H25A—C25—H25B | 108.2 |
C10—C11—C12 | 121.8 (5) | N4—C26—C13 | 110.8 (3) |
C10—C11—H11 | 119.1 | N4—C26—H26A | 109.5 |
C12—C11—H11 | 119.1 | C13—C26—H26A | 109.5 |
C7—C12—C11 | 121.1 (4) | N4—C26—H26B | 109.5 |
C7—C12—H12 | 119.4 | C13—C26—H26B | 109.5 |
C11—C12—H12 | 119.4 | H26A—C26—H26B | 108.1 |
C18—C13—C14 | 118.7 (3) | O3—C27—N5 | 122.7 (3) |
C18—C13—C26 | 120.3 (3) | O3—C27—C28 | 122.1 (3) |
C14—C13—C26 | 121.0 (3) | N5—C27—C28 | 115.1 (3) |
C15—C14—C13 | 120.2 (3) | C19—C28—C27 | 107.2 (2) |
C15—C14—H14 | 119.9 | C19—C28—H28A | 110.3 |
C13—C14—H14 | 119.9 | C27—C28—H28A | 110.3 |
C16—C15—C14 | 120.8 (4) | C19—C28—H28B | 110.3 |
C16—C15—H15 | 119.6 | C27—C28—H28B | 110.3 |
C14—C15—H15 | 119.6 | H28A—C28—H28B | 108.5 |
C15—C16—C17 | 119.5 (3) | N6—C29—H29A | 109.5 |
C15—C16—H16 | 120.2 | N6—C29—H29B | 109.5 |
C17—C16—H16 | 120.2 | H29A—C29—H29B | 109.5 |
C16—C17—C18 | 119.8 (3) | N6—C29—H29C | 109.5 |
C16—C17—H17 | 120.1 | H29A—C29—H29C | 109.5 |
C18—C17—H17 | 120.1 | H29B—C29—H29C | 109.5 |
C13—C18—C17 | 120.9 (3) | N4—C30—H30A | 109.5 |
C13—C18—H18 | 119.5 | N4—C30—H30B | 109.5 |
C17—C18—H18 | 119.5 | H30A—C30—H30B | 109.5 |
C24—C19—C20 | 119.9 (4) | N4—C30—H30C | 109.5 |
C24—C19—C28 | 120.2 (4) | H30A—C30—H30C | 109.5 |
C20—C19—C28 | 119.8 (4) | H30B—C30—H30C | 109.5 |
C21B—C20—C19 | 130.8 (8) | ||
O2—P1—N4—C30 | 59.1 (3) | C13—C14—C15—C16 | −0.4 (5) |
N6—P1—N4—C30 | −176.4 (3) | C14—C15—C16—C17 | 0.9 (6) |
N5—P1—N4—C30 | −57.5 (3) | C15—C16—C17—C18 | −0.5 (6) |
O2—P1—N4—C26 | −144.4 (3) | C14—C13—C18—C17 | 1.1 (5) |
N6—P1—N4—C26 | −19.8 (3) | C26—C13—C18—C17 | −178.7 (3) |
N5—P1—N4—C26 | 99.0 (3) | C16—C17—C18—C13 | −0.6 (5) |
O2—P1—N5—C27 | −151.0 (3) | C24—C19—C20—C21B | −1.3 (8) |
N6—P1—N5—C27 | 87.4 (3) | C28—C19—C20—C21B | −176.8 (7) |
N4—P1—N5—C27 | −31.4 (3) | C19—C20—C21B—C22B | 2.5 (13) |
O2—P1—N6—C25 | −145.4 (3) | C20—C21B—C22B—C23B | −0.8 (15) |
N4—P1—N6—C25 | 90.9 (3) | C21B—C22B—C23B—C24 | −2 (2) |
N5—P1—N6—C25 | −27.6 (4) | C20—C19—C24—C23B | −1.3 (8) |
O2—P1—N6—C29 | 42.9 (3) | C28—C19—C24—C23B | 174.1 (7) |
N4—P1—N6—C29 | −80.8 (3) | C22B—C23B—C24—C19 | 2.8 (16) |
N5—P1—N6—C29 | 160.8 (3) | C29—N6—C25—C7 | −74.8 (4) |
C12—C7—C8—C9A | −4.4 (11) | P1—N6—C25—C7 | 113.6 (3) |
C25—C7—C8—C9A | 177.3 (11) | C12—C7—C25—N6 | −74.8 (6) |
C12—C7—C8—C9B | −0.4 (13) | C8—C7—C25—N6 | 103.4 (6) |
C25—C7—C8—C9B | −178.7 (9) | C30—N4—C26—C13 | −61.7 (4) |
C9A—C8—C9B—C10 | 151 (12) | P1—N4—C26—C13 | 141.1 (2) |
C7—C8—C9B—C10 | −6 (2) | C18—C13—C26—N4 | 128.4 (3) |
C8—C9B—C10—C11 | 8 (2) | C14—C13—C26—N4 | −51.4 (4) |
C9B—C10—C11—C12 | −5.1 (15) | P1—N5—C27—O3 | −22.2 (4) |
C8—C7—C12—C11 | 3.3 (9) | P1—N5—C27—C28 | 154.3 (2) |
C25—C7—C12—C11 | −178.4 (6) | C24—C19—C28—C27 | −87.2 (4) |
C10—C11—C12—C7 | −0.9 (11) | C20—C19—C28—C27 | 88.2 (4) |
C18—C13—C14—C15 | −0.6 (5) | O3—C27—C28—C19 | 79.8 (4) |
C26—C13—C14—C15 | 179.2 (3) | N5—C27—C28—C19 | −96.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25A···O3 | 0.97 | 2.49 | 3.347 (5) | 147 |
N5—H5···O2i | 0.86 | 1.95 | 2.763 (3) | 156 |
C28—H28A···O2i | 0.97 | 2.57 | 3.351 (4) | 138 |
C17—H17···O2ii | 0.93 | 2.51 | 3.443 (5) | 176 |
C28—H28B···O3iii | 0.97 | 2.40 | 3.325 (4) | 160 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C24H28N3O2P |
Mr | 421.46 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 12.4823 (4), 10.3535 (3), 20.0392 (5) |
β (°) | 118.646 (3) |
V (Å3) | 2272.78 (13) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.26 |
Crystal size (mm) | 0.21 × 0.08 × 0.04 |
Data collection | |
Diffractometer | Agilent Xcalibur Gemini R |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.852, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10604, 4244, 3366 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.073, 0.216, 1.07 |
No. of reflections | 4244 |
No. of parameters | 287 |
No. of restraints | 13 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.30, −0.46 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25A···O3 | 0.97 | 2.49 | 3.347 (5) | 147.2 |
N5—H5···O2i | 0.86 | 1.95 | 2.763 (3) | 156.4 |
C28—H28A···O2i | 0.97 | 2.57 | 3.351 (4) | 137.9 |
C17—H17···O2ii | 0.93 | 2.51 | 3.443 (5) | 175.7 |
C28—H28B···O3iii | 0.97 | 2.40 | 3.325 (4) | 159.6 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
Financial support from the Spanish Ministerio de Educacion y Ciencia (MAT2006–01997, MAT2010–15094 and the `Factoría de Cristalización' Consolider Ingenio 2010) and FEDER funding is acknowledged.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The hydrogen bond patterns and strengths in two subclasses of acetyl phosphoric triamide compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2 were analyzed, respectively, by Toghraee et al. (2011) and by Pourayoubi et al. (2011).
The structure determination of the title molecule, C6H5CH2C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 (Fig. 1), was performed because of our interest in the structural characteristics of new compounds with a C(═O)NHP(═O)(N)2 skeleton, which belong to the phosphoric triamide family.
Single crystals of the title molecule were obtained from CH3CN after slow evaporation at room temperature. The P atom is placed in a distorted tetrahedral P(═O)(N)(N)2 environment with the surrounding bond angles in the range of 106.38 (13)°-112.48 (17)°. The P—N bond in the C(O)NHP(O) moiety (with length of 1.681 (3) Å) is longer than the two other P—N bonds (1.621 (3) Å & 1.633 (3) Å). The P═O bond length is standard for this family of phosphoramidate compounds (Pourayoubi et al., 2011).
The angles at the tertiary N atoms confirm their sp2 character. Moreover, the C—N—P angle in the C(O)NHP(O) fragment is 126.3 (2)°.
The hydrogen atom of the C(═O)NHP(═O) group is involved in an intermolecular –P═O···H—N– hydrogen bond (see Table 1). A pair of this hydrogen bond forms a centrosymmetric dimer, see Figure 2, which is a usual H-bond pattern for compounds of the formula RC(O)NHP(O)[NR'R"]2, where R' and R" ≠ H, and in the case of a syn orientation of P═O versus N—H (Toghraee et al., 2011).