organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­benzyl-N,N′-di­methyl-N′′-(2-phenyl­acet­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo–CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 11 September 2011; accepted 18 November 2011; online 25 November 2011)

The P atom in the title mol­ecule, C24H28N3O2P, is in a distorted tetra­hedral P(=O)(N)(N)2 environment. The phosphoryl group and the NH unit adopt a syn orientation with respect to each other and the N atoms have sp2 character. The P—N bonds in the P(O)[N(CH3)(CH2C6H5)]2 unit are shorter than the P—N bond in the C(=O)NHP(=O) fragment. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, pairs of P=O⋯H—N hydrogen bonds form centrosymmetric dimers. C—H⋯O contacts are also observed. Four C atoms of two benzene rings are disordered over two alternative sites with an occupancy ratio of 0.523 (12):0.427 (12).

Related literature

For hydrogen-bond patterns in compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]). For hydrogen-bond strengths and for bond lengths and angles in a related structure, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N3O2P

  • Mr = 421.46

  • Monoclinic, P 21 /c

  • a = 12.4823 (4) Å

  • b = 10.3535 (3) Å

  • c = 20.0392 (5) Å

  • β = 118.646 (3)°

  • V = 2272.78 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.26 mm−1

  • T = 120 K

  • 0.21 × 0.08 × 0.04 mm

Data collection
  • Agilent Xcalibur Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.852, Tmax = 1.000

  • 10604 measured reflections

  • 4244 independent reflections

  • 3366 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.216

  • S = 1.07

  • 4244 reflections

  • 287 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.30 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25A⋯O3 0.97 2.49 3.347 (5) 147
N5—H5⋯O2i 0.86 1.95 2.763 (3) 156
C28—H28A⋯O2i 0.97 2.57 3.351 (4) 138
C17—H17⋯O2ii 0.93 2.51 3.443 (5) 176
C28—H28B⋯O3iii 0.97 2.40 3.325 (4) 160
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The hydrogen bond patterns and strengths in two subclasses of acetyl phosphoric triamide compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2 were analyzed, respectively, by Toghraee et al. (2011) and by Pourayoubi et al. (2011).

The structure determination of the title molecule, C6H5CH2C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 (Fig. 1), was performed because of our interest in the structural characteristics of new compounds with a C(O)NHP(O)(N)2 skeleton, which belong to the phosphoric triamide family.

Single crystals of the title molecule were obtained from CH3CN after slow evaporation at room temperature. The P atom is placed in a distorted tetrahedral P(O)(N)(N)2 environment with the surrounding bond angles in the range of 106.38 (13)°-112.48 (17)°. The P—N bond in the C(O)NHP(O) moiety (with length of 1.681 (3) Å) is longer than the two other P—N bonds (1.621 (3) Å & 1.633 (3) Å). The PO bond length is standard for this family of phosphoramidate compounds (Pourayoubi et al., 2011).

The angles at the tertiary N atoms confirm their sp2 character. Moreover, the C—N—P angle in the C(O)NHP(O) fragment is 126.3 (2)°.

The hydrogen atom of the C(O)NHP(O) group is involved in an intermolecular –PO···H—N– hydrogen bond (see Table 1). A pair of this hydrogen bond forms a centrosymmetric dimer, see Figure 2, which is a usual H-bond pattern for compounds of the formula RC(O)NHP(O)[NR'R"]2, where R' and R" ≠ H, and in the case of a syn orientation of PO versus N—H (Toghraee et al., 2011).

Related literature top

For hydrogen-bond patterns in compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2, see: Toghraee et al. (2011). For hydrogen-bond strengths and for bond lengths and angles in a related structure, see: Pourayoubi et al. (2011).

Experimental top

Reaction of phosphorus pentachloride (1.85 mmol) and 2-phenylacetamide (1.85 mmol) in dry CCl4 (15 ml) at 353 K (3 h) followed by treatment with formic acid (1.85 mmol) at room temperature leads to the formation of C6H5CH2C(O)NHP(O)Cl2 as a solid-oily product (stage I). A solution of N-methylbenzylamine (7.4 mmol) in CHCl3 (5 ml) was added dropwise to a solution containing the total product of stage I in CHCl3 (15 ml) at 273 K. After 6 h of stirring, the solvent was evaporated in vacuum. The obtained solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH3CN after slow evaporation at room temperature. The crystals were washed with CCl4 to remove the oily layer from the surface of the crystals.

Refinement top

At the end of the refinement the highest peak in the electron density was 1.300 e Å -3, while the deepest hole was -0.460 e Å -3. In order to refine the disorder shown by the C9, C21, C22 and C23 atoms, EADP restraints were used and the distances C23A–C21A, C21A–C22A, C22A–C23A, C9A–H9A, C23A–H23A and C22A–H23A had to be fixed. Flat group restraints were used to fix the geometry of the atoms labeled with A, i.e., those belonging to the minor disorder component. The occupancy of these atoms refined to 0.427 (12). H atoms labeled H9A, H21A and H23A were located in a difference map and were allowed to ride on the parent atom with Uiso(H) = 1.2 Ueq(C). The rest of the H atoms were geometrically placed and refined in riding mode with isotropic displacements calculated from the Ueq of the parent atom.

Structure description top

The hydrogen bond patterns and strengths in two subclasses of acetyl phosphoric triamide compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2 were analyzed, respectively, by Toghraee et al. (2011) and by Pourayoubi et al. (2011).

The structure determination of the title molecule, C6H5CH2C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 (Fig. 1), was performed because of our interest in the structural characteristics of new compounds with a C(O)NHP(O)(N)2 skeleton, which belong to the phosphoric triamide family.

Single crystals of the title molecule were obtained from CH3CN after slow evaporation at room temperature. The P atom is placed in a distorted tetrahedral P(O)(N)(N)2 environment with the surrounding bond angles in the range of 106.38 (13)°-112.48 (17)°. The P—N bond in the C(O)NHP(O) moiety (with length of 1.681 (3) Å) is longer than the two other P—N bonds (1.621 (3) Å & 1.633 (3) Å). The PO bond length is standard for this family of phosphoramidate compounds (Pourayoubi et al., 2011).

The angles at the tertiary N atoms confirm their sp2 character. Moreover, the C—N—P angle in the C(O)NHP(O) fragment is 126.3 (2)°.

The hydrogen atom of the C(O)NHP(O) group is involved in an intermolecular –PO···H—N– hydrogen bond (see Table 1). A pair of this hydrogen bond forms a centrosymmetric dimer, see Figure 2, which is a usual H-bond pattern for compounds of the formula RC(O)NHP(O)[NR'R"]2, where R' and R" ≠ H, and in the case of a syn orientation of PO versus N—H (Toghraee et al., 2011).

For hydrogen-bond patterns in compounds with formula RC(O)NHP(O)[NR1R2]2 and RC(O)NHP(O)[NHR1]2, see: Toghraee et al. (2011). For hydrogen-bond strengths and for bond lengths and angles in a related structure, see: Pourayoubi et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the centrosymmetric dimer formed by H-bonding.
N,N'-Dibenzyl-N,N'-dimethyl-N''- (2-phenylacetyl)phosphoric triamide top
Crystal data top
C24H28N3O2PF(000) = 896
Mr = 421.46Dx = 1.232 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 4446 reflections
a = 12.4823 (4) Åθ = 3.6–70.4°
b = 10.3535 (3) ŵ = 1.26 mm1
c = 20.0392 (5) ÅT = 120 K
β = 118.646 (3)°Prismatic, colourless
V = 2272.78 (13) Å30.21 × 0.08 × 0.04 mm
Z = 4
Data collection top
Agilent Xcalibur Gemini R
diffractometer
4244 independent reflections
Radiation source: Enhance (Cu) X-ray Source3366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.2673 pixels mm-1θmax = 70.6°, θmin = 4.0°
ω scansh = 1512
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 812
Tmin = 0.852, Tmax = 1.000l = 2124
10604 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.117P)2 + 2.5265P]
where P = (Fo2 + 2Fc2)/3
4244 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 1.30 e Å3
13 restraintsΔρmin = 0.46 e Å3
Crystal data top
C24H28N3O2PV = 2272.78 (13) Å3
Mr = 421.46Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.4823 (4) ŵ = 1.26 mm1
b = 10.3535 (3) ÅT = 120 K
c = 20.0392 (5) Å0.21 × 0.08 × 0.04 mm
β = 118.646 (3)°
Data collection top
Agilent Xcalibur Gemini R
diffractometer
4244 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3366 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 1.000Rint = 0.034
10604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07313 restraints
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.30 e Å3
4244 reflectionsΔρmin = 0.46 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.61467 (7)0.09793 (8)0.61667 (4)0.0349 (3)
O20.6047 (2)0.0406 (2)0.59532 (13)0.0495 (7)
O30.6162 (2)0.3822 (2)0.57253 (13)0.0433 (6)
N40.7567 (2)0.1457 (3)0.65817 (14)0.0348 (6)
N50.5375 (2)0.1807 (3)0.53507 (14)0.0332 (6)
H50.47750.14150.49820.040*
N60.5563 (2)0.1285 (3)0.67185 (15)0.0454 (8)
C70.3578 (4)0.2146 (5)0.6449 (2)0.0633 (12)
C80.3112 (5)0.2069 (7)0.6953 (3)0.0907 (15)
H80.36640.21670.74670.109*
C9A0.1977 (19)0.1873 (19)0.6773 (11)0.0907 (15)0.427 (12)
C9B0.1788 (14)0.1750 (18)0.6644 (8)0.0907 (15)0.573 (12)
H9B0.14790.16220.69790.109*0.573 (12)
C100.1089 (4)0.1652 (7)0.5943 (3)0.092 (2)
H100.02520.15610.57570.110*
C110.1562 (4)0.1681 (7)0.5449 (3)0.0878 (19)
H110.10450.15390.49340.105*
C120.2785 (4)0.1914 (7)0.5696 (3)0.0835 (18)
H120.30750.19140.53470.100*
C130.9382 (3)0.2014 (3)0.77852 (16)0.0331 (7)
C140.9627 (3)0.0783 (3)0.80961 (18)0.0385 (7)
H140.89960.01880.79540.046*
C151.0808 (3)0.0436 (4)0.86178 (19)0.0463 (9)
H151.09640.03900.88250.056*
C161.1755 (3)0.1300 (4)0.88326 (19)0.0486 (9)
H161.25480.10560.91780.058*
C171.1521 (3)0.2529 (4)0.85324 (19)0.0497 (9)
H171.21540.31210.86770.060*
C181.0334 (3)0.2883 (4)0.80124 (18)0.0402 (8)
H181.01790.37160.78150.048*
C190.6284 (3)0.3206 (4)0.42633 (17)0.0441 (9)
C200.6540 (4)0.2006 (5)0.4061 (2)0.0624 (12)
H200.59700.13670.39880.075*
C21A0.7823 (16)0.2127 (17)0.4086 (9)0.054 (3)0.427 (12)
C21B0.7447 (9)0.1624 (14)0.3957 (6)0.054 (3)0.573 (12)
H21B0.75120.07940.38020.065*0.573 (12)
C22A0.8510 (17)0.3232 (19)0.4241 (9)0.068 (4)0.427 (12)
H22A0.92530.31900.42400.081*0.427 (12)
C22B0.8303 (12)0.2587 (18)0.4101 (6)0.068 (4)0.573 (12)
H22B0.89910.24150.40510.081*0.573 (12)
C23A0.815 (2)0.4403 (17)0.4398 (13)0.068 (4)0.427 (12)
C23B0.8133 (15)0.3803 (14)0.4321 (9)0.068 (4)0.573 (12)
H23B0.87430.44100.44260.082*0.573 (12)
C240.7078 (4)0.4224 (6)0.4403 (2)0.0715 (14)
H240.69620.50560.45310.086*
C250.4943 (4)0.2442 (5)0.6716 (2)0.0622 (11)
H25A0.50090.30690.63780.075*
H25B0.53170.28080.72240.075*
C260.8104 (3)0.2404 (3)0.72085 (17)0.0358 (7)
H26A0.76000.24640.74540.043*
H26B0.81240.32490.70050.043*
C270.5609 (3)0.3046 (3)0.52156 (17)0.0356 (7)
C280.5195 (3)0.3363 (3)0.43859 (18)0.0391 (7)
H28A0.45470.27820.40560.047*
H28B0.48920.42420.42730.047*
C290.5840 (4)0.0350 (5)0.7340 (2)0.0641 (12)
H29A0.62640.03790.72830.096*
H29B0.50930.00660.73200.096*
H29C0.63440.07580.78210.096*
C300.8230 (3)0.1331 (4)0.61473 (19)0.0427 (8)
H30A0.78320.07010.57530.064*
H30B0.90530.10620.64800.064*
H30C0.82380.21490.59240.064*
H9A0.168 (8)0.191 (6)0.713 (4)0.051*0.427 (12)
H21A0.822 (10)0.137 (10)0.401 (4)0.051*0.427 (12)
H23A0.861 (5)0.514 (3)0.446 (4)0.051*0.427 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0263 (4)0.0470 (5)0.0224 (4)0.0029 (3)0.0044 (3)0.0020 (3)
O20.0433 (13)0.0463 (14)0.0315 (12)0.0076 (11)0.0041 (10)0.0055 (10)
O30.0459 (13)0.0424 (13)0.0314 (12)0.0012 (10)0.0103 (10)0.0030 (10)
N40.0264 (12)0.0477 (16)0.0241 (12)0.0019 (11)0.0071 (10)0.0054 (11)
N50.0267 (12)0.0445 (15)0.0233 (12)0.0008 (11)0.0078 (10)0.0001 (11)
N60.0292 (13)0.077 (2)0.0259 (13)0.0014 (13)0.0098 (11)0.0075 (13)
C70.054 (2)0.088 (3)0.052 (2)0.017 (2)0.0293 (19)0.012 (2)
C80.057 (3)0.169 (5)0.054 (3)0.016 (3)0.033 (2)0.009 (3)
C9A0.057 (3)0.169 (5)0.054 (3)0.016 (3)0.033 (2)0.009 (3)
C9B0.057 (3)0.169 (5)0.054 (3)0.016 (3)0.033 (2)0.009 (3)
C100.038 (2)0.178 (6)0.062 (3)0.020 (3)0.025 (2)0.006 (3)
C110.038 (2)0.167 (6)0.056 (3)0.011 (3)0.021 (2)0.001 (3)
C120.043 (2)0.155 (6)0.054 (3)0.007 (3)0.024 (2)0.009 (3)
C130.0286 (15)0.0447 (18)0.0227 (14)0.0003 (13)0.0097 (12)0.0038 (12)
C140.0361 (16)0.0420 (18)0.0328 (16)0.0027 (14)0.0128 (13)0.0052 (14)
C150.0473 (19)0.047 (2)0.0336 (17)0.0094 (16)0.0107 (15)0.0002 (15)
C160.0313 (16)0.072 (3)0.0304 (17)0.0061 (16)0.0049 (13)0.0038 (17)
C170.0321 (17)0.072 (3)0.0333 (17)0.0121 (17)0.0064 (14)0.0045 (17)
C180.0352 (16)0.0476 (19)0.0300 (15)0.0057 (14)0.0094 (13)0.0010 (14)
C190.0342 (16)0.071 (2)0.0194 (14)0.0019 (16)0.0068 (12)0.0086 (15)
C200.062 (2)0.092 (3)0.0348 (18)0.027 (2)0.0248 (18)0.016 (2)
C21A0.038 (6)0.087 (8)0.039 (4)0.008 (4)0.020 (4)0.011 (5)
C21B0.038 (6)0.087 (8)0.039 (4)0.008 (4)0.020 (4)0.011 (5)
C22A0.031 (5)0.136 (15)0.031 (5)0.008 (7)0.009 (4)0.021 (6)
C22B0.031 (5)0.136 (15)0.031 (5)0.008 (7)0.009 (4)0.021 (6)
C23A0.053 (3)0.106 (12)0.037 (4)0.038 (9)0.015 (3)0.002 (8)
C23B0.053 (3)0.106 (12)0.037 (4)0.038 (9)0.015 (3)0.002 (8)
C240.064 (3)0.112 (4)0.0321 (19)0.030 (3)0.0173 (18)0.005 (2)
C250.064 (3)0.085 (3)0.043 (2)0.018 (2)0.0297 (19)0.009 (2)
C260.0300 (15)0.0428 (18)0.0286 (15)0.0003 (13)0.0093 (12)0.0031 (13)
C270.0288 (14)0.0449 (18)0.0291 (15)0.0055 (13)0.0106 (12)0.0005 (14)
C280.0340 (16)0.0467 (19)0.0286 (15)0.0033 (14)0.0086 (12)0.0049 (14)
C290.066 (3)0.081 (3)0.042 (2)0.004 (2)0.0234 (19)0.007 (2)
C300.0329 (16)0.062 (2)0.0305 (16)0.0016 (15)0.0134 (13)0.0055 (15)
Geometric parameters (Å, º) top
P1—O21.484 (3)C17—C181.391 (5)
P1—N61.621 (3)C17—H170.9300
P1—N41.633 (3)C18—H180.9300
P1—N51.681 (3)C19—C241.380 (6)
O3—C271.221 (4)C19—C201.391 (6)
N4—C301.466 (4)C19—C281.502 (5)
N4—C261.477 (4)C20—C21B1.307 (12)
N5—C271.371 (4)C20—H200.9300
N5—H50.8600C21A—C22A1.373 (14)
N6—C251.425 (5)C21A—H21A0.97 (11)
N6—C291.482 (5)C21B—C22B1.387 (14)
C7—C121.371 (6)C21B—H21B0.9300
C7—C81.389 (6)C21B—H21A0.95 (11)
C7—C251.552 (6)C22A—C23A1.380 (17)
C8—C9A1.30 (2)C22A—H22A0.9300
C8—C9B1.498 (18)C22B—C23B1.38 (2)
C8—H80.9300C22B—H22B0.9300
C9A—H9A0.94 (2)C22B—H21A1.27 (11)
C9B—C101.254 (14)C23A—H23A0.92 (2)
C9B—H9B0.9300C23B—C241.470 (19)
C9B—H9A1.05 (5)C23B—H23B0.9300
C10—C111.375 (7)C24—H240.9300
C10—H100.9300C25—H25A0.9700
C11—C121.382 (6)C25—H25B0.9700
C11—H110.9300C26—H26A0.9700
C12—H120.9300C26—H26B0.9700
C13—C181.382 (5)C27—C281.522 (4)
C13—C141.387 (5)C28—H28A0.9700
C13—C261.508 (4)C28—H28B0.9700
C14—C151.385 (5)C29—H29A0.9600
C14—H140.9300C29—H29B0.9600
C15—C161.376 (6)C29—H29C0.9600
C15—H150.9300C30—H30A0.9600
C16—C171.378 (6)C30—H30B0.9600
C16—H160.9300C30—H30C0.9600
O2—P1—N6112.48 (17)C21B—C20—H20114.6
O2—P1—N4111.09 (15)C19—C20—H20114.6
N6—P1—N4109.09 (14)C22A—C21A—H21A114 (7)
O2—P1—N5106.38 (13)C20—C21B—C22B112.9 (12)
N6—P1—N5109.18 (14)C20—C21B—H21B123.6
N4—P1—N5108.50 (14)C22B—C21B—H21B123.6
C30—N4—C26114.1 (3)C20—C21B—H21A166 (5)
C30—N4—P1117.0 (2)C22B—C21B—H21A63 (7)
C26—N4—P1125.0 (2)H21B—C21B—H21A62.5
C27—N5—P1126.3 (2)C21A—C22A—C23A123.2 (15)
C27—N5—H5116.9C21A—C22A—H22A118.4
P1—N5—H5116.9C23A—C22A—H22A118.4
C25—N6—C29117.4 (3)C23B—C22B—C21B120.1 (12)
C25—N6—P1125.7 (3)C23B—C22B—H22B120.0
C29—N6—P1116.5 (3)C21B—C22B—H22B120.0
C12—C7—C8117.2 (4)C23B—C22B—H21A159 (5)
C12—C7—C25120.6 (4)C21B—C22B—H21A42 (5)
C8—C7—C25122.2 (4)H22B—C22B—H21A79.3
C9A—C8—C7126.0 (10)C22A—C23A—H23A121 (3)
C9A—C8—C9B8.3 (14)C22B—C23B—C24126.0 (9)
C7—C8—C9B118.4 (7)C22B—C23B—H23B117.0
C9A—C8—H8117.0C24—C23B—H23B117.0
C7—C8—H8117.0C22B—C23B—H23A144 (3)
C9B—C8—H8124.5C24—C23B—H23A90 (2)
C8—C9A—H9A124 (6)H23B—C23B—H23A27.8
C10—C9B—C8121.2 (14)C19—C24—C23B110.2 (7)
C10—C9B—H9B119.4C19—C24—H24124.9
C8—C9B—H9B119.4C23B—C24—H24124.9
C10—C9B—H9A136 (6)N6—C25—C7109.8 (4)
C8—C9B—H9A101 (5)N6—C25—H25A109.7
H9B—C9B—H9A22.8C7—C25—H25A109.7
C9B—C10—C11119.8 (10)N6—C25—H25B109.7
C9B—C10—H10120.1C7—C25—H25B109.7
C11—C10—H10120.1H25A—C25—H25B108.2
C10—C11—C12121.8 (5)N4—C26—C13110.8 (3)
C10—C11—H11119.1N4—C26—H26A109.5
C12—C11—H11119.1C13—C26—H26A109.5
C7—C12—C11121.1 (4)N4—C26—H26B109.5
C7—C12—H12119.4C13—C26—H26B109.5
C11—C12—H12119.4H26A—C26—H26B108.1
C18—C13—C14118.7 (3)O3—C27—N5122.7 (3)
C18—C13—C26120.3 (3)O3—C27—C28122.1 (3)
C14—C13—C26121.0 (3)N5—C27—C28115.1 (3)
C15—C14—C13120.2 (3)C19—C28—C27107.2 (2)
C15—C14—H14119.9C19—C28—H28A110.3
C13—C14—H14119.9C27—C28—H28A110.3
C16—C15—C14120.8 (4)C19—C28—H28B110.3
C16—C15—H15119.6C27—C28—H28B110.3
C14—C15—H15119.6H28A—C28—H28B108.5
C15—C16—C17119.5 (3)N6—C29—H29A109.5
C15—C16—H16120.2N6—C29—H29B109.5
C17—C16—H16120.2H29A—C29—H29B109.5
C16—C17—C18119.8 (3)N6—C29—H29C109.5
C16—C17—H17120.1H29A—C29—H29C109.5
C18—C17—H17120.1H29B—C29—H29C109.5
C13—C18—C17120.9 (3)N4—C30—H30A109.5
C13—C18—H18119.5N4—C30—H30B109.5
C17—C18—H18119.5H30A—C30—H30B109.5
C24—C19—C20119.9 (4)N4—C30—H30C109.5
C24—C19—C28120.2 (4)H30A—C30—H30C109.5
C20—C19—C28119.8 (4)H30B—C30—H30C109.5
C21B—C20—C19130.8 (8)
O2—P1—N4—C3059.1 (3)C13—C14—C15—C160.4 (5)
N6—P1—N4—C30176.4 (3)C14—C15—C16—C170.9 (6)
N5—P1—N4—C3057.5 (3)C15—C16—C17—C180.5 (6)
O2—P1—N4—C26144.4 (3)C14—C13—C18—C171.1 (5)
N6—P1—N4—C2619.8 (3)C26—C13—C18—C17178.7 (3)
N5—P1—N4—C2699.0 (3)C16—C17—C18—C130.6 (5)
O2—P1—N5—C27151.0 (3)C24—C19—C20—C21B1.3 (8)
N6—P1—N5—C2787.4 (3)C28—C19—C20—C21B176.8 (7)
N4—P1—N5—C2731.4 (3)C19—C20—C21B—C22B2.5 (13)
O2—P1—N6—C25145.4 (3)C20—C21B—C22B—C23B0.8 (15)
N4—P1—N6—C2590.9 (3)C21B—C22B—C23B—C242 (2)
N5—P1—N6—C2527.6 (4)C20—C19—C24—C23B1.3 (8)
O2—P1—N6—C2942.9 (3)C28—C19—C24—C23B174.1 (7)
N4—P1—N6—C2980.8 (3)C22B—C23B—C24—C192.8 (16)
N5—P1—N6—C29160.8 (3)C29—N6—C25—C774.8 (4)
C12—C7—C8—C9A4.4 (11)P1—N6—C25—C7113.6 (3)
C25—C7—C8—C9A177.3 (11)C12—C7—C25—N674.8 (6)
C12—C7—C8—C9B0.4 (13)C8—C7—C25—N6103.4 (6)
C25—C7—C8—C9B178.7 (9)C30—N4—C26—C1361.7 (4)
C9A—C8—C9B—C10151 (12)P1—N4—C26—C13141.1 (2)
C7—C8—C9B—C106 (2)C18—C13—C26—N4128.4 (3)
C8—C9B—C10—C118 (2)C14—C13—C26—N451.4 (4)
C9B—C10—C11—C125.1 (15)P1—N5—C27—O322.2 (4)
C8—C7—C12—C113.3 (9)P1—N5—C27—C28154.3 (2)
C25—C7—C12—C11178.4 (6)C24—C19—C28—C2787.2 (4)
C10—C11—C12—C70.9 (11)C20—C19—C28—C2788.2 (4)
C18—C13—C14—C150.6 (5)O3—C27—C28—C1979.8 (4)
C26—C13—C14—C15179.2 (3)N5—C27—C28—C1996.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···O30.972.493.347 (5)147
N5—H5···O2i0.861.952.763 (3)156
C28—H28A···O2i0.972.573.351 (4)138
C17—H17···O2ii0.932.513.443 (5)176
C28—H28B···O3iii0.972.403.325 (4)160
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H28N3O2P
Mr421.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.4823 (4), 10.3535 (3), 20.0392 (5)
β (°) 118.646 (3)
V3)2272.78 (13)
Z4
Radiation typeCu Kα
µ (mm1)1.26
Crystal size (mm)0.21 × 0.08 × 0.04
Data collection
DiffractometerAgilent Xcalibur Gemini R
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.852, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10604, 4244, 3366
Rint0.034
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.216, 1.07
No. of reflections4244
No. of parameters287
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.30, 0.46

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···O30.972.493.347 (5)147.2
N5—H5···O2i0.861.952.763 (3)156.4
C28—H28A···O2i0.972.573.351 (4)137.9
C17—H17···O2ii0.932.513.443 (5)175.7
C28—H28B···O3iii0.972.403.325 (4)159.6
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Spanish Ministerio de Educacion y Ciencia (MAT2006–01997, MAT2010–15094 and the `Factoría de Cristalización' Consolider Ingenio 2010) and FEDER funding is acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds