organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,8-Bis(3-hy­dr­oxy-3-methyl­but-1-yn-1-yl)-2,11-di­thia­[3.3]para­cyclo­phane

aKey Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: wudi19871208@163.com

(Received 24 October 2011; accepted 15 November 2011; online 19 November 2011)

In the crystal structure of the title compound [systematic name: 2,2′-dimethyl-4,4′-(3,10-dithia­tricyclo­[10.2.2.25,8]octa­deca-1(14),5,7,12,15,17-hexaen-6,17-di­yl)dibut-3-yn-2-ol], C26H28O2S2, mol­ecules are linked by O—H⋯O hydrogen bonds, forming a tubular chain which runs parallel to the b axis. The tubular structure is reinforced by ππ stacking inter­actions [centroid–centroid distance = 3.6332(16Å].

Related literature

For the preparation of the title compound, see: Jin & Lu (2010[Jin, G. & Lu, Y. (2010). Acta Cryst. E66, o2144.]). For mol­ecular building blocks associated with para-cyclo­phanes see: Xu et al. (2008[Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723-730.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28O2S2

  • Mr = 436.60

  • Monoclinic, C 2/c

  • a = 17.1059 (5) Å

  • b = 11.8596 (4) Å

  • c = 24.5073 (10) Å

  • β = 108.113 (2)°

  • V = 4725.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.976

  • 14956 measured reflections

  • 4646 independent reflections

  • 2596 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.149

  • S = 0.92

  • 4646 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.99 2.777 (4) 161
O2—H2⋯O1ii 0.82 2.03 2.808 (3) 158
Symmetry codes: (i) [-x+2, y-1, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular building block associated with para-cyclophanes are widely used in chiral catalysis, the design of new optoelectronic (NLO) materials, electron transfer processes, and molecular electronics, polymer chemistry and materials science, and even organic solar cells.(Xu et al., 2008)

Up to now, the dithia[3.3]paracyclophane building blocks, which are synthetically more accessible, have received less attention. Here we report the crystal structure of the title compound (Fig. 1).

The molecules are linked into pairs by the O1-H1···.O2 hydrogen bond, Table 1. These pairs are then linked together by the O2-H2···O1, Table 1, and a symmetry related hydrogen bond to form a tube which runs parallel to the b-axis.

This tubular structure is re-inforced by ππ stacking between the phenyl ring containing C1 and its symmetry related ring in the molecule at (5/2+x,1/2-y,1/2+z), centroid to centroid distance, 3.6332(16Å, perpendicular 3.4658 (12)Å and a slippage of 1.0901Å.

Within the molecule the two phenyl rings have a centroid to centoid distance of 3.2621 (18)Å, an average perpendicular spacing of 3.2402Å with a slippage of 0.3773Å.

Related literature top

For the preparation of the title compound, see: Jin & Lu (2010). For molecular building blocks associated with para-cyclophanes see: Xu et al. (2008).

Experimental top

To a stirred solution of appropriate 5,8-dibromo-2,11-dithia[3,3]paracyclophane and 2-methylbut-3-yn-2-ol (in the molecular ratio 1: 4) in THF, iPr2NH, Pd(PPh3)2Cl2(10 mol%) and CuI(10 mol%) was added under N2, the mixture was refluxed for 48 h. The cooled reaction mixture was filtered, diluted with CH2Cl2 and washed with water. The organic phase was dried with Na2S04, filtered, and the solvent was removed from the filtrate in vacuo. The crude products were purified by column chromatography on silica gel to yield diols (Jin and Lu 2010).

Refinement top

All the hydrogen atoms were located at their ideal positions with C—H=0.93Å (aromatic), CH=0.96 Å(methyl), C—H=0.97Å (methylene) and O—H=0.82 Å. The thermal factors of these hydrogen atoms were set 1.2 (for aromatic and methylene) times or 1.5 (for methyl and hydroxyl) times of their carrier atoms.

Structure description top

The molecular building block associated with para-cyclophanes are widely used in chiral catalysis, the design of new optoelectronic (NLO) materials, electron transfer processes, and molecular electronics, polymer chemistry and materials science, and even organic solar cells.(Xu et al., 2008)

Up to now, the dithia[3.3]paracyclophane building blocks, which are synthetically more accessible, have received less attention. Here we report the crystal structure of the title compound (Fig. 1).

The molecules are linked into pairs by the O1-H1···.O2 hydrogen bond, Table 1. These pairs are then linked together by the O2-H2···O1, Table 1, and a symmetry related hydrogen bond to form a tube which runs parallel to the b-axis.

This tubular structure is re-inforced by ππ stacking between the phenyl ring containing C1 and its symmetry related ring in the molecule at (5/2+x,1/2-y,1/2+z), centroid to centroid distance, 3.6332(16Å, perpendicular 3.4658 (12)Å and a slippage of 1.0901Å.

Within the molecule the two phenyl rings have a centroid to centoid distance of 3.2621 (18)Å, an average perpendicular spacing of 3.2402Å with a slippage of 0.3773Å.

For the preparation of the title compound, see: Jin & Lu (2010). For molecular building blocks associated with para-cyclophanes see: Xu et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the chains generated by the O—H···O hydrogen bonds running parallel to the b-axis.
2,2'-dimethyl-4,4'-(3,10-dithiatricyclo[10.2.2.25,8]octadeca- 1(14),5,7,12,15,17-hexaen-6,17-diyl)dibut-3-yn-2-ol top
Crystal data top
C26H28O2S2F(000) = 1856
Mr = 436.60Dx = 1.227 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1923 reflections
a = 17.1059 (5) Åθ = 2.4–21.8°
b = 11.8596 (4) ŵ = 0.25 mm1
c = 24.5073 (10) ÅT = 298 K
β = 108.113 (2)°Block, colourless
V = 4725.4 (3) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4646 independent reflections
Radiation source: fine-focus sealed tube2596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2120
Tmin = 0.943, Tmax = 0.976k = 1214
14956 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0638P)2]
where P = (Fo2 + 2Fc2)/3
4646 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H28O2S2V = 4725.4 (3) Å3
Mr = 436.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.1059 (5) ŵ = 0.25 mm1
b = 11.8596 (4) ÅT = 298 K
c = 24.5073 (10) Å0.20 × 0.10 × 0.10 mm
β = 108.113 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4646 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2596 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.976Rint = 0.080
14956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.92Δρmax = 0.27 e Å3
4646 reflectionsΔρmin = 0.22 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.00428 (17)0.1057 (2)0.17980 (12)0.0432 (7)
C20.91906 (18)0.1194 (2)0.15785 (12)0.0439 (7)
C30.88756 (18)0.2274 (2)0.15218 (12)0.0467 (7)
H30.83080.23760.13960.056*
C40.93876 (18)0.3215 (2)0.16488 (12)0.0427 (7)
C51.02399 (17)0.3086 (2)0.18464 (12)0.0432 (7)
C61.05457 (18)0.1999 (2)0.19349 (12)0.0479 (8)
H61.11100.18960.20920.057*
C70.86268 (19)0.0188 (2)0.13702 (14)0.0607 (9)
H7A0.83230.00590.16390.073*
H7B0.89660.04720.13800.073*
C80.8537 (3)0.0327 (3)0.01972 (17)0.0937 (13)
H8A0.88820.03410.02740.112*
H8B0.81820.02780.01970.112*
C90.9086 (2)0.1353 (3)0.02529 (14)0.0646 (9)
C100.8766 (2)0.2425 (3)0.01542 (15)0.0699 (10)
H100.82010.25200.00050.084*
C110.9268 (2)0.3362 (3)0.02867 (14)0.0615 (9)
H110.90340.40770.02210.074*
C121.0111 (2)0.3257 (3)0.05155 (13)0.0555 (8)
C131.0431 (2)0.2181 (3)0.05674 (14)0.0658 (9)
H131.09990.20830.06910.079*
C140.9928 (2)0.1248 (3)0.04403 (14)0.0644 (9)
H141.01620.05330.04820.077*
C151.0646 (2)0.4279 (3)0.07326 (15)0.0728 (10)
H15A1.02910.49110.07420.087*
H15B1.09300.44600.04570.087*
C161.08110 (18)0.4088 (2)0.19252 (14)0.0566 (9)
H16A1.11880.40740.23140.068*
H16B1.04860.47720.18850.068*
C171.04174 (18)0.0044 (2)0.18399 (12)0.0488 (8)
C181.07335 (18)0.0932 (3)0.18470 (13)0.0528 (8)
C191.1114 (2)0.2046 (3)0.18242 (14)0.0586 (9)
C201.0999 (3)0.2365 (3)0.12062 (17)0.1061 (15)
H20A1.12610.30760.11940.159*
H20B1.12410.17960.10300.159*
H20C1.04230.24240.10020.159*
C211.2026 (2)0.2005 (3)0.21646 (18)0.0865 (12)
H21A1.20900.17890.25540.130*
H21B1.22970.14650.19940.130*
H21C1.22660.27360.21610.130*
C220.90358 (18)0.4331 (3)0.15376 (13)0.0492 (8)
C230.87791 (18)0.5261 (3)0.14457 (14)0.0550 (8)
C240.8459 (2)0.6417 (3)0.13498 (17)0.0758 (12)
C250.8404 (3)0.6801 (3)0.0756 (2)0.140 (2)
H25A0.81500.75310.06870.210*
H25B0.80800.62730.04800.210*
H25C0.89470.68430.07200.210*
C260.7637 (2)0.6443 (4)0.1460 (2)0.135 (2)
H26A0.77120.62610.18550.203*
H26B0.72740.59020.12170.203*
H26C0.74020.71830.13780.203*
O11.07259 (14)0.28867 (17)0.20705 (10)0.0672 (6)
H11.09210.28700.24210.101*
O20.90016 (13)0.71742 (18)0.17522 (11)0.0744 (7)
H20.94780.70480.17650.112*
S10.79017 (5)0.03053 (7)0.06626 (4)0.0678 (3)
S21.14046 (5)0.41556 (7)0.14312 (4)0.0590 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0508 (18)0.0408 (18)0.0387 (18)0.0058 (14)0.0149 (15)0.0022 (13)
C20.0529 (19)0.0422 (17)0.0369 (17)0.0019 (14)0.0146 (15)0.0054 (13)
C30.0460 (17)0.0450 (19)0.051 (2)0.0045 (14)0.0173 (16)0.0028 (15)
C40.0547 (19)0.0374 (17)0.0399 (18)0.0096 (14)0.0202 (15)0.0001 (13)
C50.0491 (18)0.0392 (17)0.0419 (18)0.0000 (14)0.0148 (15)0.0077 (13)
C60.0467 (17)0.0476 (19)0.048 (2)0.0069 (15)0.0132 (15)0.0037 (14)
C70.057 (2)0.0465 (19)0.075 (2)0.0017 (16)0.0148 (18)0.0075 (17)
C80.109 (3)0.088 (3)0.088 (3)0.035 (2)0.036 (3)0.036 (2)
C90.074 (3)0.075 (3)0.048 (2)0.011 (2)0.0235 (19)0.0121 (18)
C100.059 (2)0.089 (3)0.065 (3)0.003 (2)0.024 (2)0.001 (2)
C110.067 (2)0.068 (2)0.052 (2)0.0091 (19)0.0225 (19)0.0164 (18)
C120.063 (2)0.058 (2)0.045 (2)0.0012 (17)0.0159 (17)0.0096 (16)
C130.062 (2)0.071 (3)0.058 (2)0.004 (2)0.0083 (19)0.0029 (19)
C140.084 (3)0.058 (2)0.046 (2)0.003 (2)0.013 (2)0.0098 (17)
C150.077 (2)0.063 (2)0.075 (3)0.0068 (19)0.020 (2)0.0167 (19)
C160.0585 (19)0.0420 (18)0.068 (2)0.0066 (15)0.0177 (18)0.0097 (16)
C170.0575 (19)0.0392 (18)0.0475 (19)0.0003 (15)0.0131 (16)0.0013 (15)
C180.0551 (19)0.047 (2)0.052 (2)0.0068 (16)0.0108 (16)0.0014 (16)
C190.070 (2)0.0448 (19)0.059 (2)0.0146 (16)0.0179 (19)0.0058 (16)
C200.170 (4)0.077 (3)0.074 (3)0.028 (3)0.042 (3)0.012 (2)
C210.061 (2)0.083 (3)0.115 (4)0.020 (2)0.028 (2)0.027 (2)
C220.0521 (19)0.0460 (19)0.051 (2)0.0065 (15)0.0186 (16)0.0078 (15)
C230.0471 (18)0.045 (2)0.068 (2)0.0087 (15)0.0100 (17)0.0118 (16)
C240.069 (2)0.044 (2)0.083 (3)0.0186 (17)0.022 (2)0.0229 (19)
C250.212 (6)0.058 (3)0.087 (4)0.002 (3)0.046 (4)0.002 (2)
C260.056 (2)0.111 (4)0.201 (6)0.028 (2)0.014 (3)0.088 (4)
O10.0762 (16)0.0430 (13)0.0763 (17)0.0061 (11)0.0145 (14)0.0070 (12)
O20.0620 (14)0.0477 (13)0.0908 (19)0.0060 (11)0.0093 (15)0.0242 (12)
S10.0540 (5)0.0654 (6)0.0772 (7)0.0130 (4)0.0104 (5)0.0030 (5)
S20.0494 (5)0.0500 (5)0.0773 (7)0.0036 (4)0.0194 (5)0.0010 (4)
Geometric parameters (Å, º) top
C1—C61.386 (4)C15—S21.804 (3)
C1—C21.397 (4)C15—H15A0.9700
C1—C171.445 (4)C15—H15B0.9700
C2—C31.381 (4)C16—S21.808 (3)
C2—C71.519 (4)C16—H16A0.9700
C3—C41.393 (4)C16—H16B0.9700
C3—H30.9300C17—C181.181 (4)
C4—C51.395 (4)C18—C191.481 (4)
C4—C221.444 (4)C19—O11.431 (4)
C5—C61.383 (4)C19—C201.514 (5)
C5—C161.512 (4)C19—C211.525 (4)
C6—H60.9300C20—H20A0.9600
C7—S11.797 (3)C20—H20B0.9600
C7—H7A0.9700C20—H20C0.9600
C7—H7B0.9700C21—H21A0.9600
C8—C91.517 (5)C21—H21B0.9600
C8—S11.804 (4)C21—H21C0.9600
C8—H8A0.9700C22—C231.183 (4)
C8—H8B0.9700C23—C241.467 (4)
C9—C141.375 (4)C24—O21.440 (4)
C9—C101.376 (5)C24—C251.500 (6)
C10—C111.379 (4)C24—C261.512 (5)
C10—H100.9300C25—H25A0.9600
C11—C121.381 (4)C25—H25B0.9600
C11—H110.9300C25—H25C0.9600
C12—C131.380 (4)C26—H26A0.9600
C12—C151.512 (4)C26—H26B0.9600
C13—C141.377 (4)C26—H26C0.9600
C13—H130.9300O1—H10.8200
C14—H140.9300O2—H20.8200
C6—C1—C2119.7 (3)S2—C15—H15B108.2
C6—C1—C17118.9 (3)H15A—C15—H15B107.3
C2—C1—C17121.2 (3)C5—C16—S2115.1 (2)
C3—C2—C1118.3 (3)C5—C16—H16A108.5
C3—C2—C7120.5 (3)S2—C16—H16A108.5
C1—C2—C7121.1 (3)C5—C16—H16B108.5
C2—C3—C4121.5 (3)S2—C16—H16B108.5
C2—C3—H3119.2H16A—C16—H16B107.5
C4—C3—H3119.2C18—C17—C1176.4 (3)
C3—C4—C5120.4 (2)C17—C18—C19177.1 (3)
C3—C4—C22119.7 (3)O1—C19—C18109.8 (3)
C5—C4—C22119.7 (3)O1—C19—C20108.4 (3)
C6—C5—C4117.4 (3)C18—C19—C20109.8 (3)
C6—C5—C16121.0 (3)O1—C19—C21108.7 (3)
C4—C5—C16121.5 (2)C18—C19—C21109.8 (3)
C5—C6—C1122.5 (3)C20—C19—C21110.3 (3)
C5—C6—H6118.8C19—C20—H20A109.5
C1—C6—H6118.8C19—C20—H20B109.5
C2—C7—S1116.0 (2)H20A—C20—H20B109.5
C2—C7—H7A108.3C19—C20—H20C109.5
S1—C7—H7A108.3H20A—C20—H20C109.5
C2—C7—H7B108.3H20B—C20—H20C109.5
S1—C7—H7B108.3C19—C21—H21A109.5
H7A—C7—H7B107.4C19—C21—H21B109.5
C9—C8—S1115.6 (2)H21A—C21—H21B109.5
C9—C8—H8A108.4C19—C21—H21C109.5
S1—C8—H8A108.4H21A—C21—H21C109.5
C9—C8—H8B108.4H21B—C21—H21C109.5
S1—C8—H8B108.4C23—C22—C4177.2 (3)
H8A—C8—H8B107.4C22—C23—C24178.2 (4)
C14—C9—C10117.4 (3)O2—C24—C23110.1 (3)
C14—C9—C8120.8 (4)O2—C24—C25107.9 (3)
C10—C9—C8121.7 (4)C23—C24—C25110.3 (3)
C9—C10—C11121.3 (3)O2—C24—C26107.6 (3)
C9—C10—H10119.4C23—C24—C26108.2 (3)
C11—C10—H10119.4C25—C24—C26112.7 (4)
C10—C11—C12121.2 (3)C24—C25—H25A109.5
C10—C11—H11119.4C24—C25—H25B109.5
C12—C11—H11119.4H25A—C25—H25B109.5
C13—C12—C11117.1 (3)C24—C25—H25C109.5
C13—C12—C15121.9 (3)H25A—C25—H25C109.5
C11—C12—C15120.8 (3)H25B—C25—H25C109.5
C14—C13—C12121.3 (3)C24—C26—H26A109.5
C14—C13—H13119.3C24—C26—H26B109.5
C12—C13—H13119.3H26A—C26—H26B109.5
C9—C14—C13121.3 (3)C24—C26—H26C109.5
C9—C14—H14119.3H26A—C26—H26C109.5
C13—C14—H14119.3H26B—C26—H26C109.5
C12—C15—S2116.6 (2)C19—O1—H1109.5
C12—C15—H15A108.2C24—O2—H2109.5
S2—C15—H15A108.2C7—S1—C8103.91 (18)
C12—C15—H15B108.2C15—S2—C16104.56 (16)
C6—C1—C2—C32.0 (4)S1—C8—C9—C1059.7 (4)
C17—C1—C2—C3176.6 (3)C14—C9—C10—C115.7 (5)
C6—C1—C2—C7174.1 (3)C8—C9—C10—C11170.3 (3)
C17—C1—C2—C70.6 (4)C9—C10—C11—C121.0 (5)
C1—C2—C3—C43.4 (4)C10—C11—C12—C134.4 (5)
C7—C2—C3—C4172.6 (3)C10—C11—C12—C15171.8 (3)
C2—C3—C4—C50.9 (4)C11—C12—C13—C145.1 (5)
C2—C3—C4—C22174.8 (3)C15—C12—C13—C14171.1 (3)
C3—C4—C5—C63.0 (4)C10—C9—C14—C135.0 (5)
C22—C4—C5—C6178.7 (3)C8—C9—C14—C13171.0 (3)
C3—C4—C5—C16173.2 (3)C12—C13—C14—C90.4 (5)
C22—C4—C5—C162.5 (4)C13—C12—C15—S243.9 (4)
C4—C5—C6—C14.5 (4)C11—C12—C15—S2132.2 (3)
C16—C5—C6—C1171.7 (3)C6—C5—C16—S264.3 (3)
C2—C1—C6—C52.1 (4)C4—C5—C16—S2111.7 (3)
C17—C1—C6—C5172.7 (3)C2—C7—S1—C866.4 (3)
C3—C2—C7—S147.5 (4)C9—C8—S1—C766.4 (3)
C1—C2—C7—S1128.4 (3)C12—C15—S2—C1668.5 (3)
S1—C8—C9—C14116.1 (3)C5—C16—S2—C1562.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.992.777 (4)161
O2—H2···O1ii0.822.032.808 (3)158
Symmetry codes: (i) x+2, y1, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H28O2S2
Mr436.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.1059 (5), 11.8596 (4), 24.5073 (10)
β (°) 108.113 (2)
V3)4725.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.943, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
14956, 4646, 2596
Rint0.080
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.149, 0.92
No. of reflections4646
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.992.777 (4)161
O2—H2···O1ii0.822.032.808 (3)158
Symmetry codes: (i) x+2, y1, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors are grateful to Professor Sheng-Hua Liu for technical assistance with the structure analysis and Dr Xiang-Gao Meng for the data collection.

References

First citationBruker (2007). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, G. & Lu, Y. (2010). Acta Cryst. E66, o2144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723–730.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds