organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,4-Di­nitro­phen­yl)-2-[1-(2-meth­­oxy­phen­yl)ethyl­­idene]hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 26 October 2011; accepted 29 October 2011; online 5 November 2011)

The mol­ecule of the title compound, C15H14N4O5, is in an E conformation with respect to the C=N double bond and the dihedral angle between the two benzene rings is 37.83 (7)°. The ethyl­idenehydrazine plane makes dihedral angles of 4.93 (9) and 42.38 (9)° with the two benzene rings. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into chains along the c axis which are stacked along the b axis by aromatic ππ inter­actions with a centroid–centroid distance of 3.5927 (10) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures see: Fun et al. (2011[Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2011). Acta Cryst. E67, o1034-o1035.]); Jansrisewangwong et al. (2010[Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.]); Nilwanna et al. (2011[Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084-o3085.]). For background to the biological activity of hydro­zones, see: Bendre et al. (1998[Bendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59-66.]); Cui et al. (2010[Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576-5584.]); Gokce et al. (2009[Gokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]); Khan et al. (2007[Khan, S. A., Saleem, K. & Khan, Z. (2007). Eur. J. Med. Chem. 42, 103-108.]); Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Wang et al. (2009[Wang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425-2433.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O5

  • Mr = 330.30

  • Monoclinic, C 2/c

  • a = 33.105 (5) Å

  • b = 7.1288 (10) Å

  • c = 13.4964 (19) Å

  • β = 107.170 (2)°

  • V = 3043.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 297 K

  • 0.35 × 0.33 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.977

  • 11675 measured reflections

  • 4013 independent reflections

  • 2945 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.04

  • 4013 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.87 (2) 1.952 (18) 2.6086 (17) 131.1 (15)
C6—H6A⋯O3i 0.93 2.48 3.218 (2) 136
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For a long time, hydrazone derivatives have been studied for their biological properties such as antibacterial, antioxidant, antitumor, antifungal, analgesic and anti-inflammatory (Cui et al., 2010; Gokce et al., 2009; Khan et al., 2007; Loncle et al., 2004; Wang et al., 2009) and tyrosinase inhibitory activities (Bendre et al., 1998). In our previous studies, we reported the syntheses and crystal structures of some hydrazone derivatives (Fun et al., 2011; Jansrisewangwong et al., 2010); Nilwanna et al., 2011). The title compound (I) was designed and synthesized in order to study its bioactivity properties. It has been screened for antibacterial activity but found to be inactive.

The molecule of (I) (Fig. 1), C15H14N4O5, is twisted and exists in an E configuration with respect to the ethylidene CN double bond [1.2845 (17) Å] with the torsion angle N1–N2–C7–C8 = 176.97 (11)°. The dihedral angle between the two benzene rings is 37.83 (7)°. The ethylidenehydrazine fragment is planar with the r.m.s deviation of 0.0027 (1) Å and the torsion angle N1–N2–C7–C14 = 0.9 (2)°. This middle C/C/N/N plane makes the dihedral angles of 4.93 (9) and 42.38 (9)° with the 2,4-dinitrophenyl and 2-methoxyphenyl rings, respectively. The two nitro groups of 2,4-dinitrophenyl are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0124 (1) Å for the twelve non H-atoms. In addition the methoxy group is almost co-planar with its attached benzene ring with the torsion angle C15–O5–C9–C10 = -6.2 (2)°. Intramolecular N1—H1···O1 hydrogen bond (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are within the normal range (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked by C—H···O weak interactions (Table 1) into chains along the c axis. These chains are stacked along the b axis by ππ interaction with the Cg1···Cg2 distance = 3.5927 (10) Å (symmetry code: x, -y, 1/2+z); Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures see: Fun et al. (2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For background to the biological activity of hydrozones, see: Bendre et al. (1998); Cui et al. (2010); Gokce et al. (2009); Khan et al. (2007); Loncle et al. (2004); Wang et al. (2009).

Experimental top

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (98 %, 0.50 ml) was slowly added with stirring. 2-methoxyacetophenone (0.30 ml, 2 mmol) was then added to the solution with continuous stirring. The solution was refluxed for 1 hr yielding an orange solid, which was filtered off and washed with methanol. Orange blocks were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days, Mp. 462-463 K.

Refinement top

Amide H atom was located in a Fourier difference map and refined isotropically. The remainning H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

For a long time, hydrazone derivatives have been studied for their biological properties such as antibacterial, antioxidant, antitumor, antifungal, analgesic and anti-inflammatory (Cui et al., 2010; Gokce et al., 2009; Khan et al., 2007; Loncle et al., 2004; Wang et al., 2009) and tyrosinase inhibitory activities (Bendre et al., 1998). In our previous studies, we reported the syntheses and crystal structures of some hydrazone derivatives (Fun et al., 2011; Jansrisewangwong et al., 2010); Nilwanna et al., 2011). The title compound (I) was designed and synthesized in order to study its bioactivity properties. It has been screened for antibacterial activity but found to be inactive.

The molecule of (I) (Fig. 1), C15H14N4O5, is twisted and exists in an E configuration with respect to the ethylidene CN double bond [1.2845 (17) Å] with the torsion angle N1–N2–C7–C8 = 176.97 (11)°. The dihedral angle between the two benzene rings is 37.83 (7)°. The ethylidenehydrazine fragment is planar with the r.m.s deviation of 0.0027 (1) Å and the torsion angle N1–N2–C7–C14 = 0.9 (2)°. This middle C/C/N/N plane makes the dihedral angles of 4.93 (9) and 42.38 (9)° with the 2,4-dinitrophenyl and 2-methoxyphenyl rings, respectively. The two nitro groups of 2,4-dinitrophenyl are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0124 (1) Å for the twelve non H-atoms. In addition the methoxy group is almost co-planar with its attached benzene ring with the torsion angle C15–O5–C9–C10 = -6.2 (2)°. Intramolecular N1—H1···O1 hydrogen bond (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are within the normal range (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked by C—H···O weak interactions (Table 1) into chains along the c axis. These chains are stacked along the b axis by ππ interaction with the Cg1···Cg2 distance = 3.5927 (10) Å (symmetry code: x, -y, 1/2+z); Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures see: Fun et al. (2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For background to the biological activity of hydrozones, see: Bendre et al. (1998); Cui et al. (2010); Gokce et al. (2009); Khan et al. (2007); Loncle et al. (2004); Wang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed approximately along the a axis, showing chains stacked along the b axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(2,4-Dinitrophenyl)-2-[1-(2-methoxyphenyl)ethylidene]hydrazine top
Crystal data top
C15H14N4O5F(000) = 1376
Mr = 330.30Dx = 1.442 Mg m3
Monoclinic, C2/cMelting point = 462–463 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 33.105 (5) ÅCell parameters from 4013 reflections
b = 7.1288 (10) Åθ = 2.6–29.0°
c = 13.4964 (19) ŵ = 0.11 mm1
β = 107.170 (2)°T = 297 K
V = 3043.2 (8) Å3Block, orange
Z = 80.35 × 0.33 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
4013 independent reflections
Radiation source: sealed tube2945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 29.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4443
Tmin = 0.962, Tmax = 0.977k = 79
11675 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0564P)2 + 1.0718P]
where P = (Fo2 + 2Fc2)/3
4013 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H14N4O5V = 3043.2 (8) Å3
Mr = 330.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.105 (5) ŵ = 0.11 mm1
b = 7.1288 (10) ÅT = 297 K
c = 13.4964 (19) Å0.35 × 0.33 × 0.21 mm
β = 107.170 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4013 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2945 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.977Rint = 0.019
11675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
4013 reflectionsΔρmin = 0.17 e Å3
223 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07338 (3)0.25310 (17)0.98816 (8)0.0590 (3)
O20.10350 (4)0.20839 (19)1.15077 (8)0.0675 (3)
O30.24539 (4)0.0059 (3)1.28175 (9)0.0877 (5)
O40.28280 (4)0.0482 (2)1.17821 (10)0.0851 (4)
O50.03857 (3)0.18362 (17)0.48812 (7)0.0560 (3)
N10.11540 (4)0.21520 (17)0.85348 (8)0.0444 (3)
H1N10.0924 (6)0.258 (2)0.8644 (13)0.057 (5)*
N20.12306 (4)0.22293 (16)0.75869 (8)0.0433 (3)
N30.10449 (4)0.20867 (17)1.06074 (8)0.0455 (3)
N40.24971 (4)0.0049 (2)1.19497 (10)0.0585 (3)
C10.14719 (4)0.16224 (18)0.93741 (9)0.0385 (3)
C20.14337 (4)0.15613 (19)1.03938 (9)0.0390 (3)
C30.17682 (4)0.10245 (19)1.12370 (9)0.0429 (3)
H3A0.17380.10011.19000.052*
C40.21432 (4)0.0530 (2)1.10768 (10)0.0446 (3)
C50.21945 (4)0.0566 (2)1.00856 (10)0.0489 (3)
H5A0.24510.02220.99910.059*
C60.18673 (4)0.1105 (2)0.92606 (10)0.0469 (3)
H6A0.19050.11340.86050.056*
C70.09330 (4)0.28669 (19)0.68182 (9)0.0412 (3)
C80.10499 (4)0.29961 (18)0.58364 (9)0.0399 (3)
C90.07723 (4)0.24861 (19)0.48709 (9)0.0415 (3)
C100.09020 (5)0.2587 (2)0.39813 (10)0.0482 (3)
H10A0.07180.22410.33430.058*
C110.13047 (5)0.3199 (2)0.40454 (11)0.0545 (4)
H11A0.13900.32690.34490.065*
C120.15792 (5)0.3706 (2)0.49859 (12)0.0546 (4)
H12A0.18500.41190.50260.066*
C130.14525 (4)0.3602 (2)0.58725 (11)0.0474 (3)
H13A0.16410.39450.65060.057*
C140.05141 (5)0.3552 (3)0.68823 (11)0.0571 (4)
H14A0.05580.44610.74290.086*
H14B0.03550.25150.70240.086*
H14C0.03610.41210.62350.086*
C150.00827 (5)0.1403 (3)0.39214 (12)0.0672 (5)
H15A0.01760.10090.40430.101*
H15B0.01890.04100.35860.101*
H15C0.00310.24950.34860.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0455 (5)0.0817 (8)0.0507 (6)0.0075 (5)0.0154 (5)0.0039 (5)
O20.0637 (7)0.1012 (9)0.0455 (6)0.0124 (6)0.0285 (5)0.0024 (6)
O30.0624 (7)0.1543 (14)0.0456 (6)0.0142 (8)0.0147 (5)0.0277 (7)
O40.0485 (6)0.1397 (13)0.0658 (8)0.0201 (7)0.0149 (6)0.0156 (8)
O50.0498 (6)0.0784 (8)0.0372 (5)0.0142 (5)0.0087 (4)0.0049 (5)
N10.0461 (6)0.0533 (7)0.0342 (5)0.0014 (5)0.0127 (5)0.0016 (5)
N20.0496 (6)0.0477 (6)0.0325 (5)0.0008 (5)0.0121 (4)0.0010 (4)
N30.0464 (6)0.0521 (7)0.0414 (6)0.0002 (5)0.0183 (5)0.0005 (5)
N40.0457 (7)0.0816 (10)0.0463 (6)0.0003 (6)0.0106 (5)0.0125 (6)
C10.0426 (6)0.0387 (7)0.0342 (6)0.0055 (5)0.0112 (5)0.0019 (5)
C20.0415 (6)0.0413 (7)0.0365 (6)0.0044 (5)0.0153 (5)0.0021 (5)
C30.0465 (7)0.0486 (8)0.0352 (6)0.0058 (6)0.0143 (5)0.0012 (5)
C40.0415 (7)0.0525 (8)0.0386 (6)0.0056 (6)0.0098 (5)0.0038 (5)
C50.0421 (7)0.0627 (9)0.0449 (7)0.0013 (6)0.0172 (6)0.0012 (6)
C60.0470 (7)0.0595 (9)0.0374 (6)0.0027 (6)0.0173 (5)0.0012 (6)
C70.0452 (7)0.0411 (7)0.0361 (6)0.0033 (5)0.0101 (5)0.0048 (5)
C80.0442 (7)0.0388 (7)0.0357 (6)0.0040 (5)0.0104 (5)0.0025 (5)
C90.0458 (7)0.0414 (7)0.0356 (6)0.0027 (6)0.0094 (5)0.0033 (5)
C100.0583 (8)0.0498 (8)0.0353 (6)0.0055 (6)0.0120 (6)0.0043 (5)
C110.0655 (9)0.0573 (9)0.0475 (7)0.0078 (7)0.0272 (7)0.0096 (6)
C120.0481 (8)0.0565 (9)0.0630 (9)0.0004 (7)0.0225 (7)0.0094 (7)
C130.0448 (7)0.0478 (8)0.0465 (7)0.0003 (6)0.0088 (6)0.0031 (6)
C140.0512 (8)0.0737 (11)0.0454 (7)0.0067 (7)0.0128 (6)0.0095 (7)
C150.0522 (9)0.0965 (14)0.0443 (8)0.0065 (9)0.0012 (7)0.0053 (8)
Geometric parameters (Å, º) top
O1—N31.2347 (15)C6—H6A0.9300
O2—N31.2251 (14)C7—C81.4889 (16)
O3—N41.2212 (16)C7—C141.497 (2)
O4—N41.2215 (17)C8—C131.3880 (19)
O5—C91.3649 (17)C8—C91.4029 (17)
O5—C151.4186 (17)C9—C101.3914 (17)
N1—C11.3526 (17)C10—C111.381 (2)
N1—N21.3768 (14)C10—H10A0.9300
N1—H1N10.871 (18)C11—C121.373 (2)
N2—C71.2845 (17)C11—H11A0.9300
N3—C21.4490 (16)C12—C131.3819 (19)
N4—C41.4546 (18)C12—H12A0.9300
C1—C61.4110 (18)C13—H13A0.9300
C1—C21.4193 (15)C14—H14A0.9600
C2—C31.3869 (18)C14—H14B0.9600
C3—C41.3678 (18)C14—H14C0.9600
C3—H3A0.9300C15—H15A0.9600
C4—C51.3976 (18)C15—H15B0.9600
C5—C61.3597 (19)C15—H15C0.9600
C5—H5A0.9300
C9—O5—C15118.48 (11)C8—C7—C14121.33 (12)
C1—N1—N2118.56 (11)C13—C8—C9118.18 (12)
C1—N1—H1N1117.2 (11)C13—C8—C7119.15 (11)
N2—N1—H1N1123.6 (11)C9—C8—C7122.65 (12)
C7—N2—N1117.18 (11)O5—C9—C10123.75 (12)
O2—N3—O1121.81 (11)O5—C9—C8115.96 (11)
O2—N3—C2118.84 (11)C10—C9—C8120.24 (12)
O1—N3—C2119.35 (10)C11—C10—C9120.03 (13)
O3—N4—O4122.78 (13)C11—C10—H10A120.0
O3—N4—C4118.94 (13)C9—C10—H10A120.0
O4—N4—C4118.27 (12)C12—C11—C10120.27 (13)
N1—C1—C6119.96 (11)C12—C11—H11A119.9
N1—C1—C2123.41 (11)C10—C11—H11A119.9
C6—C1—C2116.63 (11)C11—C12—C13119.94 (13)
C3—C2—C1121.74 (11)C11—C12—H12A120.0
C3—C2—N3116.67 (10)C13—C12—H12A120.0
C1—C2—N3121.58 (11)C12—C13—C8121.33 (13)
C4—C3—C2118.91 (11)C12—C13—H13A119.3
C4—C3—H3A120.5C8—C13—H13A119.3
C2—C3—H3A120.5C7—C14—H14A109.5
C3—C4—C5121.27 (12)C7—C14—H14B109.5
C3—C4—N4119.79 (11)H14A—C14—H14B109.5
C5—C4—N4118.94 (12)C7—C14—H14C109.5
C6—C5—C4119.77 (12)H14A—C14—H14C109.5
C6—C5—H5A120.1H14B—C14—H14C109.5
C4—C5—H5A120.1O5—C15—H15A109.5
C5—C6—C1121.68 (11)O5—C15—H15B109.5
C5—C6—H6A119.2H15A—C15—H15B109.5
C1—C6—H6A119.2O5—C15—H15C109.5
N2—C7—C8113.69 (11)H15A—C15—H15C109.5
N2—C7—C14124.87 (12)H15B—C15—H15C109.5
C1—N1—N2—C7175.05 (13)N1—C1—C6—C5179.97 (13)
N2—N1—C1—C62.06 (19)C2—C1—C6—C50.3 (2)
N2—N1—C1—C2177.53 (12)N1—N2—C7—C8176.97 (11)
N1—C1—C2—C3179.48 (13)N1—N2—C7—C140.9 (2)
C6—C1—C2—C30.13 (19)N2—C7—C8—C1339.91 (17)
N1—C1—C2—N30.5 (2)C14—C7—C8—C13136.32 (15)
C6—C1—C2—N3179.12 (12)N2—C7—C8—C9138.53 (14)
O2—N3—C2—C32.10 (19)C14—C7—C8—C945.24 (19)
O1—N3—C2—C3178.19 (13)C15—O5—C9—C106.2 (2)
O2—N3—C2—C1176.94 (13)C15—O5—C9—C8176.37 (14)
O1—N3—C2—C12.8 (2)C13—C8—C9—O5177.73 (12)
C1—C2—C3—C40.4 (2)C7—C8—C9—O50.73 (19)
N3—C2—C3—C4179.47 (12)C13—C8—C9—C100.2 (2)
C2—C3—C4—C50.3 (2)C7—C8—C9—C10178.24 (12)
C2—C3—C4—N4179.60 (13)O5—C9—C10—C11177.64 (13)
O3—N4—C4—C31.0 (2)C8—C9—C10—C110.3 (2)
O4—N4—C4—C3179.99 (15)C9—C10—C11—C120.2 (2)
O3—N4—C4—C5179.15 (16)C10—C11—C12—C130.1 (2)
O4—N4—C4—C50.1 (2)C11—C12—C13—C80.2 (2)
C3—C4—C5—C60.2 (2)C9—C8—C13—C120.0 (2)
N4—C4—C5—C6179.93 (14)C7—C8—C13—C12178.55 (13)
C4—C5—C6—C10.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.87 (2)1.952 (18)2.6086 (17)131.1 (15)
C6—H6A···O3i0.932.483.218 (2)136
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N4O5
Mr330.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)33.105 (5), 7.1288 (10), 13.4964 (19)
β (°) 107.170 (2)
V3)3043.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.33 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
11675, 4013, 2945
Rint0.019
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.04
No. of reflections4013
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.87 (2)1.952 (18)2.6086 (17)131.1 (15)
C6—H6A···O3i0.932.483.218 (2)136
Symmetry code: (i) x, y, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

BN, PJ and TK thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59–66.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2011). Acta Cryst. E67, o1034–o1035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science CrossRef PubMed Google Scholar
First citationJansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, S. A., Saleem, K. & Khan, Z. (2007). Eur. J. Med. Chem. 42, 103–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425–2433.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds