organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Tri­fluoro­methyl-1H-benzimidazol-3-ium hydrogen sulfate

aCollege of Chemistryand Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 4 November 2011; accepted 16 November 2011; online 30 November 2011)

In the crystal of the title mol­ecular salt, C8H6F3N2+·HSO4, cation-to-anion N—H⋯O hydrogen bonds generate [100] chains. Anion-to-anion O—H⋯O hydrogen bonds generate [001] helices and cross-link the chains into a three-dimensional network.

Related literature

For a related structure and background to mol­ecular salts, see: Liu (2011[Liu, M.-L. (2011). Acta Cryst. E67, o2821.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6F3N2+·HSO4

  • Mr = 284.22

  • Hexagonal, P 65

  • a = 9.4119 (13) Å

  • c = 21.960 (4) Å

  • V = 1684.7 (5) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.935, Tmax = 0.935

  • 14287 measured reflections

  • 1977 independent reflections

  • 1941 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.134

  • S = 1.11

  • 1977 reflections

  • 167 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 957 Friedel pairs

  • Flack parameter: 0.03 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.86 1.85 2.707 (5) 173
N1—H1A⋯O4 0.86 1.88 2.740 (7) 174
O1—H1⋯O2ii 0.86 (2) 1.86 (6) 2.608 (7) 145 (9)
Symmetry codes: (i) x+1, y, z; (ii) [y-1, -x+y, z+{\script{1\over 6}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure and background to molecular salts, see: Liu (2011).

Experimental top

0.144 g(1 mmol) of 2-Trifluoromethl-1H-benzimidazole was firstly dissolved in 30 ml me thanol, to which 0.1 g (1 mmol) of sulfuric acid was then added to afford the solution without any precipitation under stirring at the ambient temperature. Colourless blocks of the title compound were obtained by the slow evaporation of the above solution after 2 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N)] and allowed to ride.The H atom bonding with N was found with O—H bond distance of 0.8600Åin the difference electron density map.

Structure description top

For a related structure and background to molecular salts, see: Liu (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
2-Trifluoromethyl-1H-benzimidazol-3-ium hydrogen sulfate top
Crystal data top
C8H6F3N2+·HSO4F(000) = 864
Mr = 284.22Dx = 1.681 Mg m3
Hexagonal, P65Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 65θ = 3.1–27.6°
a = 9.4119 (13) ŵ = 0.34 mm1
c = 21.960 (4) ÅT = 293 K
V = 1684.7 (5) Å3Block, colorless
Z = 60.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
1977 independent reflections
Radiation source: fine-focus sealed tube1941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
CCD_Profile_fitting scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1111
Tmin = 0.935, Tmax = 0.935k = 1111
14287 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0593P)2 + 1.9666P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1977 reflectionsΔρmax = 0.53 e Å3
167 parametersΔρmin = 0.25 e Å3
8 restraintsAbsolute structure: Flack (1983), 957 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (16)
Crystal data top
C8H6F3N2+·HSO4Z = 6
Mr = 284.22Mo Kα radiation
Hexagonal, P65µ = 0.34 mm1
a = 9.4119 (13) ÅT = 293 K
c = 21.960 (4) Å0.20 × 0.20 × 0.20 mm
V = 1684.7 (5) Å3
Data collection top
Rigaku Mercury2 CCD
diffractometer
1977 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1941 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.935Rint = 0.038
14287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134Δρmax = 0.53 e Å3
S = 1.11Δρmin = 0.25 e Å3
1977 reflectionsAbsolute structure: Flack (1983), 957 Friedel pairs
167 parametersAbsolute structure parameter: 0.03 (16)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09970 (14)0.72553 (17)0.16867 (6)0.0442 (3)
N10.4873 (5)0.7391 (5)0.1735 (2)0.0418 (9)
H1A0.38430.70580.17700.050*
N20.7169 (4)0.7349 (5)0.16388 (17)0.0348 (8)
H2A0.78350.69810.15960.042*
C30.6124 (6)0.9017 (6)0.1722 (2)0.0418 (11)
C80.7613 (5)0.9011 (6)0.1675 (2)0.0371 (10)
C40.6126 (7)1.0512 (7)0.1762 (3)0.0508 (13)
H40.51521.05350.17920.061*
O30.0637 (4)0.6347 (5)0.14218 (18)0.0558 (11)
F30.5450 (5)0.4034 (5)0.1391 (3)0.0928 (15)
C60.9082 (7)1.1891 (7)0.1712 (3)0.0527 (13)
H61.00661.28830.17100.063*
O10.0866 (5)0.8248 (5)0.2230 (2)0.0627 (11)
C50.7592 (8)1.1907 (7)0.1755 (3)0.0589 (15)
H50.76231.29090.17800.071*
F10.3262 (5)0.4077 (6)0.1346 (3)0.116 (2)
F20.4211 (10)0.3991 (6)0.2195 (2)0.157 (3)
O40.1589 (5)0.6207 (5)0.19150 (19)0.0571 (11)
C70.9120 (6)1.0455 (7)0.1670 (3)0.0456 (11)
H71.01031.04480.16410.055*
C10.4609 (6)0.4596 (7)0.1670 (3)0.0520 (13)
O20.2184 (6)0.8507 (9)0.1300 (3)0.110 (2)
C20.5531 (5)0.6434 (6)0.1683 (2)0.0373 (9)
H10.041 (10)0.754 (9)0.251 (3)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0252 (5)0.0626 (9)0.0458 (6)0.0227 (5)0.0080 (5)0.0144 (6)
N10.0295 (19)0.051 (2)0.051 (2)0.0252 (19)0.0012 (18)0.0049 (19)
N20.0243 (17)0.044 (2)0.040 (2)0.0205 (16)0.0009 (16)0.0062 (18)
C30.037 (2)0.050 (3)0.043 (3)0.025 (2)0.001 (2)0.002 (2)
C80.037 (2)0.043 (3)0.037 (2)0.024 (2)0.006 (2)0.005 (2)
C40.057 (3)0.058 (3)0.059 (3)0.044 (3)0.002 (3)0.003 (3)
O30.0362 (19)0.087 (3)0.059 (2)0.042 (2)0.0057 (16)0.015 (2)
F30.070 (2)0.058 (2)0.158 (4)0.038 (2)0.018 (3)0.012 (3)
C60.044 (3)0.045 (3)0.062 (3)0.017 (2)0.006 (3)0.009 (3)
O10.056 (3)0.048 (2)0.079 (3)0.022 (2)0.009 (2)0.012 (2)
C50.073 (4)0.052 (3)0.070 (4)0.045 (3)0.005 (3)0.005 (3)
F10.047 (2)0.070 (3)0.213 (6)0.0161 (19)0.039 (3)0.044 (3)
F20.246 (6)0.055 (3)0.072 (3)0.002 (3)0.038 (4)0.009 (2)
O40.0403 (19)0.074 (3)0.072 (3)0.039 (2)0.0007 (17)0.007 (2)
C70.030 (2)0.055 (3)0.050 (3)0.020 (2)0.002 (2)0.003 (2)
C10.036 (3)0.043 (3)0.067 (3)0.012 (2)0.014 (3)0.001 (3)
O20.057 (3)0.155 (5)0.108 (4)0.045 (3)0.032 (3)0.093 (4)
C20.030 (2)0.040 (2)0.042 (2)0.0176 (19)0.0001 (19)0.010 (2)
Geometric parameters (Å, º) top
S1—O21.429 (5)C4—C51.348 (9)
S1—O41.444 (4)C4—H40.9300
S1—O31.456 (4)F3—C11.304 (6)
S1—O11.558 (5)C6—C71.373 (8)
N1—C21.329 (6)C6—C51.414 (8)
N1—C31.388 (6)C6—H60.9300
N1—H1A0.8600O1—H10.86 (2)
N2—C21.341 (6)C5—H50.9300
N2—C81.405 (6)F1—C11.317 (8)
N2—H2A0.8600F2—C11.258 (8)
C3—C81.407 (6)C7—H70.9300
C3—C41.409 (7)C1—C21.499 (7)
C8—C71.390 (7)
O2—S1—O4111.1 (3)C3—C4—H4121.2
O2—S1—O3114.0 (3)C7—C6—C5122.0 (5)
O4—S1—O3113.1 (3)C7—C6—H6119.0
O2—S1—O1103.0 (4)C5—C6—H6119.0
O4—S1—O1108.5 (3)S1—O1—H1104 (7)
O3—S1—O1106.3 (2)C4—C5—C6121.9 (5)
C2—N1—C3108.6 (4)C4—C5—H5119.1
C2—N1—H1A125.7C6—C5—H5119.1
C3—N1—H1A125.7C6—C7—C8116.5 (4)
C2—N2—C8108.5 (3)C6—C7—H7121.8
C2—N2—H2A125.8C8—C7—H7121.8
C8—N2—H2A125.8F2—C1—F3110.5 (7)
N1—C3—C8107.2 (4)F2—C1—F1108.3 (6)
N1—C3—C4132.5 (4)F3—C1—F1105.2 (5)
C8—C3—C4120.3 (5)F2—C1—C2112.0 (5)
C7—C8—N2132.7 (4)F3—C1—C2111.0 (4)
C7—C8—C3121.9 (4)F1—C1—C2109.5 (5)
N2—C8—C3105.4 (4)N1—C2—N2110.3 (4)
C5—C4—C3117.5 (5)N1—C2—C1125.9 (4)
C5—C4—H4121.2N2—C2—C1123.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.861.852.707 (5)173
N1—H1A···O40.861.882.740 (7)174
O1—H1···O2ii0.86 (2)1.86 (6)2.608 (7)145 (9)
Symmetry codes: (i) x+1, y, z; (ii) y1, x+y, z+1/6.

Experimental details

Crystal data
Chemical formulaC8H6F3N2+·HSO4
Mr284.22
Crystal system, space groupHexagonal, P65
Temperature (K)293
a, c (Å)9.4119 (13), 21.960 (4)
V3)1684.7 (5)
Z6
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.935, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
14287, 1977, 1941
Rint0.038
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.134, 1.11
No. of reflections1977
No. of parameters167
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.25
Absolute structureFlack (1983), 957 Friedel pairs
Absolute structure parameter0.03 (16)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.861.852.707 (5)173
N1—H1A···O40.861.882.740 (7)174
O1—H1···O2ii0.86 (2)1.86 (6)2.608 (7)145 (9)
Symmetry codes: (i) x+1, y, z; (ii) y1, x+y, z+1/6.
 

Acknowledgements

The author thanks an anonymous reader from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, M.-L. (2011). Acta Cryst. E67, o2821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds