metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa­kis(3-methyl­anilinium) hexa­chlorido­cadmate tetra­chloride

aCollege of Chemistryand Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 17 November 2011; accepted 19 November 2011; online 25 November 2011)

The asymmetric unit of the title compound, (C7H10N)8[CdCl6]Cl4, contains four 3-methyl­anilinium cations, two chloride anions and half an octa­hedral hexa­chloridocadmate(II) anion, which lies on an inversion centre. In the crystal, numerous N—H⋯Cl and bifurcated N—H⋯(Cl,Cl) hydrogen bonds link the components.

Related literature

For background to ferroelectric metal-organic complexes, see: Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For a related structure, see: Liu (2011[Liu, M.-L. (2011). Acta Cryst. E67, m1622.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)8[CdCl6]Cl4

  • Mr = 1332.18

  • Triclinic, [P \overline 1]

  • a = 8.8863 (18) Å

  • b = 14.116 (3) Å

  • c = 14.251 (3) Å

  • α = 87.92 (3)°

  • β = 71.88 (3)°

  • γ = 75.20 (3)°

  • V = 1640.8 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.860, Tmax = 0.860

  • 14045 measured reflections

  • 5776 independent reflections

  • 4134 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.144

  • S = 0.91

  • 5776 reflections

  • 348 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—Cl1 2.5425 (12)
Cd1—Cl2 2.6743 (13)
Cd1—Cl3 2.6760 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl5i 0.89 2.38 3.264 (5) 176
N1—H1B⋯Cl4ii 0.89 2.47 3.309 (5) 157
N1—H1C⋯Cl2iii 0.89 2.54 3.329 (5) 148
N1—H1C⋯Cl3iv 0.89 2.88 3.427 (5) 121
N2—H2A⋯Cl4v 0.89 2.38 3.265 (5) 176
N2—H2B⋯Cl3v 0.89 2.51 3.300 (5) 149
N2—H2B⋯Cl2vi 0.89 2.93 3.495 (5) 123
N2—H2C⋯Cl5vii 0.89 2.33 3.186 (5) 162
N3—H3A⋯Cl4 0.89 2.37 3.254 (5) 172
N3—H3B⋯Cl3vii 0.89 2.61 3.344 (5) 140
N3—H3B⋯Cl2vii 0.89 2.75 3.367 (5) 127
N3—H3C⋯Cl5vi 0.89 2.44 3.289 (5) 159
N4—H4A⋯Cl4 0.89 2.40 3.270 (5) 167
N4—H4B⋯Cl5vi 0.89 2.38 3.267 (5) 177
N4—H4C⋯Cl2 0.89 2.55 3.305 (5) 143
N4—H4C⋯Cl3 0.89 2.91 3.526 (5) 128
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x, y, z+1; (iv) -x+1, -y, -z+1; (v) x, y+1, z; (vi) -x+1, -y+1, -z; (vii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to simple molecular-ionic compounds containing inorganic and organic ions due to the tunability of their special structural features and their potential ferroelectrics property. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase. (Zhang et al. 2009; Ye et al. 2009; Zhang et al. 2010.). In our laboratory, the title compound, (I), has been synthesized and its crystal structure is herein reported.

The title compound, [(C7H10N)8CdCl6]Cl4, has an asymmertic unit that consists of four 3-methylanilinium cations, two chloride anions and one hexachloridocadmiumate anion (Fig 1), which lies in a symmetrical center. The non-hydrogen atoms of C7H10N cations are nearly coplanar, the cadmium atom is coordinated by six chloride ions, forming a distorted octahedron, the average Cd—Cl bond distances range from 2.5425 (12) Å to 2.6760 (15) Å, the Cl—Cd—Cl angles range from 88.87 (5)°to 180°.The existence of N—H···Cl hydrogen-bonding interactions makes great contribution to the stability of the crystal structure (Fig 2).

Related literature top

For background to ferroelectric metal-organic complexes, see: Ye et al. (2009); Zhang et al. (2009, 2010). For a related structure, see: Liu (2011).

Experimental top

3.21 g (0.03 mol) of 3-methylbenzenamine was firstly dissolved in 30 ml ethanol, to which 1.1 g (0.03 mol) of hydrochloric acid was then added to afford the solution, then the 0.83 g (0.01 mol) cadmium chloride was dissolved in 20 ml e thanol which was added hydrochloric acid, at last, mixed the above solution without any precipitation under stirring at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 4 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N)] and allowed to ride.

Structure description top

Recently much attention has been devoted to simple molecular-ionic compounds containing inorganic and organic ions due to the tunability of their special structural features and their potential ferroelectrics property. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase. (Zhang et al. 2009; Ye et al. 2009; Zhang et al. 2010.). In our laboratory, the title compound, (I), has been synthesized and its crystal structure is herein reported.

The title compound, [(C7H10N)8CdCl6]Cl4, has an asymmertic unit that consists of four 3-methylanilinium cations, two chloride anions and one hexachloridocadmiumate anion (Fig 1), which lies in a symmetrical center. The non-hydrogen atoms of C7H10N cations are nearly coplanar, the cadmium atom is coordinated by six chloride ions, forming a distorted octahedron, the average Cd—Cl bond distances range from 2.5425 (12) Å to 2.6760 (15) Å, the Cl—Cd—Cl angles range from 88.87 (5)°to 180°.The existence of N—H···Cl hydrogen-bonding interactions makes great contribution to the stability of the crystal structure (Fig 2).

For background to ferroelectric metal-organic complexes, see: Ye et al. (2009); Zhang et al. (2009, 2010). For a related structure, see: Liu (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Intermolecular interactions are shown as dashed lines.
Octakis(3-methylanilinium) hexachloridocadmate tetrachloride top
Crystal data top
(C7H10N)8[CdCl6]Cl4V = 1640.8 (6) Å3
Mr = 1332.18Z = 1
Triclinic, P1F(000) = 690
Hall symbol: -P 1Dx = 1.348 Mg m3
a = 8.8863 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.116 (3) Åθ = 3.4–25°
c = 14.251 (3) ŵ = 0.78 mm1
α = 87.92 (3)°T = 293 K
β = 71.88 (3)°Block, colourless
γ = 75.20 (3)°0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini CCD
diffractometer
5776 independent reflections
Radiation source: fine-focus sealed tube4134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
CCD_Profile_fitting scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.860, Tmax = 0.860k = 1616
14045 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.9416P]
where P = (Fo2 + 2Fc2)/3
5776 reflections(Δ/σ)max = 0.074
348 parametersΔρmax = 0.54 e Å3
18 restraintsΔρmin = 0.39 e Å3
Crystal data top
(C7H10N)8[CdCl6]Cl4γ = 75.20 (3)°
Mr = 1332.18V = 1640.8 (6) Å3
Triclinic, P1Z = 1
a = 8.8863 (18) ÅMo Kα radiation
b = 14.116 (3) ŵ = 0.78 mm1
c = 14.251 (3) ÅT = 293 K
α = 87.92 (3)°0.20 × 0.20 × 0.20 mm
β = 71.88 (3)°
Data collection top
Rigaku SCXmini CCD
diffractometer
5776 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4134 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.860Rint = 0.064
14045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05318 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.91Δρmax = 0.54 e Å3
5776 reflectionsΔρmin = 0.39 e Å3
348 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8397 (6)0.1086 (3)0.7966 (3)0.0507 (11)
H1A0.86720.14730.83290.076*
H1B0.90200.04770.79350.076*
H1C0.73490.10890.82410.076*
C10.8646 (6)0.1450 (4)0.6958 (4)0.0443 (13)
C20.9124 (6)0.2302 (4)0.6733 (4)0.0483 (13)
H20.92520.26600.72250.058*
C30.9416 (7)0.2637 (4)0.5790 (4)0.0578 (16)
C40.8444 (7)0.0901 (4)0.6257 (4)0.0592 (15)
H40.81370.03180.64160.071*
C50.8702 (8)0.1226 (5)0.5312 (5)0.0686 (18)
H50.85370.08740.48300.082*
C60.9207 (8)0.2074 (5)0.5084 (4)0.0665 (18)
H60.94140.22760.44390.080*
C70.9997 (10)0.3560 (5)0.5545 (5)0.087 (2)
H7A1.08790.34510.49330.130*
H7B1.03740.37290.60630.130*
H7C0.91090.40860.54830.130*
C80.6267 (8)0.8805 (5)0.5669 (4)0.0725 (19)
H8A0.52540.88580.61890.109*
H8B0.64920.94380.55750.109*
H8C0.71390.83550.58420.109*
N20.7149 (5)0.9027 (3)0.2064 (3)0.0496 (11)
H2A0.75560.95100.21790.074*
H2B0.63140.92730.18340.074*
H2C0.79250.85930.16200.074*
C90.6575 (6)0.8539 (4)0.2994 (4)0.0389 (12)
C100.6136 (7)0.8436 (4)0.4724 (4)0.0495 (14)
C110.6709 (6)0.8869 (4)0.3835 (4)0.0421 (12)
H110.71860.93870.38200.050*
C120.5901 (7)0.7776 (4)0.2968 (4)0.0546 (15)
H120.58320.75560.23800.065*
C130.5448 (7)0.7675 (5)0.4711 (4)0.0608 (16)
H130.50580.73750.52970.073*
C140.5323 (8)0.7343 (5)0.3850 (5)0.0681 (18)
H140.48480.68260.38590.082*
C160.7077 (9)0.4512 (5)0.3820 (5)0.094 (2)
H16A0.73350.49480.42130.140*
H16B0.69920.39190.41590.140*
H16C0.60540.48220.37110.140*
C151.0231 (6)0.3114 (4)0.1562 (4)0.0459 (13)
N31.0857 (5)0.2101 (3)0.1154 (3)0.0500 (11)
H3A1.02860.17240.15450.075*
H3B1.19080.18850.11150.075*
H3C1.07580.20790.05530.075*
C171.0827 (8)0.3832 (5)0.1010 (5)0.0707 (18)
H171.16320.36770.03990.085*
C180.9049 (7)0.3321 (4)0.2458 (4)0.0504 (14)
H180.86730.28160.28120.061*
C190.8402 (7)0.4276 (4)0.2847 (5)0.0587 (16)
C201.0205 (10)0.4790 (5)0.1385 (6)0.086 (2)
H201.05870.52900.10260.103*
C210.9007 (9)0.5002 (5)0.2298 (6)0.075 (2)
H210.86010.56490.25480.090*
N40.6578 (6)0.2081 (3)0.1049 (4)0.0551 (12)
H4A0.69560.17020.14810.083*
H4B0.74160.21720.05480.083*
H4C0.59710.17930.08210.083*
C220.5575 (7)0.3031 (4)0.1537 (4)0.0458 (13)
C230.5977 (7)0.3871 (4)0.1165 (4)0.0511 (14)
H230.69000.38360.06200.061*
C240.5009 (8)0.4776 (4)0.1602 (5)0.0579 (15)
C250.4232 (10)0.3057 (5)0.2339 (5)0.088 (2)
H250.39690.24810.25840.105*
C260.3282 (11)0.3950 (6)0.2776 (6)0.112 (2)
H260.23600.39820.33210.134*
C270.3685 (10)0.4804 (5)0.2410 (5)0.088 (2)
H270.30420.54060.27200.105*
C280.5396 (11)0.5721 (5)0.1201 (6)0.098 (3)
H28A0.45030.62660.15260.147*
H28B0.55530.57200.05030.147*
H28C0.63770.57770.13190.147*
Cd10.50000.00000.00000.03328 (17)
Cl10.78766 (14)0.00243 (8)0.00119 (8)0.0353 (3)
Cl20.45880 (15)0.18683 (8)0.05106 (9)0.0418 (3)
Cl30.38016 (15)0.06130 (9)0.19060 (9)0.0436 (3)
Cl40.84395 (16)0.08670 (9)0.25439 (10)0.0476 (3)
Cl50.04194 (17)0.75072 (10)0.07936 (10)0.0501 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.053 (3)0.055 (3)0.044 (3)0.020 (2)0.012 (2)0.013 (2)
C10.036 (3)0.055 (3)0.035 (3)0.005 (2)0.006 (2)0.008 (2)
C20.053 (3)0.048 (3)0.041 (3)0.011 (3)0.012 (3)0.006 (3)
C30.048 (3)0.058 (4)0.050 (4)0.003 (3)0.002 (3)0.017 (3)
C40.070 (4)0.050 (4)0.057 (4)0.013 (3)0.020 (3)0.003 (3)
C50.078 (5)0.077 (5)0.046 (4)0.007 (4)0.023 (3)0.007 (3)
C60.069 (4)0.073 (5)0.039 (3)0.005 (3)0.010 (3)0.007 (3)
C70.093 (5)0.079 (5)0.078 (5)0.032 (4)0.007 (4)0.034 (4)
C80.081 (5)0.086 (5)0.043 (4)0.011 (4)0.017 (3)0.000 (3)
N20.051 (3)0.062 (3)0.035 (2)0.015 (2)0.014 (2)0.012 (2)
C90.037 (3)0.040 (3)0.034 (3)0.005 (2)0.008 (2)0.008 (2)
C100.049 (3)0.059 (4)0.035 (3)0.006 (3)0.013 (3)0.005 (3)
C110.046 (3)0.044 (3)0.035 (3)0.011 (2)0.012 (2)0.004 (2)
C120.069 (4)0.044 (3)0.056 (4)0.011 (3)0.031 (3)0.005 (3)
C130.063 (4)0.070 (4)0.048 (4)0.024 (3)0.013 (3)0.023 (3)
C140.082 (5)0.050 (4)0.082 (5)0.029 (3)0.031 (4)0.015 (3)
C160.101 (6)0.077 (5)0.075 (5)0.010 (4)0.010 (4)0.032 (4)
C150.050 (3)0.033 (3)0.051 (3)0.007 (2)0.014 (3)0.003 (2)
N30.049 (3)0.038 (3)0.057 (3)0.006 (2)0.012 (2)0.010 (2)
C170.079 (5)0.052 (4)0.072 (4)0.023 (3)0.006 (4)0.003 (3)
C180.056 (3)0.040 (3)0.053 (3)0.007 (3)0.018 (3)0.002 (3)
C190.063 (4)0.046 (4)0.060 (4)0.004 (3)0.022 (3)0.013 (3)
C200.113 (6)0.045 (4)0.101 (6)0.035 (4)0.026 (5)0.021 (4)
C210.092 (5)0.035 (4)0.092 (5)0.004 (3)0.027 (4)0.015 (3)
N40.065 (3)0.034 (3)0.069 (3)0.009 (2)0.027 (3)0.005 (2)
C220.055 (3)0.035 (3)0.051 (3)0.006 (2)0.026 (3)0.003 (2)
C230.052 (3)0.041 (3)0.052 (3)0.011 (3)0.005 (3)0.002 (3)
C240.067 (4)0.040 (3)0.065 (4)0.012 (3)0.019 (3)0.009 (3)
C250.115 (5)0.048 (4)0.069 (4)0.027 (4)0.021 (4)0.000 (3)
C260.117 (5)0.075 (4)0.095 (4)0.020 (4)0.030 (4)0.006 (4)
C270.097 (5)0.046 (4)0.087 (5)0.006 (4)0.010 (4)0.019 (3)
C280.119 (7)0.051 (4)0.121 (7)0.036 (4)0.023 (6)0.019 (4)
Cd10.0356 (3)0.0329 (3)0.0336 (3)0.0111 (2)0.0123 (2)0.0032 (2)
Cl10.0363 (6)0.0349 (6)0.0361 (6)0.0119 (5)0.0111 (5)0.0029 (5)
Cl20.0473 (7)0.0325 (7)0.0476 (7)0.0118 (5)0.0174 (6)0.0086 (5)
Cl30.0475 (7)0.0479 (8)0.0341 (7)0.0119 (6)0.0109 (6)0.0017 (5)
Cl40.0552 (8)0.0414 (7)0.0449 (7)0.0151 (6)0.0123 (6)0.0069 (6)
Cl50.0612 (9)0.0426 (8)0.0430 (7)0.0103 (6)0.0136 (6)0.0006 (6)
Geometric parameters (Å, º) top
N1—C11.478 (6)C16—H16C0.9600
N1—H1A0.8900C15—C181.362 (7)
N1—H1B0.8900C15—C171.372 (8)
N1—H1C0.8900C15—N31.464 (6)
C1—C41.367 (8)N3—H3A0.8900
C1—C21.371 (7)N3—H3B0.8900
C2—C31.377 (7)N3—H3C0.8900
C2—H20.9300C17—C201.380 (9)
C3—C61.387 (9)C17—H170.9300
C3—C71.512 (9)C18—C191.383 (7)
C4—C51.375 (8)C18—H180.9300
C4—H40.9300C19—C211.384 (9)
C5—C61.377 (9)C20—C211.385 (10)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—H210.9300
C7—H7A0.9600N4—C221.465 (7)
C7—H7B0.9600N4—H4A0.8900
C7—H7C0.9600N4—H4B0.8900
C8—C101.509 (8)N4—H4C0.8900
C8—H8A0.9600C22—C251.365 (8)
C8—H8B0.9600C22—C231.366 (7)
C8—H8C0.9600C23—C241.386 (8)
N2—C91.478 (6)C23—H230.9300
N2—H2A0.8900C24—C271.359 (9)
N2—H2B0.8900C24—C281.510 (8)
N2—H2C0.8900C25—C261.369 (10)
C9—C111.351 (7)C25—H250.9300
C9—C121.366 (7)C26—C271.383 (10)
C10—C131.368 (8)C26—H260.9300
C10—C111.393 (7)C27—H270.9300
C11—H110.9300C28—H28A0.9600
C12—C141.385 (8)C28—H28B0.9600
C12—H120.9300C28—H28C0.9600
C13—C141.376 (9)Cd1—Cl1i2.5425 (12)
C13—H130.9300Cd1—Cl12.5425 (12)
C14—H140.9300Cd1—Cl22.6743 (13)
C16—C191.496 (9)Cd1—Cl2i2.6743 (13)
C16—H16A0.9600Cd1—Cl32.6760 (15)
C16—H16B0.9600Cd1—Cl3i2.6760 (15)
C1—N1—H1A109.5C17—C15—N3118.5 (5)
C1—N1—H1B109.5C15—N3—H3A109.5
H1A—N1—H1B109.5C15—N3—H3B109.5
C1—N1—H1C109.5H3A—N3—H3B109.5
H1A—N1—H1C109.5C15—N3—H3C109.5
H1B—N1—H1C109.5H3A—N3—H3C109.5
C4—C1—C2121.4 (5)H3B—N3—H3C109.5
C4—C1—N1118.5 (5)C15—C17—C20118.4 (6)
C2—C1—N1120.1 (5)C15—C17—H17120.8
C1—C2—C3121.0 (5)C20—C17—H17120.8
C1—C2—H2119.5C15—C18—C19120.6 (6)
C3—C2—H2119.5C15—C18—H18119.7
C2—C3—C6117.1 (6)C19—C18—H18119.7
C2—C3—C7120.4 (6)C18—C19—C21117.7 (6)
C6—C3—C7122.5 (6)C18—C19—C16121.0 (6)
C1—C4—C5118.8 (6)C21—C19—C16121.3 (6)
C1—C4—H4120.6C17—C20—C21119.7 (6)
C5—C4—H4120.6C17—C20—H20120.1
C4—C5—C6119.7 (6)C21—C20—H20120.1
C4—C5—H5120.2C19—C21—C20121.6 (6)
C6—C5—H5120.2C19—C21—H21119.2
C5—C6—C3122.0 (6)C20—C21—H21119.2
C5—C6—H6119.0C22—N4—H4A109.5
C3—C6—H6119.0C22—N4—H4B109.5
C3—C7—H7A109.5H4A—N4—H4B109.5
C3—C7—H7B109.5C22—N4—H4C109.5
H7A—C7—H7B109.5H4A—N4—H4C109.5
C3—C7—H7C109.5H4B—N4—H4C109.5
H7A—C7—H7C109.5C25—C22—C23121.5 (5)
H7B—C7—H7C109.5C25—C22—N4119.1 (5)
C10—C8—H8A109.5C23—C22—N4119.4 (5)
C10—C8—H8B109.5C22—C23—C24120.0 (5)
H8A—C8—H8B109.5C22—C23—H23120.0
C10—C8—H8C109.5C24—C23—H23120.0
H8A—C8—H8C109.5C27—C24—C23118.8 (5)
H8B—C8—H8C109.5C27—C24—C28119.7 (6)
C9—N2—H2A109.5C23—C24—C28121.5 (6)
C9—N2—H2B109.5C22—C25—C26118.6 (6)
H2A—N2—H2B109.5C22—C25—H25120.7
C9—N2—H2C109.5C26—C25—H25120.7
H2A—N2—H2C109.5C25—C26—C27120.3 (7)
H2B—N2—H2C109.5C25—C26—H26119.8
C11—C9—C12122.6 (5)C27—C26—H26119.8
C11—C9—N2119.2 (4)C24—C27—C26120.8 (6)
C12—C9—N2118.2 (5)C24—C27—H27119.6
C13—C10—C11118.0 (5)C26—C27—H27119.6
C13—C10—C8121.5 (5)C24—C28—H28A109.5
C11—C10—C8120.5 (5)C24—C28—H28B109.5
C9—C11—C10120.1 (5)H28A—C28—H28B109.5
C9—C11—H11119.9C24—C28—H28C109.5
C10—C11—H11119.9H28A—C28—H28C109.5
C9—C12—C14117.6 (5)H28B—C28—H28C109.5
C9—C12—H12121.2Cl1i—Cd1—Cl1180.0
C14—C12—H12121.2Cl1i—Cd1—Cl291.13 (5)
C10—C13—C14121.3 (5)Cl1—Cd1—Cl288.87 (5)
C10—C13—H13119.3Cl1i—Cd1—Cl2i88.87 (5)
C14—C13—H13119.3Cl1—Cd1—Cl2i91.13 (5)
C13—C14—C12120.3 (6)Cl2—Cd1—Cl2i180.0
C13—C14—H14119.8Cl1i—Cd1—Cl389.47 (5)
C12—C14—H14119.8Cl1—Cd1—Cl390.53 (5)
C19—C16—H16A109.5Cl2—Cd1—Cl389.47 (5)
C19—C16—H16B109.5Cl2i—Cd1—Cl390.53 (5)
H16A—C16—H16B109.5Cl1i—Cd1—Cl3i90.53 (5)
C19—C16—H16C109.5Cl1—Cd1—Cl3i89.47 (5)
H16A—C16—H16C109.5Cl2—Cd1—Cl3i90.53 (5)
H16B—C16—H16C109.5Cl2i—Cd1—Cl3i89.47 (5)
C18—C15—C17122.0 (5)Cl3—Cd1—Cl3i180.0
C18—C15—N3119.5 (5)
C4—C1—C2—C30.0 (8)C18—C15—C17—C200.2 (10)
N1—C1—C2—C3177.8 (5)N3—C15—C17—C20178.3 (6)
C1—C2—C3—C60.0 (8)C17—C15—C18—C190.0 (9)
C1—C2—C3—C7177.9 (6)N3—C15—C18—C19178.1 (5)
C2—C1—C4—C51.1 (9)C15—C18—C19—C210.5 (9)
N1—C1—C4—C5178.8 (5)C15—C18—C19—C16178.6 (6)
C1—C4—C5—C62.1 (9)C15—C17—C20—C210.0 (11)
C4—C5—C6—C32.1 (10)C18—C19—C21—C200.7 (10)
C2—C3—C6—C51.1 (9)C16—C19—C21—C20178.3 (7)
C7—C3—C6—C5178.9 (6)C17—C20—C21—C190.5 (12)
C12—C9—C11—C100.6 (8)C25—C22—C23—C240.3 (9)
N2—C9—C11—C10178.3 (5)N4—C22—C23—C24178.0 (5)
C13—C10—C11—C90.2 (8)C22—C23—C24—C271.2 (9)
C8—C10—C11—C9179.4 (5)C22—C23—C24—C28178.8 (6)
C11—C9—C12—C140.8 (8)C23—C22—C25—C260.2 (12)
N2—C9—C12—C14178.2 (5)N4—C22—C25—C26178.5 (7)
C11—C10—C13—C140.0 (9)C22—C25—C26—C270.3 (14)
C8—C10—C13—C14179.7 (6)C23—C24—C27—C261.7 (12)
C10—C13—C14—C120.2 (10)C28—C24—C27—C26178.4 (8)
C9—C12—C14—C130.6 (9)C25—C26—C27—C241.2 (15)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl5ii0.892.383.264 (5)176
N1—H1B···Cl4iii0.892.473.309 (5)157
N1—H1C···Cl2iv0.892.543.329 (5)148
N1—H1C···Cl3v0.892.883.427 (5)121
N2—H2A···Cl4vi0.892.383.265 (5)176
N2—H2B···Cl3vi0.892.513.300 (5)149
N2—H2B···Cl2vii0.892.933.495 (5)123
N2—H2C···Cl5viii0.892.333.186 (5)162
N3—H3A···Cl40.892.373.254 (5)172
N3—H3B···Cl3viii0.892.613.344 (5)140
N3—H3B···Cl2viii0.892.753.367 (5)127
N3—H3C···Cl5vii0.892.443.289 (5)159
N4—H4A···Cl40.892.403.270 (5)167
N4—H4B···Cl5vii0.892.383.267 (5)177
N4—H4C···Cl20.892.553.305 (5)143
N4—H4C···Cl30.892.913.526 (5)128
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C7H10N)8[CdCl6]Cl4
Mr1332.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8863 (18), 14.116 (3), 14.251 (3)
α, β, γ (°)87.92 (3), 71.88 (3), 75.20 (3)
V3)1640.8 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.860, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
14045, 5776, 4134
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.144, 0.91
No. of reflections5776
No. of parameters348
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.39

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—Cl12.5425 (12)Cd1—Cl32.6760 (15)
Cd1—Cl22.6743 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl5i0.892.383.264 (5)176
N1—H1B···Cl4ii0.892.473.309 (5)157
N1—H1C···Cl2iii0.892.543.329 (5)148
N1—H1C···Cl3iv0.892.883.427 (5)121
N2—H2A···Cl4v0.892.383.265 (5)176
N2—H2B···Cl3v0.892.513.300 (5)149
N2—H2B···Cl2vi0.892.933.495 (5)123
N2—H2C···Cl5vii0.892.333.186 (5)162
N3—H3A···Cl40.892.373.254 (5)172
N3—H3B···Cl3vii0.892.613.344 (5)140
N3—H3B···Cl2vii0.892.753.367 (5)127
N3—H3C···Cl5vi0.892.443.289 (5)159
N4—H4A···Cl40.892.403.270 (5)167
N4—H4B···Cl5vi0.892.383.267 (5)177
N4—H4C···Cl20.892.553.305 (5)143
N4—H4C···Cl30.892.913.526 (5)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x+1, y, z.
 

Acknowledgements

The author thanks an anonymous adivisor from the Ordered Matter Science Research Centre, Southeast University, for great help with the revision of this paper.

References

First citationLiu, M.-L. (2011). Acta Cryst. E67, m1622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds