organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-hy­dr­oxy-1,1-dioxo-2-(2-phenyl­eth­yl)-2H-1λ6,2-benzo­thia­zine-3-carboxyl­ate

aDepartment of Chemistry, University of Gujrat (H. H. Campus), Gujrat 50700, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, cApplied Chemistry Research Centre PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dDepartment of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057, USA
*Correspondence e-mail: mnachemist@hotmail.com

(Received 17 November 2011; accepted 21 November 2011; online 25 November 2011)

In the title compound, C18H17NO5S, the thia­zine ring adopts a half-chair conformation and the dihedral angle between the aromatic rings is 79.41 (6)°. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions resulting in infinite sheets along the b and c axes.

Related literature

For related structures, see: Arshad et al. (2011a[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M., Shafiq, M. & Asiri, A. M. (2011a). Acta Cryst. E67, o1588-o1589.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Elsegood, M. R. J. & Weaver, G. W. (2010). Acta Cryst. E66, o333.]); Khalid et al. (2010[Khalid, Z., Siddiqui, H. L., Ahmad, M., Aslam, S. & Parvez, M. (2010). Acta Cryst. E66, o885.]). For further synthetic details, see: Arshad et al. (2011b[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011b). Asian J. Chem. 23, 2801-2805.]). For graph-set notation, see: Bernstein, et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17NO5S

  • Mr = 359.39

  • Monoclinic, P 21 /c

  • a = 9.018 (2) Å

  • b = 19.026 (4) Å

  • c = 10.193 (2) Å

  • β = 106.441 (3)°

  • V = 1677.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.37 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART 1K diffractometer with a Bruker APEXII CCD detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.982

  • 19773 measured reflections

  • 4066 independent reflections

  • 2735 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.116

  • S = 1.01

  • 4066 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.95 2.55 3.391 (3) 147
C17—H17⋯O2ii 0.95 2.53 3.205 (3) 128
C18—H18⋯O4iii 0.95 2.49 3.308 (3) 145
O1—H1⋯O4 0.92 (3) 1.74 (3) 2.583 (2) 152 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z-1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Benzothiazines molecules are well explored for their crystallographic studies (Arshad et al. 2011a), (Ahmad et al. 2010), (Khalid et al. 2010).

In the title compound, the nitrogen atom of methyl-4-hydroxy-2H-1, 2-benzothiazine-3-carboxylate 1,1-dioxide was alkylated with phenylethyl group. The thiazine ring (with root mean square deviation = 0.210Å) is oriented at dihedral angle of 13.12 (11)° with respect to the aromatic ring (C1—C6) and the S1 & N1 atoms showed deviations from the least square plane by 0.3121 (10)Å and -0.3310 (12)Å, respectively. The thiazine ring adopts a half chair conformation with puckering amplitude Q = 0.5160 (16)Å θ = 63.6 (2)°, φ = 26.3 (2)° (Cremer & Pople, 1975). The phenyl ring (C13—C17) is oriented at dihedral angle of 79.41 (6)° and 66.53 (5)° with respect to the aromatic (C1—C6) and thiazine rings respectively. The intramolecular O–H···O interaction observed and generates an almost planer S(6) ring (Bernstein, et al., 1995) with the r.m.s deviaton of 0.0131Å and produces dihedral angles of 16.02 (33)° & 15.87 (32)° with respect to the thiazine and aromatic (C1—C6) rings respectively.

Weak hydrogen bonding interactions of C—H···O type connect the molecules. The interaction C2—H2···O3 resulted in the formation of dimers which are further linked along b and c axes (Fig.2. Tab.1).

Related literature top

For related structures, see: Arshad et al. (2011a); Ahmad et al. (2010); Khalid et al. (2010). For further synthetic details, see: Arshad et al. (2011b). For graph-set notation, see: Bernstein, et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesised according to literature procedure (Arshad et al. 2011b) and crystalized in methanol under slow evaporation to yield colourless blocks.

Refinement top

All the C—H H-atoms were positioned with idealized geometry with C—Haromatic = 0.95 Å, C—Hmethylene = 0.99 Å and C—Hmethyl = 0.98 Å and were refined using a riding model with Uiso(H) = 1.2 Ueqfor aromatic C atoms. The O—H H-atom was located via fourier map with O—H = 0.92 (3) Å with Uiso(H) = 1.5 Ueqfor O atom.

Structure description top

Benzothiazines molecules are well explored for their crystallographic studies (Arshad et al. 2011a), (Ahmad et al. 2010), (Khalid et al. 2010).

In the title compound, the nitrogen atom of methyl-4-hydroxy-2H-1, 2-benzothiazine-3-carboxylate 1,1-dioxide was alkylated with phenylethyl group. The thiazine ring (with root mean square deviation = 0.210Å) is oriented at dihedral angle of 13.12 (11)° with respect to the aromatic ring (C1—C6) and the S1 & N1 atoms showed deviations from the least square plane by 0.3121 (10)Å and -0.3310 (12)Å, respectively. The thiazine ring adopts a half chair conformation with puckering amplitude Q = 0.5160 (16)Å θ = 63.6 (2)°, φ = 26.3 (2)° (Cremer & Pople, 1975). The phenyl ring (C13—C17) is oriented at dihedral angle of 79.41 (6)° and 66.53 (5)° with respect to the aromatic (C1—C6) and thiazine rings respectively. The intramolecular O–H···O interaction observed and generates an almost planer S(6) ring (Bernstein, et al., 1995) with the r.m.s deviaton of 0.0131Å and produces dihedral angles of 16.02 (33)° & 15.87 (32)° with respect to the thiazine and aromatic (C1—C6) rings respectively.

Weak hydrogen bonding interactions of C—H···O type connect the molecules. The interaction C2—H2···O3 resulted in the formation of dimers which are further linked along b and c axes (Fig.2. Tab.1).

For related structures, see: Arshad et al. (2011a); Ahmad et al. (2010); Khalid et al. (2010). For further synthetic details, see: Arshad et al. (2011b). For graph-set notation, see: Bernstein, et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labeled ortep diagram of (I) for which thermal ellipsoids were drawn at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for (I) showing the hydrogen bondings using dashed lines.
Methyl 4-hydroxy-1,1-dioxo-2-(2-phenylethyl)-2H- 1λ6,2-benzothiazine-3-carboxylate top
Crystal data top
C18H17NO5SF(000) = 752
Mr = 359.39Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2258 reflections
a = 9.018 (2) Åθ = 2.3–22.9°
b = 19.026 (4) ŵ = 0.22 mm1
c = 10.193 (2) ÅT = 100 K
β = 106.441 (3)°Block, colorless
V = 1677.3 (7) Å30.37 × 0.23 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer with a Bruker APEXII CCD detector
4066 independent reflections
Radiation source: fine-focus sealed tube2735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.922, Tmax = 0.982k = 2525
19773 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.2677P]
where P = (Fo2 + 2Fc2)/3
4066 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C18H17NO5SV = 1677.3 (7) Å3
Mr = 359.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.018 (2) ŵ = 0.22 mm1
b = 19.026 (4) ÅT = 100 K
c = 10.193 (2) Å0.37 × 0.23 × 0.08 mm
β = 106.441 (3)°
Data collection top
Bruker SMART 1K
diffractometer with a Bruker APEXII CCD detector
4066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2735 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.982Rint = 0.094
19773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.38 e Å3
4066 reflectionsΔρmin = 0.44 e Å3
230 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29319 (6)0.07784 (3)0.51969 (5)0.01673 (14)
O30.30860 (16)0.00885 (8)0.46983 (15)0.0214 (4)
O50.10038 (17)0.12689 (8)0.61803 (15)0.0231 (4)
O10.13070 (18)0.28877 (8)0.48807 (17)0.0251 (4)
O40.07394 (18)0.24350 (9)0.60086 (17)0.0276 (4)
N10.10892 (18)0.09548 (9)0.48635 (17)0.0154 (4)
O20.36535 (16)0.09408 (8)0.65995 (14)0.0227 (4)
C10.3551 (2)0.14133 (12)0.4212 (2)0.0170 (5)
C70.1578 (2)0.22064 (12)0.4703 (2)0.0182 (5)
C80.0779 (2)0.16750 (11)0.5085 (2)0.0177 (5)
C50.3377 (2)0.26007 (12)0.3379 (2)0.0220 (5)
H50.29330.30570.33000.026*
C90.0383 (2)0.18329 (12)0.5789 (2)0.0207 (5)
C60.2849 (2)0.20757 (11)0.4087 (2)0.0180 (5)
C20.4731 (2)0.12640 (12)0.3629 (2)0.0214 (5)
H20.51930.08110.37200.026*
C170.3703 (2)0.07609 (13)0.0561 (2)0.0235 (5)
H170.44940.10740.10350.028*
C180.2463 (2)0.10137 (12)0.0471 (2)0.0209 (5)
H180.24040.15000.06940.025*
C110.0022 (2)0.05922 (11)0.3704 (2)0.0170 (5)
H11A0.10820.06700.37730.020*
H11B0.01850.00810.37860.020*
C30.5220 (3)0.17932 (13)0.2911 (2)0.0270 (6)
H30.60210.17010.24960.032*
C150.2653 (3)0.03981 (13)0.0196 (2)0.0247 (5)
H150.27170.08840.04210.030*
C40.4549 (3)0.24549 (13)0.2793 (2)0.0257 (5)
H40.49010.28130.23030.031*
C120.0052 (2)0.08358 (12)0.2302 (2)0.0225 (5)
H12A0.00470.13560.22730.027*
H12B0.10290.06710.21460.027*
C140.1420 (3)0.01493 (13)0.0835 (2)0.0249 (5)
H140.06420.04670.13140.030*
C130.1300 (2)0.05577 (12)0.1181 (2)0.0196 (5)
C160.3799 (3)0.00572 (13)0.0903 (2)0.0239 (5)
H160.46430.01130.16190.029*
C100.2150 (3)0.13972 (14)0.6903 (3)0.0314 (6)
H10A0.29920.16820.63290.047*
H10B0.16690.16490.77560.047*
H10C0.25640.09480.71110.047*
H10.057 (3)0.2878 (14)0.534 (3)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0166 (2)0.0155 (3)0.0161 (3)0.0009 (2)0.0015 (2)0.0007 (2)
O30.0204 (7)0.0153 (8)0.0269 (8)0.0031 (6)0.0042 (7)0.0005 (7)
O50.0245 (8)0.0217 (9)0.0271 (9)0.0026 (7)0.0138 (7)0.0042 (7)
O10.0285 (9)0.0147 (9)0.0347 (10)0.0009 (7)0.0130 (8)0.0018 (7)
O40.0287 (9)0.0193 (9)0.0370 (10)0.0027 (7)0.0127 (8)0.0047 (7)
N10.0155 (8)0.0138 (10)0.0158 (9)0.0005 (7)0.0025 (7)0.0009 (7)
O20.0237 (8)0.0235 (9)0.0171 (8)0.0012 (7)0.0005 (7)0.0002 (7)
C10.0154 (9)0.0186 (12)0.0136 (10)0.0025 (9)0.0016 (8)0.0005 (9)
C70.0188 (10)0.0161 (12)0.0172 (11)0.0004 (9)0.0009 (9)0.0006 (9)
C80.0190 (10)0.0174 (12)0.0152 (10)0.0025 (9)0.0026 (9)0.0016 (9)
C50.0237 (11)0.0182 (12)0.0211 (12)0.0006 (9)0.0018 (10)0.0023 (9)
C90.0182 (10)0.0210 (13)0.0204 (11)0.0007 (9)0.0015 (9)0.0017 (10)
C60.0175 (10)0.0179 (12)0.0158 (11)0.0035 (9)0.0002 (9)0.0018 (9)
C20.0190 (10)0.0219 (13)0.0209 (11)0.0003 (9)0.0020 (9)0.0029 (9)
C170.0217 (11)0.0287 (14)0.0186 (11)0.0019 (10)0.0035 (9)0.0039 (10)
C180.0259 (11)0.0193 (12)0.0177 (11)0.0029 (10)0.0067 (10)0.0004 (9)
C110.0162 (10)0.0177 (12)0.0160 (10)0.0016 (8)0.0030 (9)0.0007 (8)
C30.0223 (11)0.0353 (16)0.0248 (12)0.0029 (10)0.0089 (10)0.0019 (11)
C150.0301 (12)0.0205 (13)0.0243 (12)0.0002 (10)0.0089 (10)0.0030 (10)
C40.0256 (12)0.0267 (14)0.0245 (13)0.0067 (10)0.0066 (10)0.0046 (10)
C120.0227 (10)0.0248 (13)0.0182 (11)0.0036 (10)0.0030 (9)0.0031 (10)
C140.0243 (11)0.0253 (14)0.0234 (12)0.0041 (10)0.0040 (10)0.0020 (10)
C130.0208 (11)0.0247 (13)0.0136 (10)0.0026 (9)0.0053 (9)0.0001 (9)
C160.0237 (11)0.0287 (14)0.0170 (11)0.0045 (10)0.0017 (9)0.0036 (10)
C100.0303 (12)0.0354 (16)0.0360 (14)0.0049 (11)0.0215 (12)0.0120 (12)
Geometric parameters (Å, º) top
S1—O21.4270 (15)C17—C181.386 (3)
S1—O31.4285 (16)C17—H170.9500
S1—N11.6339 (17)C18—C131.395 (3)
S1—C11.760 (2)C18—H180.9500
O5—C91.323 (3)C11—C121.521 (3)
O5—C101.449 (3)C11—H11A0.9900
O1—C71.341 (3)C11—H11B0.9900
O1—H10.92 (3)C3—C41.387 (3)
O4—C91.227 (3)C3—H30.9500
N1—C81.429 (3)C15—C141.379 (3)
N1—C111.485 (3)C15—C161.384 (3)
C1—C21.387 (3)C15—H150.9500
C1—C61.400 (3)C4—H40.9500
C7—C81.361 (3)C12—C131.511 (3)
C7—C61.475 (3)C12—H12A0.9900
C8—C91.459 (3)C12—H12B0.9900
C5—C41.382 (3)C14—C131.387 (3)
C5—C61.392 (3)C14—H140.9500
C5—H50.9500C16—H160.9500
C2—C31.389 (3)C10—H10A0.9800
C2—H20.9500C10—H10B0.9800
C17—C161.380 (3)C10—H10C0.9800
O2—S1—O3119.52 (9)C13—C18—H18119.9
O2—S1—N1108.21 (9)N1—C11—C12114.02 (17)
O3—S1—N1108.08 (9)N1—C11—H11A108.7
O2—S1—C1107.13 (9)C12—C11—H11A108.7
O3—S1—C1110.45 (10)N1—C11—H11B108.7
N1—S1—C1102.04 (9)C12—C11—H11B108.7
C9—O5—C10116.10 (18)H11A—C11—H11B107.6
C7—O1—H1103.7 (17)C4—C3—C2120.5 (2)
C8—N1—C11116.93 (16)C4—C3—H3119.7
C8—N1—S1113.41 (13)C2—C3—H3119.7
C11—N1—S1119.16 (14)C14—C15—C16120.3 (2)
C2—C1—C6121.8 (2)C14—C15—H15119.9
C2—C1—S1120.63 (17)C16—C15—H15119.9
C6—C1—S1117.50 (16)C5—C4—C3120.9 (2)
O1—C7—C8123.2 (2)C5—C4—H4119.6
O1—C7—C6114.46 (19)C3—C4—H4119.6
C8—C7—C6122.3 (2)C13—C12—C11111.30 (18)
C7—C8—N1121.54 (19)C13—C12—H12A109.4
C7—C8—C9120.0 (2)C11—C12—H12A109.4
N1—C8—C9118.38 (19)C13—C12—H12B109.4
C4—C5—C6119.7 (2)C11—C12—H12B109.4
C4—C5—H5120.1H12A—C12—H12B108.0
C6—C5—H5120.1C15—C14—C13121.0 (2)
O4—C9—O5123.2 (2)C15—C14—H14119.5
O4—C9—C8122.9 (2)C13—C14—H14119.5
O5—C9—C8113.92 (19)C14—C13—C18118.5 (2)
C5—C6—C1118.8 (2)C14—C13—C12121.3 (2)
C5—C6—C7121.3 (2)C18—C13—C12120.1 (2)
C1—C6—C7119.92 (19)C17—C16—C15119.4 (2)
C1—C2—C3118.3 (2)C17—C16—H16120.3
C1—C2—H2120.8C15—C16—H16120.3
C3—C2—H2120.8O5—C10—H10A109.5
C16—C17—C18120.5 (2)O5—C10—H10B109.5
C16—C17—H17119.8H10A—C10—H10B109.5
C18—C17—H17119.8O5—C10—H10C109.5
C17—C18—C13120.3 (2)H10A—C10—H10C109.5
C17—C18—H18119.9H10B—C10—H10C109.5
O2—S1—N1—C859.99 (16)C4—C5—C6—C7178.7 (2)
O3—S1—N1—C8169.24 (14)C2—C1—C6—C51.3 (3)
C1—S1—N1—C852.79 (16)S1—C1—C6—C5176.40 (16)
O2—S1—N1—C11156.23 (15)C2—C1—C6—C7178.87 (19)
O3—S1—N1—C1125.46 (18)S1—C1—C6—C73.5 (3)
C1—S1—N1—C1190.99 (17)O1—C7—C6—C518.7 (3)
O2—S1—C1—C299.50 (18)C8—C7—C6—C5162.8 (2)
O3—S1—C1—C232.19 (19)O1—C7—C6—C1161.14 (18)
N1—S1—C1—C2146.92 (17)C8—C7—C6—C117.4 (3)
O2—S1—C1—C678.19 (17)C6—C1—C2—C30.3 (3)
O3—S1—C1—C6150.11 (15)S1—C1—C2—C3177.31 (16)
N1—S1—C1—C635.39 (18)C16—C17—C18—C130.4 (3)
O1—C7—C8—N1179.24 (18)C8—N1—C11—C1271.0 (2)
C6—C7—C8—N12.4 (3)S1—N1—C11—C1271.6 (2)
O1—C7—C8—C93.3 (3)C1—C2—C3—C40.5 (3)
C6—C7—C8—C9175.06 (18)C6—C5—C4—C30.6 (3)
C11—N1—C8—C7103.1 (2)C2—C3—C4—C50.4 (3)
S1—N1—C8—C741.5 (2)N1—C11—C12—C13168.72 (18)
C11—N1—C8—C979.4 (2)C16—C15—C14—C130.1 (3)
S1—N1—C8—C9136.00 (16)C15—C14—C13—C180.5 (3)
C10—O5—C9—O40.2 (3)C15—C14—C13—C12179.6 (2)
C10—O5—C9—C8179.15 (18)C17—C18—C13—C140.2 (3)
C7—C8—C9—O43.4 (3)C17—C18—C13—C12179.85 (19)
N1—C8—C9—O4179.04 (19)C11—C12—C13—C1470.4 (3)
C7—C8—C9—O5175.93 (18)C11—C12—C13—C18109.5 (2)
N1—C8—C9—O51.6 (3)C18—C17—C16—C150.8 (3)
C4—C5—C6—C11.4 (3)C14—C15—C16—C170.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.553.391 (3)147
C17—H17···O2ii0.952.533.205 (3)128
C18—H18···O4iii0.952.493.308 (3)145
O1—H1···O40.92 (3)1.74 (3)2.583 (2)152 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H17NO5S
Mr359.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.018 (2), 19.026 (4), 10.193 (2)
β (°) 106.441 (3)
V3)1677.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.37 × 0.23 × 0.08
Data collection
DiffractometerBruker SMART 1K
diffractometer with a Bruker APEXII CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.922, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19773, 4066, 2735
Rint0.094
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.116, 1.01
No. of reflections4066
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.44

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.553.391 (3)147
C17—H17···O2ii0.952.533.205 (3)128
C18—H18···O4iii0.952.493.308 (3)145
O1—H1···O40.92 (3)1.74 (3)2.583 (2)152 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

MNA acknowledges the HEC for providing a fellowship under the Inter­national Research Support Initiative Program (IRSIP).

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Elsegood, M. R. J. & Weaver, G. W. (2010). Acta Cryst. E66, o333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011b). Asian J. Chem. 23, 2801–2805.  CAS Google Scholar
First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M., Shafiq, M. & Asiri, A. M. (2011a). Acta Cryst. E67, o1588-o1589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhalid, Z., Siddiqui, H. L., Ahmad, M., Aslam, S. & Parvez, M. (2010). Acta Cryst. E66, o885.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds