organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Benzyl­phen­yl)propan-2-ol

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cR. L. Fine Chem., Bangalore 560 064, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 28 October 2011; accepted 8 November 2011; online 12 November 2011)

There are two mol­ecules in the asymmetric unit of the title compound, C16H18O, a tertiary alcohol featuring a 2-benzyl­phenyl substituent. Co-operative O—H⋯O hydrogen bonds connect the mol­ecules into tetra­mers.

Related literature

For general background to the use of benzhydrols in pharmaceutical synthesis, see: Ohkuma et al. (2000[Ohkuma, T., Koizumi, M., Ikehira, H., Yokozawa, T. & Noyori, R. (2000). Org. Lett. 2, 659-662.]). For related structures, see: Ferguson et al. (1995[Ferguson, G., Carroll, C. D., Glidewell, C., Zakaria, C. M. & Lough, A. J. (1995). Acta Cryst. B51, 367-377.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, o808-o809.]); Siddaraju et al. (2010[Siddaraju, B. P., Yathirajan, H. S., Narayana, B., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2136.], 2011[Siddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2397.]); Zeng & Liu (2010[Zeng, H. & Liu, X.-L. (2010). Acta Cryst. E66, o2956.]); Gu et al. (2009[Gu, L., Yang, B., Liu, F. & Bai, Y. (2009). Chin. J. Chem. 27, 1199-1201.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O

  • Mr = 226.30

  • Monoclinic, P 21 /c

  • a = 12.2252 (3) Å

  • b = 17.2508 (4) Å

  • c = 16.7784 (3) Å

  • β = 132.549 (1)°

  • V = 2606.79 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.59 × 0.51 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 1.000

  • 24429 measured reflections

  • 6480 independent reflections

  • 5035 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.148

  • S = 1.05

  • 6480 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.98 2.7997 (14) 166
O2—H2⋯O1 0.84 1.94 2.7486 (14) 161
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-(2-Benzylphenyl)propan-2-ol is used in synthetic organic chemistry for the preparation of many organic compounds including anthrone. Benzhydrols are widely used as intermediates for the synthesis of pharmaceuticals (Ohkuma et al., 2000). The crystal structures of 2-(5-bromo-2-methylphenyl)propan-2-ol (Zeng & Liu, 2010), 10,10-dimethylanthrone (Fun et al., 2010), (2-methylphenyl)(phenyl)methanol (Siddaraju et al., 2010), 9,9-dimethyl-9,10-dihydroanthracene (Siddaraju et al., 2011) and a N,N-dimethylamino-substituted analogue of the title compound (Gu et al., 2009) have been reported earlier. In view of the importance of the title compound, its crystal structure was determined.

The asymmetric unit contains two complete molecules. The least-squares planes defined by the carbon atoms of the different phenyl moieties in each molecule enclose angles of 82.58 (10)° and 88.66 (13)°, respectively (Fig. 1).

In the crystal, cooperative hydrogen bonds connect the molecules to discrete tetramers. The plane defined by the atoms of the participating hydroxyl groups is perpendicular to the crystallographic b axis. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonds is DD on the unitary level and R44(8) on the binary level. The shortest intercentroid distance between two aromatic systems was measured at 4.9147 (14) Å and is observed between the two different phenyl rings of one of the molecules present in the asymmetric unit and its symmetry-generated equivalent (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For general background to the use of benzhydrols in pharmaceutical synthesis, see: Ohkuma et al. (2000). For related structures, see: Ferguson et al. (1995); Fun et al. (2010); Siddaraju et al. (2010, 2011); Zeng & Liu (2010); Gu et al. (2009). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. X-ray quality crystals were obtained by slow evaporation from toluene solution at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). Both oxygen-bound H atoms were placed in calculated positions (O—H 0.94 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.5Ueq(O).

Structure description top

2-(2-Benzylphenyl)propan-2-ol is used in synthetic organic chemistry for the preparation of many organic compounds including anthrone. Benzhydrols are widely used as intermediates for the synthesis of pharmaceuticals (Ohkuma et al., 2000). The crystal structures of 2-(5-bromo-2-methylphenyl)propan-2-ol (Zeng & Liu, 2010), 10,10-dimethylanthrone (Fun et al., 2010), (2-methylphenyl)(phenyl)methanol (Siddaraju et al., 2010), 9,9-dimethyl-9,10-dihydroanthracene (Siddaraju et al., 2011) and a N,N-dimethylamino-substituted analogue of the title compound (Gu et al., 2009) have been reported earlier. In view of the importance of the title compound, its crystal structure was determined.

The asymmetric unit contains two complete molecules. The least-squares planes defined by the carbon atoms of the different phenyl moieties in each molecule enclose angles of 82.58 (10)° and 88.66 (13)°, respectively (Fig. 1).

In the crystal, cooperative hydrogen bonds connect the molecules to discrete tetramers. The plane defined by the atoms of the participating hydroxyl groups is perpendicular to the crystallographic b axis. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonds is DD on the unitary level and R44(8) on the binary level. The shortest intercentroid distance between two aromatic systems was measured at 4.9147 (14) Å and is observed between the two different phenyl rings of one of the molecules present in the asymmetric unit and its symmetry-generated equivalent (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

For general background to the use of benzhydrols in pharmaceutical synthesis, see: Ohkuma et al. (2000). For related structures, see: Ferguson et al. (1995); Fun et al. (2010); Siddaraju et al. (2010, 2011); Zeng & Liu (2010); Gu et al. (2009). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level). For clarity, only one of the molecules present in the asymmetric unit is shown.
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 1 0]. Symmetry operator: i -x + 1, -y, -z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-(2-Benzylphenyl)propan-2-ol top
Crystal data top
C16H18OF(000) = 976
Mr = 226.30Dx = 1.153 Mg m3
Monoclinic, P21/cMelting point = 333–335 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.2252 (3) ÅCell parameters from 9880 reflections
b = 17.2508 (4) Åθ = 2.6–28.3°
c = 16.7784 (3) ŵ = 0.07 mm1
β = 132.549 (1)°T = 200 K
V = 2606.79 (10) Å3Block, colourless
Z = 80.59 × 0.51 × 0.34 mm
Data collection top
Bruker APEXII CCD
diffractometer
6480 independent reflections
Radiation source: fine-focus sealed tube5035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.901, Tmax = 1.000k = 2321
24429 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.964P]
where P = (Fo2 + 2Fc2)/3
6480 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C16H18OV = 2606.79 (10) Å3
Mr = 226.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.2252 (3) ŵ = 0.07 mm1
b = 17.2508 (4) ÅT = 200 K
c = 16.7784 (3) Å0.59 × 0.51 × 0.34 mm
β = 132.549 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6480 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5035 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 1.000Rint = 0.015
24429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
6480 reflectionsΔρmin = 0.57 e Å3
311 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57510 (11)0.02752 (6)0.13404 (8)0.0415 (2)
H10.48650.01340.08480.062*
C10.61107 (17)0.03064 (8)0.23555 (12)0.0402 (3)
C20.77983 (18)0.02453 (11)0.32472 (13)0.0528 (4)
H2A0.82560.06770.31830.079*
H2B0.80960.02670.39550.079*
H2C0.81260.02470.31760.079*
C30.5637 (2)0.11099 (9)0.24153 (17)0.0610 (5)
H3A0.45540.11560.18500.092*
H3B0.59550.11790.31260.092*
H3C0.60980.15090.23080.092*
C40.6403 (3)0.13895 (10)0.2002 (2)0.0778 (7)
H4A0.74560.13550.26870.093*
H4B0.62590.10200.14870.093*
C110.53379 (15)0.03600 (8)0.24184 (11)0.0357 (3)
C120.45154 (19)0.01992 (9)0.26930 (13)0.0477 (4)
H120.44520.03230.28400.057*
C130.3783 (2)0.07688 (10)0.27620 (14)0.0505 (4)
H130.32350.06370.29560.061*
C140.38553 (18)0.15206 (9)0.25495 (13)0.0458 (3)
H140.33430.19160.25790.055*
C150.46826 (19)0.16975 (9)0.22906 (15)0.0499 (4)
H150.47440.22230.21550.060*
C160.54339 (17)0.11350 (8)0.22197 (13)0.0428 (3)
C210.61156 (17)0.21996 (8)0.15524 (13)0.0428 (3)
C220.70386 (17)0.27937 (10)0.22356 (13)0.0495 (4)
H220.78280.26970.29870.059*
C230.6818 (2)0.35404 (11)0.1827 (2)0.0677 (6)
H230.74590.39520.22940.081*
C240.5661 (3)0.36713 (14)0.0742 (2)0.0802 (8)
H240.54950.41770.04550.096*
C250.4755 (3)0.30789 (18)0.00804 (18)0.0823 (8)
H250.39490.31730.06690.099*
C260.49900 (19)0.23568 (14)0.04793 (15)0.0637 (5)
H260.43550.19480.00000.076*
O20.70453 (11)0.02771 (7)0.04946 (8)0.0462 (3)
H20.68410.03210.08800.069*
C50.85971 (15)0.04565 (9)0.11354 (12)0.0438 (3)
C60.8862 (2)0.04113 (13)0.03673 (15)0.0625 (5)
H6A0.81880.07690.02390.094*
H6B0.98920.05550.07570.094*
H6C0.86770.01190.00910.094*
C70.8837 (2)0.12903 (10)0.15236 (17)0.0607 (5)
H7A0.86220.13330.19890.091*
H7B0.98700.14400.19330.091*
H7C0.81720.16340.08980.091*
C80.81113 (17)0.13174 (10)0.07974 (14)0.0516 (4)
H8A0.76570.09190.02260.062*
H8B0.73240.15200.07650.062*
C310.95608 (15)0.01350 (9)0.20631 (11)0.0376 (3)
C321.07226 (16)0.01306 (10)0.31153 (12)0.0449 (3)
H321.09150.06710.32370.054*
C331.16028 (18)0.03729 (11)0.39872 (13)0.0538 (4)
H331.23980.01790.46930.065*
C341.1315 (2)0.11554 (12)0.38212 (14)0.0579 (4)
H341.18880.15040.44150.069*
C351.01901 (19)0.14296 (10)0.27878 (14)0.0530 (4)
H351.00080.19720.26790.064*
C360.93098 (16)0.09365 (9)0.18956 (12)0.0416 (3)
C410.86805 (17)0.19740 (9)0.05614 (12)0.0436 (3)
C420.7984 (2)0.26888 (10)0.02209 (14)0.0553 (4)
H420.71610.27750.01590.066*
C430.8475 (3)0.32829 (10)0.00309 (15)0.0645 (5)
H430.79880.37710.02610.077*
C440.9662 (2)0.31676 (11)0.00512 (14)0.0609 (5)
H440.99920.35730.01270.073*
C451.0364 (2)0.24642 (12)0.03907 (15)0.0602 (5)
H451.11880.23820.04520.072*
C460.98818 (18)0.18725 (10)0.06445 (14)0.0523 (4)
H461.03810.13870.08800.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0422 (5)0.0485 (6)0.0408 (5)0.0068 (4)0.0309 (5)0.0031 (4)
C10.0500 (8)0.0371 (7)0.0435 (7)0.0075 (6)0.0357 (7)0.0070 (6)
C20.0503 (9)0.0608 (10)0.0449 (8)0.0198 (8)0.0312 (8)0.0135 (7)
C30.0907 (14)0.0371 (8)0.0856 (13)0.0084 (8)0.0718 (12)0.0095 (8)
C40.1053 (16)0.0417 (9)0.155 (2)0.0107 (10)0.1157 (18)0.0167 (11)
C110.0390 (7)0.0374 (7)0.0348 (6)0.0026 (5)0.0266 (6)0.0025 (5)
C120.0650 (10)0.0435 (8)0.0574 (9)0.0039 (7)0.0505 (9)0.0076 (7)
C130.0627 (10)0.0563 (9)0.0594 (9)0.0027 (8)0.0521 (9)0.0028 (7)
C140.0511 (8)0.0482 (8)0.0511 (8)0.0061 (7)0.0397 (8)0.0009 (7)
C150.0612 (10)0.0369 (7)0.0721 (11)0.0035 (7)0.0534 (9)0.0023 (7)
C160.0488 (8)0.0370 (7)0.0592 (9)0.0019 (6)0.0431 (8)0.0027 (6)
C210.0469 (8)0.0382 (7)0.0617 (9)0.0000 (6)0.0441 (8)0.0013 (6)
C220.0394 (8)0.0564 (9)0.0490 (8)0.0028 (7)0.0284 (7)0.0002 (7)
C230.0699 (12)0.0452 (9)0.1210 (18)0.0125 (9)0.0779 (14)0.0186 (10)
C240.1033 (17)0.0689 (13)0.131 (2)0.0483 (13)0.1041 (18)0.0576 (14)
C250.0711 (13)0.130 (2)0.0627 (12)0.0475 (15)0.0519 (12)0.0401 (14)
C260.0414 (8)0.0981 (15)0.0513 (9)0.0025 (9)0.0312 (8)0.0142 (10)
O20.0325 (5)0.0694 (7)0.0390 (5)0.0031 (5)0.0250 (4)0.0037 (5)
C50.0329 (7)0.0575 (9)0.0430 (7)0.0033 (6)0.0264 (6)0.0094 (6)
C60.0501 (9)0.0949 (14)0.0561 (10)0.0121 (9)0.0413 (9)0.0238 (9)
C70.0496 (9)0.0517 (10)0.0764 (12)0.0062 (8)0.0407 (9)0.0144 (9)
C80.0389 (8)0.0609 (10)0.0589 (9)0.0083 (7)0.0346 (8)0.0143 (8)
C310.0324 (6)0.0485 (8)0.0387 (7)0.0004 (6)0.0267 (6)0.0020 (6)
C320.0381 (7)0.0542 (9)0.0436 (8)0.0022 (6)0.0281 (7)0.0033 (6)
C330.0401 (8)0.0783 (12)0.0377 (8)0.0057 (8)0.0242 (7)0.0019 (7)
C340.0540 (9)0.0730 (12)0.0513 (9)0.0205 (9)0.0375 (8)0.0225 (8)
C350.0561 (9)0.0486 (9)0.0644 (10)0.0069 (7)0.0448 (9)0.0094 (7)
C360.0372 (7)0.0492 (8)0.0463 (8)0.0002 (6)0.0314 (7)0.0001 (6)
C410.0424 (7)0.0478 (8)0.0458 (8)0.0049 (6)0.0319 (7)0.0033 (6)
C420.0642 (10)0.0543 (10)0.0572 (10)0.0153 (8)0.0450 (9)0.0058 (8)
C430.0912 (14)0.0414 (9)0.0548 (10)0.0062 (9)0.0469 (11)0.0019 (7)
C440.0717 (12)0.0561 (10)0.0462 (9)0.0214 (9)0.0364 (9)0.0070 (8)
C450.0528 (10)0.0733 (12)0.0604 (10)0.0111 (9)0.0406 (9)0.0002 (9)
C460.0474 (9)0.0530 (9)0.0646 (10)0.0060 (7)0.0412 (8)0.0072 (8)
Geometric parameters (Å, º) top
O1—C11.4437 (16)O2—C51.4464 (17)
O1—H10.8400O2—H20.8399
C1—C21.527 (2)C5—C71.523 (2)
C1—C31.531 (2)C5—C61.529 (2)
C1—C111.5364 (19)C5—C311.540 (2)
C2—H2A0.9800C6—H6A0.9800
C2—H2B0.9800C6—H6B0.9800
C2—H2C0.9800C6—H6C0.9800
C3—H3A0.9800C7—H7A0.9800
C3—H3B0.9800C7—H7B0.9800
C3—H3C0.9800C7—H7C0.9800
C4—C211.512 (2)C8—C411.515 (2)
C4—C161.522 (2)C8—C361.524 (2)
C4—H4A0.9900C8—H8A0.9900
C4—H4B0.9900C8—H8B0.9900
C11—C121.3881 (19)C31—C321.397 (2)
C11—C161.4018 (19)C31—C361.403 (2)
C12—C131.386 (2)C32—C331.387 (2)
C12—H120.9500C32—H320.9500
C13—C141.364 (2)C33—C341.375 (3)
C13—H130.9500C33—H330.9500
C14—C151.378 (2)C34—C351.377 (3)
C14—H140.9500C34—H340.9500
C15—C161.396 (2)C35—C361.394 (2)
C15—H150.9500C35—H350.9500
C21—C261.363 (2)C41—C421.384 (2)
C21—C221.374 (2)C41—C461.389 (2)
C22—C231.397 (3)C42—C431.390 (3)
C22—H220.9500C42—H420.9500
C23—C241.372 (3)C43—C441.377 (3)
C23—H230.9500C43—H430.9500
C24—C251.357 (4)C44—C451.368 (3)
C24—H240.9500C44—H440.9500
C25—C261.350 (3)C45—C461.382 (2)
C25—H250.9500C45—H450.9500
C26—H260.9500C46—H460.9500
C1—O1—H1109.4C5—O2—H2109.3
O1—C1—C2106.57 (12)O2—C5—C7107.22 (12)
O1—C1—C3106.50 (13)O2—C5—C6106.36 (13)
C2—C1—C3108.58 (14)C7—C5—C6108.63 (14)
O1—C1—C11110.01 (11)O2—C5—C31109.39 (11)
C2—C1—C11111.55 (12)C7—C5—C31113.51 (13)
C3—C1—C11113.30 (12)C6—C5—C31111.40 (12)
C1—C2—H2A109.5C5—C6—H6A109.5
C1—C2—H2B109.5C5—C6—H6B109.5
H2A—C2—H2B109.5H6A—C6—H6B109.5
C1—C2—H2C109.5C5—C6—H6C109.5
H2A—C2—H2C109.5H6A—C6—H6C109.5
H2B—C2—H2C109.5H6B—C6—H6C109.5
C1—C3—H3A109.5C5—C7—H7A109.5
C1—C3—H3B109.5C5—C7—H7B109.5
H3A—C3—H3B109.5H7A—C7—H7B109.5
C1—C3—H3C109.5C5—C7—H7C109.5
H3A—C3—H3C109.5H7A—C7—H7C109.5
H3B—C3—H3C109.5H7B—C7—H7C109.5
C21—C4—C16115.49 (14)C41—C8—C36113.72 (13)
C21—C4—H4A108.4C41—C8—H8A108.8
C16—C4—H4A108.4C36—C8—H8A108.8
C21—C4—H4B108.4C41—C8—H8B108.8
C16—C4—H4B108.4C36—C8—H8B108.8
H4A—C4—H4B107.5H8A—C8—H8B107.7
C12—C11—C16117.75 (13)C32—C31—C36118.29 (13)
C12—C11—C1119.36 (12)C32—C31—C5119.27 (14)
C16—C11—C1122.89 (12)C36—C31—C5122.44 (13)
C13—C12—C11122.68 (14)C33—C32—C31121.87 (16)
C13—C12—H12118.7C33—C32—H32119.1
C11—C12—H12118.7C31—C32—H32119.1
C14—C13—C12119.51 (14)C34—C33—C32119.43 (16)
C14—C13—H13120.2C34—C33—H33120.3
C12—C13—H13120.2C32—C33—H33120.3
C13—C14—C15118.97 (14)C33—C34—C35119.54 (16)
C13—C14—H14120.5C33—C34—H34120.2
C15—C14—H14120.5C35—C34—H34120.2
C14—C15—C16122.58 (15)C34—C35—C36122.06 (17)
C14—C15—H15118.7C34—C35—H35119.0
C16—C15—H15118.7C36—C35—H35119.0
C15—C16—C11118.50 (13)C35—C36—C31118.74 (14)
C15—C16—C4118.95 (14)C35—C36—C8116.63 (15)
C11—C16—C4122.44 (13)C31—C36—C8124.63 (14)
C26—C21—C22118.66 (16)C42—C41—C46117.88 (15)
C26—C21—C4121.96 (18)C42—C41—C8120.72 (14)
C22—C21—C4119.35 (17)C46—C41—C8121.37 (14)
C21—C22—C23120.08 (17)C41—C42—C43120.72 (17)
C21—C22—H22120.0C41—C42—H42119.6
C23—C22—H22120.0C43—C42—H42119.6
C24—C23—C22119.11 (19)C44—C43—C42120.39 (17)
C24—C23—H23120.4C44—C43—H43119.8
C22—C23—H23120.4C42—C43—H43119.8
C25—C24—C23120.03 (18)C45—C44—C43119.46 (17)
C25—C24—H24120.0C45—C44—H44120.3
C23—C24—H24120.0C43—C44—H44120.3
C26—C25—C24120.5 (2)C44—C45—C46120.31 (17)
C26—C25—H25119.8C44—C45—H45119.8
C24—C25—H25119.8C46—C45—H45119.8
C25—C26—C21121.7 (2)C45—C46—C41121.23 (16)
C25—C26—H26119.2C45—C46—H46119.4
C21—C26—H26119.2C41—C46—H46119.4
O1—C1—C11—C12129.43 (14)O2—C5—C31—C32131.82 (13)
C2—C1—C11—C12112.53 (16)C7—C5—C31—C3212.12 (18)
C3—C1—C11—C1210.4 (2)C6—C5—C31—C32110.88 (16)
O1—C1—C11—C1651.21 (18)O2—C5—C31—C3647.57 (17)
C2—C1—C11—C1666.83 (18)C7—C5—C31—C36167.27 (13)
C3—C1—C11—C16170.28 (15)C6—C5—C31—C3669.72 (18)
C16—C11—C12—C130.9 (2)C36—C31—C32—C331.1 (2)
C1—C11—C12—C13179.75 (15)C5—C31—C32—C33178.27 (13)
C11—C12—C13—C140.3 (3)C31—C32—C33—C341.2 (2)
C12—C13—C14—C151.2 (3)C32—C33—C34—C352.2 (2)
C13—C14—C15—C161.1 (3)C33—C34—C35—C360.9 (2)
C14—C15—C16—C110.1 (3)C34—C35—C36—C311.4 (2)
C14—C15—C16—C4176.00 (18)C34—C35—C36—C8179.60 (14)
C12—C11—C16—C151.0 (2)C32—C31—C36—C352.39 (19)
C1—C11—C16—C15179.59 (14)C5—C31—C36—C35177.01 (12)
C12—C11—C16—C4174.93 (18)C32—C31—C36—C8178.73 (12)
C1—C11—C16—C44.4 (3)C5—C31—C36—C81.9 (2)
C21—C4—C16—C1517.7 (3)C41—C8—C36—C3551.16 (19)
C21—C4—C16—C11166.40 (17)C41—C8—C36—C31129.93 (15)
C16—C4—C21—C2681.9 (2)C36—C8—C41—C42129.26 (16)
C16—C4—C21—C22100.1 (2)C36—C8—C41—C4652.9 (2)
C26—C21—C22—C230.2 (2)C46—C41—C42—C430.1 (3)
C4—C21—C22—C23177.91 (14)C8—C41—C42—C43177.79 (16)
C21—C22—C23—C240.8 (2)C41—C42—C43—C440.2 (3)
C22—C23—C24—C250.3 (3)C42—C43—C44—C450.5 (3)
C23—C24—C25—C260.7 (3)C43—C44—C45—C460.3 (3)
C24—C25—C26—C211.3 (3)C44—C45—C46—C410.1 (3)
C22—C21—C26—C250.8 (2)C42—C41—C46—C450.3 (3)
C4—C21—C26—C25178.88 (16)C8—C41—C46—C45177.62 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.982.7997 (14)166
O2—H2···O10.841.942.7486 (14)161
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H18O
Mr226.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.2252 (3), 17.2508 (4), 16.7784 (3)
β (°) 132.549 (1)
V3)2606.79 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.59 × 0.51 × 0.34
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.901, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24429, 6480, 5035
Rint0.015
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.148, 1.05
No. of reflections6480
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.57

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.982.7997 (14)165.5
O2—H2···O10.841.942.7486 (14)160.8
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

BPS thanks the University of Mysore for research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Carroll, C. D., Glidewell, C., Zakaria, C. M. & Lough, A. J. (1995). Acta Cryst. B51, 367–377.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, o808–o809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, L., Yang, B., Liu, F. & Bai, Y. (2009). Chin. J. Chem. 27, 1199–1201.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhkuma, T., Koizumi, M., Ikehira, H., Yokozawa, T. & Noyori, R. (2000). Org. Lett. 2, 659–662.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddaraju, B. P., Yathirajan, H. S., Narayana, B., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, H. & Liu, X.-L. (2010). Acta Cryst. E66, o2956.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds