organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(4-chloro-3,5-di­nitro­benz­amido)­acetate

aHenan University of Traditional Medicine, Zhengzhou 450008, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 23 November 2011; accepted 24 November 2011; online 30 November 2011)

The title mol­ecule, C10H8ClN3O7, is twisted with the dihedral angle between the amide and benzene ring being 38.75 (11)°. The C—N—C—C torsion angle between the amide and acetyl groups is −150.1 (2)°. Finally, each nitro group is twisted out of the plane of the benzene ring to which it is connected [O—N—C—C torsion angles = 34.0 (3) and −64.5 (3)°]. Linear supra­molecular chains along [010] and mediated by N—H⋯O hydrogen bonds between successive amide groups dominate the crystal packing. The chains are consolidated into the three-dimensional structure by C—H⋯O contacts.

Related literature

For biological and crystal engineering studies of related compounds, see: Liu et al. (2009[Liu, J., Fu, Z., Wang, Y., Schmitt, M., Huang, A., Marshall, D., Tonn, G., Seitz, L., Sullivan, T., Tang, H. L., Collins, T. & Medina, J. (2009). Bioorg. Med. Chem. Lett. 19, 6419-6423.]); Eissmann & Weber (2011[Eissmann, F. & Weber, E. (2011). J. Mol. Struct. 994, 392-402.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClN3O7

  • Mr = 317.64

  • Orthorhombic, P n a 21

  • a = 14.5219 (5) Å

  • b = 4.7949 (2) Å

  • c = 18.5368 (6) Å

  • V = 1290.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.906, Tmax = 0.967

  • 4743 measured reflections

  • 2258 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.08

  • 2258 reflections

  • 194 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 725 Friedel pairs

  • Flack parameter: −0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 (1) 1.99 (1) 2.833 (3) 163 (3)
C1—H1a⋯O7ii 0.98 2.59 3.460 (3) 148
C3—H3a⋯O6iii 0.99 2.53 3.502 (3) 169
C3—H3b⋯O2iv 0.99 2.42 3.380 (3) 162
C10—H10⋯O5v 0.95 2.37 3.223 (3) 149
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Molecules related to the title compound, (I), attract interest for their biological properties (Liu et al., 2009) and also in terms of crystal engineering endeavours (Eissmann & Weber, 2011). In (I), Fig. 1, the dihedral angle between the amide (O3,N1,C4) atoms and the benzene ring is 38.75 (11)°. The acetyl group is also twisted out of the plane of the amide group with the C4—N1—C3—C2 torsion angle being -150.1 (2)°. Each nitro group is twisted out of the plane of the benzene ring to which it is connected with the O4—N2—C7—C6 torsion angle = 34.0 (3)° and with O6—N3—C9—C8 = -64.5 (3)°.

The crystal packing is dominated by the formation of linear supramolecular chains along the b axis and mediated by N—H···O hydrogen bonds involving the amide group, Fig. 2 and Table 1. Chains are consolidated in the crystal packing by C—H···O interactions, Fig. 3 and Table 1.

Related literature top

For biological and crystal engineering studies of related compounds, see: Liu et al. (2009); Eissmann & Weber (2011).

Experimental top

To a solution of 4-chloro-3,5-dinitrobenzoic acid (0.48 g, 2 mmol) in dichloromethane (30 ml) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimidehydrochloride (0.40 g, 2.1 mmol) and N,N-dimethylaminopyridine (25 mg, 0.2 mmol). The mixture was stirred at room temperature for an hour. Methyl 2-aminoacetate (178 mg, 2 mmol) in chloroform (20 ml) along with several drops of triethylamine were added. After another six hours, the mixture was subjected to chromatography (petroleum ether/acetone 4:1) to provide the product as a yellow solid (501.5 mg, 80% yield). Crystals were grown from a mixture of dichloromethane and n-hexane (1:1 v/v).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N—H 0.88±0.01 Å, and with free Uiso.

Structure description top

Molecules related to the title compound, (I), attract interest for their biological properties (Liu et al., 2009) and also in terms of crystal engineering endeavours (Eissmann & Weber, 2011). In (I), Fig. 1, the dihedral angle between the amide (O3,N1,C4) atoms and the benzene ring is 38.75 (11)°. The acetyl group is also twisted out of the plane of the amide group with the C4—N1—C3—C2 torsion angle being -150.1 (2)°. Each nitro group is twisted out of the plane of the benzene ring to which it is connected with the O4—N2—C7—C6 torsion angle = 34.0 (3)° and with O6—N3—C9—C8 = -64.5 (3)°.

The crystal packing is dominated by the formation of linear supramolecular chains along the b axis and mediated by N—H···O hydrogen bonds involving the amide group, Fig. 2 and Table 1. Chains are consolidated in the crystal packing by C—H···O interactions, Fig. 3 and Table 1.

For biological and crystal engineering studies of related compounds, see: Liu et al. (2009); Eissmann & Weber (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Supramolecular linear chain along the b axis in (I). The N—H···O contacts are shown as blue dashed lines.
[Figure 3] Fig. 3. A view of the unit-cell contents of (I) in projection down the a axis. The N—H···O and C—H···O interactions are shown as blue and orange dashed lines, respectively.
Methyl 2-(4-chloro-3,5-dinitrobenzamido)acetate top
Crystal data top
C10H8ClN3O7F(000) = 648
Mr = 317.64Dx = 1.635 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2633 reflections
a = 14.5219 (5) Åθ = 2.6–27.5°
b = 4.7949 (2) ŵ = 0.34 mm1
c = 18.5368 (6) ÅT = 100 K
V = 1290.74 (8) Å3Prism, yellow
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2258 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2134 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scanh = 1318
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 65
Tmin = 0.906, Tmax = 0.967l = 1724
4743 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.1422P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2258 reflectionsΔρmax = 0.22 e Å3
194 parametersΔρmin = 0.25 e Å3
2 restraintsAbsolute structure: Flack (1983), 725 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C10H8ClN3O7V = 1290.74 (8) Å3
Mr = 317.64Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.5219 (5) ŵ = 0.34 mm1
b = 4.7949 (2) ÅT = 100 K
c = 18.5368 (6) Å0.30 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2258 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2134 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.967Rint = 0.030
4743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.22 e Å3
S = 1.08Δρmin = 0.25 e Å3
2258 reflectionsAbsolute structure: Flack (1983), 725 Friedel pairs
194 parametersAbsolute structure parameter: 0.05 (6)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97666 (4)0.68297 (13)0.49982 (3)0.02449 (14)
O10.46196 (11)0.5789 (4)0.87399 (9)0.0214 (4)
O20.51448 (12)0.8605 (3)0.78629 (9)0.0232 (4)
O30.73214 (11)0.1135 (3)0.76810 (9)0.0212 (4)
O41.03518 (12)0.0525 (4)0.65033 (11)0.0278 (4)
O51.09547 (11)0.4311 (4)0.60728 (11)0.0282 (4)
O60.81733 (12)1.0984 (3)0.50745 (10)0.0286 (4)
O70.71827 (12)0.7754 (4)0.48417 (10)0.0329 (5)
N10.67321 (13)0.5506 (4)0.77382 (11)0.0154 (4)
N21.03014 (12)0.2929 (4)0.62781 (11)0.0188 (4)
N30.78247 (13)0.8709 (4)0.51797 (10)0.0179 (4)
C10.37848 (17)0.7447 (6)0.87927 (14)0.0260 (5)
H1A0.33790.66410.91600.039*
H1B0.34690.74540.83260.039*
H1C0.39440.93630.89280.039*
C20.52388 (15)0.6648 (5)0.82581 (12)0.0152 (5)
C30.60829 (15)0.4829 (5)0.83024 (12)0.0180 (5)
H3A0.63810.50850.87780.022*
H3B0.58990.28470.82590.022*
C40.72913 (14)0.3572 (5)0.74666 (12)0.0144 (4)
C50.79056 (16)0.4510 (5)0.68634 (11)0.0141 (5)
C60.87941 (15)0.3419 (5)0.68295 (12)0.0144 (5)
H60.90010.21410.71860.017*
C70.93716 (15)0.4205 (5)0.62750 (12)0.0148 (4)
C80.90958 (15)0.6012 (5)0.57315 (12)0.0154 (5)
C90.81934 (15)0.6983 (5)0.57707 (12)0.0148 (4)
C100.76008 (15)0.6285 (4)0.63220 (12)0.0150 (4)
H100.69920.70080.63320.018*
H10.688 (2)0.722 (3)0.7627 (15)0.034 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0208 (2)0.0329 (3)0.0197 (3)0.0005 (2)0.0067 (3)0.0055 (3)
O10.0187 (8)0.0221 (9)0.0235 (9)0.0055 (7)0.0068 (7)0.0057 (8)
O20.0229 (9)0.0218 (9)0.0250 (9)0.0052 (7)0.0007 (7)0.0080 (8)
O30.0222 (8)0.0118 (8)0.0296 (9)0.0021 (6)0.0050 (8)0.0042 (7)
O40.0222 (9)0.0231 (10)0.0381 (11)0.0077 (7)0.0013 (8)0.0099 (9)
O50.0127 (8)0.0264 (9)0.0455 (11)0.0055 (7)0.0033 (8)0.0016 (9)
O60.0452 (10)0.0165 (8)0.0239 (9)0.0042 (8)0.0027 (9)0.0078 (8)
O70.0313 (10)0.0340 (11)0.0334 (11)0.0022 (8)0.0180 (9)0.0075 (9)
N10.0197 (9)0.0095 (9)0.0171 (9)0.0005 (7)0.0019 (8)0.0020 (8)
N20.0140 (10)0.0219 (11)0.0206 (10)0.0005 (8)0.0006 (8)0.0001 (9)
N30.0220 (9)0.0187 (10)0.0129 (9)0.0047 (8)0.0004 (8)0.0007 (8)
C10.0173 (11)0.0303 (13)0.0305 (13)0.0060 (11)0.0032 (11)0.0036 (13)
C20.0167 (10)0.0155 (11)0.0133 (11)0.0003 (9)0.0011 (9)0.0038 (9)
C30.0195 (11)0.0176 (12)0.0171 (11)0.0029 (9)0.0023 (9)0.0044 (9)
C40.0133 (9)0.0149 (12)0.0150 (10)0.0016 (8)0.0039 (9)0.0012 (9)
C50.0152 (10)0.0128 (11)0.0142 (10)0.0023 (9)0.0013 (8)0.0019 (9)
C60.0158 (11)0.0112 (11)0.0161 (10)0.0023 (9)0.0031 (9)0.0005 (9)
C70.0111 (10)0.0131 (10)0.0201 (11)0.0018 (9)0.0011 (9)0.0035 (9)
C80.0148 (10)0.0163 (12)0.0149 (10)0.0029 (9)0.0026 (9)0.0019 (9)
C90.0186 (11)0.0106 (11)0.0151 (10)0.0000 (9)0.0016 (9)0.0011 (9)
C100.0154 (10)0.0113 (10)0.0185 (11)0.0002 (9)0.0001 (9)0.0029 (9)
Geometric parameters (Å, º) top
Cl1—C81.718 (2)C1—H1B0.9800
O1—C21.333 (3)C1—H1C0.9800
O1—C11.453 (3)C2—C31.507 (3)
O2—C21.198 (3)C3—H3A0.9900
O3—C41.235 (3)C3—H3B0.9900
O4—N21.228 (3)C4—C51.499 (3)
O5—N21.218 (2)C5—C101.388 (3)
O6—N31.218 (2)C5—C61.394 (3)
O7—N31.213 (2)C6—C71.379 (3)
N1—C41.331 (3)C6—H60.9500
N1—C31.445 (3)C7—C81.388 (3)
N1—H10.875 (10)C8—C91.393 (3)
N2—C71.482 (3)C9—C101.377 (3)
N3—C91.474 (3)C10—H100.9500
C1—H1A0.9800
C2—O1—C1116.05 (18)C2—C3—H3B109.4
C4—N1—C3121.01 (19)H3A—C3—H3B108.0
C4—N1—H1115 (2)O3—C4—N1124.0 (2)
C3—N1—H1123 (2)O3—C4—C5120.2 (2)
O5—N2—O4124.78 (19)N1—C4—C5115.9 (2)
O5—N2—C7118.92 (19)C10—C5—C6119.5 (2)
O4—N2—C7116.30 (18)C10—C5—C4122.2 (2)
O7—N3—O6125.1 (2)C6—C5—C4118.15 (19)
O7—N3—C9116.80 (19)C7—C6—C5119.6 (2)
O6—N3—C9118.10 (19)C7—C6—H6120.2
O1—C1—H1A109.5C5—C6—H6120.2
O1—C1—H1B109.5C6—C7—C8122.43 (19)
H1A—C1—H1B109.5C6—C7—N2115.99 (19)
O1—C1—H1C109.5C8—C7—N2121.56 (19)
H1A—C1—H1C109.5C7—C8—C9116.3 (2)
H1B—C1—H1C109.5C7—C8—Cl1123.59 (17)
O2—C2—O1125.1 (2)C9—C8—Cl1119.92 (18)
O2—C2—C3125.4 (2)C10—C9—C8123.1 (2)
O1—C2—C3109.49 (19)C10—C9—N3117.46 (19)
N1—C3—C2111.18 (18)C8—C9—N3119.4 (2)
N1—C3—H3A109.4C9—C10—C5119.1 (2)
C2—C3—H3A109.4C9—C10—H10120.5
N1—C3—H3B109.4C5—C10—H10120.5
C1—O1—C2—O21.9 (3)O4—N2—C7—C8144.0 (2)
C1—O1—C2—C3176.48 (19)C6—C7—C8—C90.6 (3)
C4—N1—C3—C2150.1 (2)N2—C7—C8—C9177.3 (2)
O2—C2—C3—N17.6 (3)C6—C7—C8—Cl1174.96 (18)
O1—C2—C3—N1174.00 (19)N2—C7—C8—Cl13.0 (3)
C3—N1—C4—O32.2 (3)C7—C8—C9—C101.7 (3)
C3—N1—C4—C5177.61 (19)Cl1—C8—C9—C10176.32 (18)
O3—C4—C5—C10139.5 (2)C7—C8—C9—N3174.6 (2)
N1—C4—C5—C1040.3 (3)Cl1—C8—C9—N30.1 (3)
O3—C4—C5—C636.8 (3)O7—N3—C9—C1059.9 (3)
N1—C4—C5—C6143.4 (2)O6—N3—C9—C10118.9 (2)
C10—C5—C6—C72.6 (3)O7—N3—C9—C8116.6 (2)
C4—C5—C6—C7179.0 (2)O6—N3—C9—C864.5 (3)
C5—C6—C7—C81.6 (3)C8—C9—C10—C50.7 (3)
C5—C6—C7—N2179.6 (2)N3—C9—C10—C5175.76 (19)
O5—N2—C7—C6144.8 (2)C6—C5—C10—C91.5 (3)
O4—N2—C7—C634.0 (3)C4—C5—C10—C9177.75 (19)
O5—N2—C7—C837.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.88 (1)1.99 (1)2.833 (3)163 (3)
C1—H1a···O7ii0.982.593.460 (3)148
C3—H3a···O6iii0.992.533.502 (3)169
C3—H3b···O2iv0.992.423.380 (3)162
C10—H10···O5v0.952.373.223 (3)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z; (v) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC10H8ClN3O7
Mr317.64
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)14.5219 (5), 4.7949 (2), 18.5368 (6)
V3)1290.74 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.906, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
4743, 2258, 2134
Rint0.030
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.08
No. of reflections2258
No. of parameters194
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.25
Absolute structureFlack (1983), 725 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.88 (1)1.99 (1)2.833 (3)163 (3)
C1—H1a···O7ii0.982.593.460 (3)148
C3—H3a···O6iii0.992.533.502 (3)169
C3—H3b···O2iv0.992.423.380 (3)162
C10—H10···O5v0.952.373.223 (3)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z; (v) x1/2, y+3/2, z.
 

Acknowledgements

We thank Henan University of Traditional Medicine and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEissmann, F. & Weber, E. (2011). J. Mol. Struct. 994, 392–402.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, J., Fu, Z., Wang, Y., Schmitt, M., Huang, A., Marshall, D., Tonn, G., Seitz, L., Sullivan, T., Tang, H. L., Collins, T. & Medina, J. (2009). Bioorg. Med. Chem. Lett. 19, 6419–6423.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds