organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(2R,6S)-4-(5-amino-3-carb­­oxy-1-cyclo­propyl-6,8-di­fluoro-4-oxo-1,4-di­hydro­quinolin-7-yl)-2,6-di­methyl­piperazin-1-ium] sulfate penta­hydrate

aSchool of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: ltdl@sina.com

(Received 19 October 2011; accepted 9 November 2011; online 19 November 2011)

The title compound, C19H23F2N4O3+·0.5SO42−·2.5H2O, an anti­bacterial fluoro­quinolone, crystallized as a racemic twin (major twin component = 0.633) in the chiral space group P1. The asymmetric unit contains two sparfloxacinium cations, one sulfate anion and five mol­ecules of water of solvation. The bond lengths and angles of both cations are almost identical. The quinoline ring systems in the cations are essentially planar, the mean deviations from the best plane being 0.045 (2) and 0.054 (2) Å and make ππ inter­actions with each other [centroid–centroid distances of 3.692 (4) Å and 3.744 (4) Å]. The crystal structure features inter­molecular O—H⋯O, O—H⋯S, N+—H⋯O, N+—H⋯S and N—H⋯O hydrogen bonds together with intra­molecular O—H⋯O and N—H⋯O hydrogen bonds. As a result, a three-dimensional supra­molecular structure is observed.

Related literature

For the biological activity of sparfloxacin compounds, see: Truffot-Pernot et al. (1993[Truffot-Pernot, C. L., Grosset, M. & Ji, B. (1993). Antimicrob. Agents Chemother. 37, 407-413.]). For structures containing sparfloxacin, see: Sivalakshmidevi et al. (2000[Sivalakshmidevi, A., Vyas, K. & Om Reddy, G. (2000). Acta Cryst. C56, e115-e116.]); Shingnapurkar et al. (2007[Shingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). Inorg. Chem. Commun. 10, 459-462.]); Kalliopi et al. (2000[Kalliopi, C. S., Catherine, P., Raptopoulou, B., Vassilis, P., Dimitris, P. K. & George, P. (2000). Polyhedron, 28, 3265-3271.]).

[Scheme 1]

Experimental

Crystal data
  • 2C19H23F2N4O3+·SO42−·5H2O

  • Mr = 972.97

  • Triclinic, P 1

  • a = 7.1961 (3) Å

  • b = 9.6892 (4) Å

  • c = 15.6136 (5) Å

  • α = 84.760 (6)°

  • β = 83.045 (5)°

  • γ = 88.619 (5)°

  • V = 1076.03 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.966, Tmax = 0.966

  • 8268 measured reflections

  • 6614 independent reflections

  • 5665 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.086

  • S = 0.97

  • 6614 reflections

  • 620 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H5⋯O8i 0.92 1.81 2.724 (3) 170
N1—H5⋯S1i 0.92 2.99 3.860 (3) 158
N1—H13⋯O10ii 0.84 2.12 2.799 (3) 138
N1—H13⋯O12ii 0.84 2.60 3.257 (4) 135
N3—H2⋯O3 0.86 1.97 2.670 (3) 138
N3—H10⋯O11 0.89 2.07 2.965 (3) 174
N5—H8⋯O12iii 0.90 1.80 2.687 (3) 169
N5—H12⋯O8 0.90 1.83 2.722 (3) 174
N5—H12⋯S1 0.90 2.80 3.628 (3) 154
N7—H1⋯O6 0.90 2.00 2.673 (3) 131
N7—H4⋯O15 0.93 2.10 2.997 (3) 162
O2—H6⋯O3 0.88 1.70 2.523 (3) 156
O5—H9⋯O6 0.96 1.64 2.543 (3) 156
O11—H18⋯O13iv 0.86 2.06 2.918 (3) 177
O11—H14⋯O10iv 0.82 2.04 2.846 (3) 169
O12—H12D⋯O7 0.93 1.81 2.680 (3) 155
O12—H12D⋯S1 0.93 2.68 3.479 (2) 145
O12—H12C⋯O13 0.94 1.92 2.748 (3) 146
O13—H13C⋯O14 0.84 1.90 2.725 (3) 169
O13—H13D⋯O4v 0.90 1.95 2.774 (3) 153
O14—H14C⋯O1 1.00 1.89 2.834 (3) 157
O14—H14D⋯O9vi 0.89 1.83 2.715 (3) 170
O15—H15A⋯O7vii 0.91 1.85 2.748 (3) 168
O15—H15A⋯S1vii 0.91 2.87 3.680 (2) 150
O15—H15B⋯O1iii 0.89 2.29 2.979 (3) 134
Symmetry codes: (i) x, y+1, z+1; (ii) x-1, y+1, z+1; (iii) x-1, y, z; (iv) x, y, z+1; (v) x+1, y, z-1; (vi) x, y+1, z; (vii) x-1, y+1, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sparfloxacin belongs to the fourth-generation fluorinated quinolone antimicrobial agents, which have been widely used in the treatment of infections (Truffot-Pernot et al., 1993). Generally the poor solubility of a drug will decrease it's bioavailability. Since sparfloxacin shows a solubility-limited bioavailability, a challenging task in the product development is to improve its solubility. Indeed, a widely accepted approach to overcome poor solubility or inadequate material properties of sparfloxacin is the preparation of the respective salts with protonated sparfloxacin cations. Several structures containing sparfloxacin have been reported, including several salts and metal complexes (Sivalakshmidevi et al., 2000; Shingnapurkar et al., 2007; Kalliopi et al., 2000). Here we report the crystal and molecular structure of sparfloxacin hemisulfate 2.5-hydrate.

The title compound crystallizes in the triclinic space group P1 with two sparfloxacinium cations, one sulfate anion and five hydrate molecules in the asymmetric unit. (Fig. 1). The bond distances and angles are in good agreement with those in cis-5-amino-1-cyclopropyl-7- (3,5-dimethylpiperazin-1-yl)-6,8- difluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid trihydrate (Sivalakshmidevi et al., 2000). The carboxyl groups in both cations are coplanar with the respective quinolyl moiety, while the planes composed of the cyclopropyl groups are inclined at 70.1 (1)° and 71.9 (1)° with respect to the quinolyl rings. The C—O and CO bond average distances of the carboxylic acid groups of sparfloxacin molecule are of 1.323 (4) Å and 1.219 (4) Å, respectively. The piperazinium ring adopts a chair conformation. Crystal packing is stabilized by π-π stacking interactions of quinoline rings, in which the N4 ring (N4/C2—C10) stacks with the N8 ring (N8/C21—C29) showing centroid-centroid separations of 3.692 (4) Å and 3.744 (4) Å. Due to the presence of a lot of potential hydrogen bond donor and acceptor sites, numerous intramolecular and intermolecular hydrogen bonds are observed in the crystal structure. (Table 1, Fig. 2)

Related literature top

For the biological activity of sparfloxacin [systematic name: 5-amino-1-cyclopropyl-7-[(3R,5S)3,5-dimethylpiperazin-1-yl]-6,8-difluoro-4-oxo-quinoline-3-carboxylic acid] compounds, see: Truffot-Pernot et al. (1993). For structures containing sparfloxacin, see: Sivalakshmidevi et al. (2000); Shingnapurkar et al. (2007); Kalliopi et al. (2000).

Experimental top

In an attempt to synthesize a vanadium complex a mixture of sparfloxacin (0.4 mmol, 157 mg), vanadyl sulfate hydrate (0.2 mmol, 36 mg) and water (30 ml) was heated to reflux at 100 ° for 4 h. The resulting green crystals were collected through filtration. Anal. calc. for C38H56F4N8O15S: C, 46.91; H, 5.80; N,11.52; O, 24.67%; Found: C, 46.72; H, 5.83; N,11.51; O, 24.63%. IR (KBr pellet) [cm-1]: 3418(w), 1715(m), 1633(vs), 1590(w), 1515(m), 1439(vs), 1384(w), 1300(m), 1320(m), 1112(m), 1030(w), 960(w), 900(w), 870(w).

Refinement top

H atoms were were located in difference maps and were refined using a riding model with bond lengths C—H = 0.95–1.00 Å, N—H = 0.84–0.93 Å and O—H = 0.82–1.00 Å). Uiso(H) values were fixed at 1.5Ueq of the parent atom for methyl H atoms and 1.2Ueq of the parent atom for all other cases. The highest electron-density peak is situated 0.61 Å from C21 and the deepest hole 0.69 Å from S1.

Structure description top

Sparfloxacin belongs to the fourth-generation fluorinated quinolone antimicrobial agents, which have been widely used in the treatment of infections (Truffot-Pernot et al., 1993). Generally the poor solubility of a drug will decrease it's bioavailability. Since sparfloxacin shows a solubility-limited bioavailability, a challenging task in the product development is to improve its solubility. Indeed, a widely accepted approach to overcome poor solubility or inadequate material properties of sparfloxacin is the preparation of the respective salts with protonated sparfloxacin cations. Several structures containing sparfloxacin have been reported, including several salts and metal complexes (Sivalakshmidevi et al., 2000; Shingnapurkar et al., 2007; Kalliopi et al., 2000). Here we report the crystal and molecular structure of sparfloxacin hemisulfate 2.5-hydrate.

The title compound crystallizes in the triclinic space group P1 with two sparfloxacinium cations, one sulfate anion and five hydrate molecules in the asymmetric unit. (Fig. 1). The bond distances and angles are in good agreement with those in cis-5-amino-1-cyclopropyl-7- (3,5-dimethylpiperazin-1-yl)-6,8- difluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid trihydrate (Sivalakshmidevi et al., 2000). The carboxyl groups in both cations are coplanar with the respective quinolyl moiety, while the planes composed of the cyclopropyl groups are inclined at 70.1 (1)° and 71.9 (1)° with respect to the quinolyl rings. The C—O and CO bond average distances of the carboxylic acid groups of sparfloxacin molecule are of 1.323 (4) Å and 1.219 (4) Å, respectively. The piperazinium ring adopts a chair conformation. Crystal packing is stabilized by π-π stacking interactions of quinoline rings, in which the N4 ring (N4/C2—C10) stacks with the N8 ring (N8/C21—C29) showing centroid-centroid separations of 3.692 (4) Å and 3.744 (4) Å. Due to the presence of a lot of potential hydrogen bond donor and acceptor sites, numerous intramolecular and intermolecular hydrogen bonds are observed in the crystal structure. (Table 1, Fig. 2)

For the biological activity of sparfloxacin [systematic name: 5-amino-1-cyclopropyl-7-[(3R,5S)3,5-dimethylpiperazin-1-yl]-6,8-difluoro-4-oxo-quinoline-3-carboxylic acid] compounds, see: Truffot-Pernot et al. (1993). For structures containing sparfloxacin, see: Sivalakshmidevi et al. (2000); Shingnapurkar et al. (2007); Kalliopi et al. (2000).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of one sparfloxacinium cation, sulfate and water molecules, displacement ellipsoids are drawn at the 30% probability level (the second cation was omitted for clarity).
[Figure 2] Fig. 2. Intramolecular and intermoleclar hydrogen bonds (dashed lines) in the structure of the title compound.
Bis[(2R,6S)-4-(5-amino-3-carboxy-1-cyclopropyl-6,8-difluoro- 4-oxo-1,4-dihydroquinolin-7-yl)-2,6-dimethylpiperazin-1-ium] sulfate pentahydrate top
Crystal data top
2C19H23F2N4O3+·SO42·5H2OZ = 1
Mr = 972.97F(000) = 512
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1961 (3) ÅCell parameters from 3371 reflections
b = 9.6892 (4) Åθ = 2.1–27.5°
c = 15.6136 (5) ŵ = 0.17 mm1
α = 84.760 (6)°T = 173 K
β = 83.045 (5)°Prism, green
γ = 88.619 (5)°0.20 × 0.20 × 0.20 mm
V = 1076.03 (7) Å3
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
6614 independent reflections
Radiation source: fine-focus sealed tube5665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 88
Tmin = 0.966, Tmax = 0.966k = 1111
8268 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
6614 reflections(Δ/σ)max < 0.001
620 parametersΔρmax = 0.25 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
2C19H23F2N4O3+·SO42·5H2Oγ = 88.619 (5)°
Mr = 972.97V = 1076.03 (7) Å3
Triclinic, P1Z = 1
a = 7.1961 (3) ÅMo Kα radiation
b = 9.6892 (4) ŵ = 0.17 mm1
c = 15.6136 (5) ÅT = 173 K
α = 84.760 (6)°0.20 × 0.20 × 0.20 mm
β = 83.045 (5)°
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
6614 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
5665 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.966Rint = 0.027
8268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.97Δρmax = 0.25 e Å3
6614 reflectionsΔρmin = 0.28 e Å3
620 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61237 (10)0.18748 (8)0.24069 (5)0.01658 (17)
F10.2557 (2)1.11521 (17)0.86005 (11)0.0187 (4)
F30.0073 (2)0.84613 (17)0.47689 (10)0.0228 (4)
F20.4920 (2)0.74197 (18)1.03412 (11)0.0229 (4)
F40.2141 (2)0.46692 (17)0.65128 (10)0.0189 (4)
O10.5379 (3)0.7840 (2)0.48993 (13)0.0236 (5)
O20.6093 (3)0.5909 (2)0.56733 (14)0.0221 (5)
O30.5740 (3)0.5853 (2)0.73035 (13)0.0186 (5)
O40.0362 (3)0.7957 (2)1.02049 (13)0.0226 (5)
O50.1285 (3)0.9874 (2)0.94714 (14)0.0232 (5)
O60.1107 (3)0.9932 (2)0.78319 (13)0.0189 (5)
O70.6739 (3)0.2460 (2)0.31751 (12)0.0225 (5)
O80.4349 (3)0.2602 (2)0.22288 (13)0.0199 (5)
O90.5785 (3)0.0393 (2)0.26000 (15)0.0293 (5)
O100.7536 (3)0.2164 (2)0.16511 (12)0.0214 (5)
O110.7052 (3)0.4663 (2)1.05899 (14)0.0248 (5)
O120.9648 (3)0.4140 (3)0.26693 (15)0.0333 (6)
O130.8398 (3)0.6479 (2)0.17674 (14)0.0280 (5)
O140.7095 (3)0.7864 (2)0.31659 (14)0.0289 (5)
O150.3039 (3)1.0681 (2)0.46352 (13)0.0251 (5)
N10.1422 (4)1.1751 (3)1.14629 (16)0.0162 (6)
N20.3324 (4)1.0124 (3)1.02055 (16)0.0184 (6)
N30.5454 (4)0.5882 (3)0.90227 (16)0.0189 (6)
N40.4051 (3)0.9932 (2)0.70917 (15)0.0137 (5)
N50.2724 (3)0.4163 (2)0.34861 (15)0.0168 (6)
N60.1588 (4)0.5747 (3)0.48944 (15)0.0171 (6)
N70.0781 (4)0.9943 (3)0.61074 (16)0.0185 (6)
N80.0567 (3)0.5850 (2)0.80159 (15)0.0144 (6)
C10.5499 (4)0.7211 (3)0.5606 (2)0.0173 (7)
C20.5003 (4)0.7852 (3)0.64338 (19)0.0151 (7)
C30.4458 (4)0.9225 (3)0.63933 (19)0.0159 (7)
H30.43650.96970.58390.019*
C40.4118 (4)0.9270 (3)0.79258 (18)0.0132 (7)
C50.3558 (4)0.9936 (3)0.86610 (19)0.0131 (6)
C60.3824 (4)0.9379 (3)0.95065 (19)0.0149 (7)
C70.4522 (4)0.8036 (3)0.95596 (19)0.0168 (7)
C80.4906 (4)0.7221 (3)0.88655 (19)0.0151 (7)
C90.4738 (4)0.7862 (3)0.80152 (19)0.0135 (6)
C100.5200 (4)0.7110 (3)0.72568 (19)0.0138 (6)
C110.3807 (4)1.1442 (3)0.69580 (19)0.0152 (7)
H110.24951.18130.70380.018*
C120.5164 (5)1.2229 (3)0.6292 (2)0.0210 (7)
H12A0.61411.16910.59580.025*
H12B0.46891.30610.59660.025*
C130.5295 (4)1.2297 (3)0.7241 (2)0.0182 (7)
H13A0.63521.18020.74890.022*
H13B0.49011.31710.74960.022*
C140.3684 (4)1.1602 (3)1.01852 (19)0.0174 (7)
H14A0.40691.19830.95810.021*
H14B0.47161.17471.05320.021*
C150.1925 (4)1.2349 (3)1.05516 (18)0.0167 (7)
H150.08861.21681.02070.020*
C160.1175 (4)1.0209 (3)1.15505 (19)0.0176 (7)
H160.00380.99911.12800.021*
C170.2866 (4)0.9490 (3)1.10943 (18)0.0173 (7)
H17A0.39530.95591.14200.021*
H17B0.25960.84951.10810.021*
C180.0877 (4)0.9714 (3)1.25073 (19)0.0195 (7)
H18A0.20030.98921.27740.029*
H18B0.06280.87181.25750.029*
H18C0.01931.02131.27900.029*
C190.2163 (4)1.3911 (3)1.0537 (2)0.0201 (7)
H19A0.10001.43291.07960.030*
H19B0.24531.43080.99360.030*
H19C0.31881.41001.08670.030*
C200.0654 (4)0.8576 (3)0.9520 (2)0.0175 (7)
C210.0290 (4)0.7921 (3)0.86875 (19)0.0147 (7)
C220.0190 (4)0.6558 (3)0.87196 (19)0.0154 (7)
H220.02640.60740.92720.018*
C230.0566 (4)0.6546 (3)0.71849 (19)0.0134 (7)
C240.1170 (4)0.5900 (3)0.64409 (19)0.0143 (7)
C250.0979 (4)0.6487 (3)0.56021 (19)0.0152 (7)
C260.0255 (4)0.7821 (3)0.55586 (17)0.0145 (7)
C270.0195 (4)0.8598 (3)0.62513 (19)0.0142 (7)
C280.0051 (4)0.7952 (3)0.70999 (19)0.0134 (6)
C290.0537 (4)0.8683 (3)0.78686 (19)0.0145 (7)
C300.0722 (4)0.4335 (3)0.81326 (19)0.0153 (7)
H300.20170.39280.80750.018*
C310.0717 (4)0.3567 (3)0.87605 (19)0.0189 (7)
H31A0.16960.41170.90830.023*
H31B0.03130.27090.90850.023*
C320.0749 (4)0.3550 (3)0.77976 (19)0.0175 (7)
H32A0.03680.26810.75330.021*
H32B0.17510.40890.75310.021*
C330.0929 (4)0.4314 (3)0.48901 (19)0.0179 (7)
H33A0.02530.43280.46240.022*
H33B0.06800.38860.54920.022*
C340.2388 (4)0.3472 (3)0.43858 (18)0.0167 (7)
H340.35770.34790.46580.020*
C350.3365 (4)0.5622 (3)0.34571 (19)0.0163 (7)
H350.46040.56250.36860.020*
C360.1950 (4)0.6453 (3)0.40178 (19)0.0179 (7)
H36A0.24410.73900.40500.021*
H36B0.07660.65570.37530.021*
C370.3584 (4)0.6241 (3)0.25213 (19)0.0212 (7)
H37A0.44650.56710.21710.032*
H37B0.40630.71850.24900.032*
H37C0.23660.62660.22990.032*
C380.1820 (4)0.1980 (3)0.43606 (19)0.0244 (8)
H38A0.07780.19530.40130.037*
H38B0.14310.15750.49510.037*
H38C0.28860.14500.41010.037*
H10.13001.03600.65690.027 (10)*
H20.58070.54850.85620.027 (10)*
H100.58670.55450.95190.014 (8)*
H40.12541.02830.56020.061 (14)*
H50.23551.19771.17770.023 (9)*
H60.60260.56450.62290.054 (13)*
H13C0.78920.69570.21570.045 (12)*
H80.16370.40710.32670.047 (12)*
H90.13051.01520.88670.072 (15)*
H180.74010.52021.09470.058 (13)*
H120.33310.36800.30720.067 (14)*
H130.04471.20481.17480.027 (10)*
H140.72960.39131.08410.083 (18)*
H15A0.29431.12470.41340.087 (17)*
H15B0.33330.99360.43820.076 (16)*
H14C0.67640.76780.38070.072 (14)*
H12D0.84470.37870.27900.15 (3)*
H13D0.88040.71790.13780.15 (3)*
H14D0.65380.86570.30050.16 (3)*
H12C0.91470.50460.25920.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0161 (4)0.0178 (4)0.0162 (4)0.0001 (3)0.0033 (3)0.0018 (3)
F10.0214 (9)0.0162 (9)0.0177 (9)0.0042 (8)0.0002 (7)0.0025 (7)
F30.0324 (11)0.0220 (10)0.0136 (9)0.0064 (9)0.0028 (8)0.0005 (8)
F20.0306 (11)0.0234 (10)0.0145 (9)0.0082 (9)0.0053 (8)0.0002 (8)
F40.0228 (10)0.0166 (10)0.0167 (9)0.0058 (8)0.0007 (7)0.0035 (7)
O10.0318 (13)0.0227 (13)0.0157 (12)0.0023 (10)0.0014 (9)0.0032 (10)
O20.0325 (13)0.0152 (12)0.0186 (13)0.0006 (10)0.0001 (9)0.0045 (9)
O30.0252 (12)0.0132 (12)0.0174 (11)0.0024 (10)0.0010 (9)0.0040 (9)
O40.0336 (13)0.0209 (12)0.0129 (12)0.0040 (10)0.0002 (9)0.0019 (9)
O50.0320 (13)0.0196 (13)0.0181 (13)0.0015 (11)0.0003 (9)0.0066 (10)
O60.0239 (12)0.0158 (12)0.0169 (12)0.0022 (10)0.0012 (9)0.0040 (9)
O70.0265 (12)0.0270 (12)0.0151 (11)0.0078 (10)0.0081 (9)0.0021 (9)
O80.0146 (11)0.0257 (12)0.0206 (11)0.0063 (9)0.0047 (8)0.0070 (9)
O90.0319 (13)0.0156 (11)0.0413 (14)0.0019 (10)0.0131 (11)0.0043 (10)
O100.0191 (11)0.0268 (12)0.0179 (11)0.0033 (10)0.0006 (8)0.0026 (9)
O110.0332 (13)0.0231 (13)0.0193 (12)0.0034 (11)0.0085 (10)0.0015 (10)
O120.0265 (13)0.0342 (15)0.0410 (15)0.0086 (12)0.0158 (11)0.0045 (11)
O130.0365 (14)0.0257 (13)0.0207 (12)0.0012 (11)0.0017 (10)0.0029 (11)
O140.0387 (14)0.0251 (13)0.0214 (12)0.0017 (12)0.0055 (10)0.0055 (10)
O150.0355 (14)0.0229 (12)0.0177 (12)0.0002 (11)0.0076 (10)0.0003 (10)
N10.0165 (14)0.0176 (14)0.0146 (13)0.0007 (12)0.0010 (11)0.0035 (11)
N20.0274 (15)0.0154 (14)0.0116 (14)0.0017 (12)0.0027 (11)0.0027 (11)
N30.0270 (16)0.0161 (15)0.0130 (14)0.0065 (12)0.0018 (11)0.0004 (12)
N40.0147 (13)0.0133 (14)0.0130 (13)0.0022 (11)0.0018 (10)0.0013 (11)
N50.0212 (14)0.0149 (14)0.0137 (13)0.0016 (11)0.0004 (11)0.0014 (11)
N60.0257 (15)0.0142 (13)0.0108 (13)0.0010 (12)0.0012 (11)0.0028 (11)
N70.0245 (15)0.0159 (15)0.0146 (14)0.0022 (12)0.0012 (11)0.0007 (12)
N80.0161 (14)0.0147 (14)0.0127 (13)0.0007 (11)0.0019 (10)0.0025 (11)
C10.0164 (16)0.0156 (17)0.0201 (18)0.0038 (14)0.0003 (13)0.0047 (14)
C20.0128 (15)0.0193 (17)0.0129 (15)0.0003 (13)0.0002 (12)0.0026 (13)
C30.0151 (15)0.0187 (17)0.0137 (16)0.0033 (14)0.0005 (12)0.0008 (13)
C40.0111 (15)0.0161 (17)0.0123 (16)0.0014 (13)0.0004 (12)0.0023 (13)
C50.0128 (15)0.0086 (16)0.0175 (16)0.0034 (13)0.0030 (12)0.0010 (12)
C60.0150 (16)0.0142 (16)0.0153 (16)0.0020 (13)0.0005 (12)0.0035 (13)
C70.0174 (17)0.0212 (18)0.0117 (16)0.0025 (14)0.0044 (12)0.0017 (13)
C80.0114 (15)0.0161 (17)0.0178 (17)0.0012 (13)0.0011 (12)0.0024 (13)
C90.0111 (15)0.0142 (16)0.0149 (16)0.0021 (13)0.0006 (12)0.0002 (12)
C100.0141 (15)0.0113 (16)0.0164 (16)0.0039 (13)0.0013 (12)0.0025 (12)
C110.0183 (16)0.0120 (16)0.0152 (15)0.0035 (14)0.0030 (12)0.0010 (13)
C120.0278 (18)0.0157 (17)0.0184 (17)0.0019 (15)0.0005 (13)0.0005 (13)
C130.0199 (16)0.0160 (16)0.0178 (16)0.0006 (13)0.0013 (12)0.0009 (13)
C140.0211 (17)0.0163 (16)0.0153 (16)0.0041 (14)0.0031 (13)0.0023 (13)
C150.0182 (16)0.0201 (17)0.0119 (15)0.0015 (14)0.0027 (12)0.0016 (13)
C160.0180 (17)0.0194 (17)0.0158 (16)0.0018 (14)0.0025 (13)0.0027 (13)
C170.0239 (17)0.0163 (17)0.0114 (15)0.0006 (14)0.0003 (12)0.0014 (12)
C180.0202 (17)0.0179 (17)0.0193 (17)0.0006 (14)0.0024 (13)0.0014 (13)
C190.0227 (17)0.0165 (17)0.0204 (16)0.0038 (14)0.0028 (13)0.0001 (13)
C200.0182 (16)0.0172 (18)0.0163 (17)0.0052 (14)0.0037 (13)0.0037 (13)
C210.0149 (16)0.0132 (16)0.0164 (16)0.0044 (13)0.0017 (12)0.0028 (13)
C220.0152 (15)0.0201 (17)0.0110 (15)0.0028 (14)0.0007 (12)0.0036 (13)
C230.0119 (15)0.0146 (17)0.0145 (16)0.0010 (13)0.0052 (12)0.0000 (13)
C240.0134 (15)0.0101 (16)0.0194 (17)0.0028 (13)0.0016 (12)0.0024 (13)
C250.0118 (15)0.0190 (17)0.0145 (16)0.0000 (13)0.0015 (12)0.0041 (13)
C260.0163 (16)0.0186 (17)0.0085 (15)0.0026 (14)0.0034 (12)0.0025 (13)
C270.0115 (15)0.0117 (16)0.0194 (17)0.0003 (13)0.0029 (12)0.0003 (13)
C280.0113 (15)0.0129 (16)0.0161 (16)0.0026 (13)0.0024 (12)0.0011 (12)
C290.0138 (16)0.0128 (16)0.0174 (16)0.0030 (13)0.0012 (12)0.0045 (13)
C300.0169 (16)0.0115 (16)0.0171 (16)0.0041 (13)0.0020 (12)0.0002 (12)
C310.0223 (17)0.0154 (16)0.0179 (16)0.0034 (14)0.0003 (13)0.0006 (13)
C320.0195 (17)0.0119 (16)0.0218 (17)0.0023 (14)0.0043 (13)0.0032 (13)
C330.0234 (17)0.0155 (17)0.0142 (15)0.0035 (14)0.0016 (13)0.0017 (13)
C340.0221 (16)0.0171 (17)0.0111 (15)0.0017 (14)0.0028 (12)0.0010 (12)
C350.0189 (17)0.0148 (16)0.0157 (16)0.0027 (13)0.0020 (12)0.0026 (12)
C360.0194 (17)0.0166 (17)0.0170 (16)0.0010 (14)0.0000 (13)0.0007 (13)
C370.0264 (18)0.0221 (18)0.0140 (16)0.0017 (15)0.0031 (13)0.0029 (13)
C380.0314 (19)0.0203 (18)0.0204 (17)0.0008 (15)0.0021 (14)0.0023 (14)
Geometric parameters (Å, º) top
S1—O91.460 (2)C8—C91.431 (4)
S1—O101.472 (2)C9—C101.447 (4)
S1—O81.487 (2)C11—C131.501 (4)
S1—O71.4904 (19)C11—C121.504 (4)
F1—C51.368 (3)C11—H111.0000
F3—C261.373 (3)C12—C131.503 (4)
F2—C71.368 (3)C12—H12A0.9900
F4—C241.370 (3)C12—H12B0.9900
O1—C11.223 (3)C13—H13A0.9900
O2—C11.321 (4)C13—H13B0.9900
O2—H60.8777C14—C151.520 (4)
O3—C101.268 (4)C14—H14A0.9900
O4—C201.216 (4)C14—H14B0.9900
O5—C201.325 (4)C15—C191.525 (4)
O5—H90.9591C15—H151.0000
O6—C291.267 (4)C16—C181.518 (4)
O11—H180.8603C16—C171.521 (4)
O11—H140.8195C16—H161.0000
O12—H12D0.9288C17—H17A0.9900
O12—H12C0.9437C17—H17B0.9900
O13—H13C0.8409C18—H18A0.9800
O13—H13D0.8982C18—H18B0.9800
O14—H14C1.0015C18—H18C0.9800
O14—H14D0.8887C19—H19A0.9800
O15—H15A0.9103C19—H19B0.9800
O15—H15B0.8949C19—H19C0.9800
N1—C151.492 (4)C20—C211.491 (4)
N1—C161.501 (4)C21—C221.355 (4)
N1—H50.9198C21—C291.445 (4)
N1—H130.8432C22—H220.9500
N2—C61.370 (4)C23—C241.388 (4)
N2—C141.458 (4)C23—C281.423 (4)
N2—C171.468 (4)C24—C251.401 (4)
N3—C81.356 (4)C25—C261.381 (4)
N3—H20.8552C26—C271.376 (4)
N3—H100.8946C27—C281.427 (4)
N4—C31.339 (4)C28—C291.451 (4)
N4—C41.404 (4)C30—C321.489 (4)
N4—C111.468 (4)C30—C311.499 (4)
N5—C351.493 (4)C30—H301.0000
N5—C341.495 (4)C31—C321.508 (4)
N5—H80.9005C31—H31A0.9900
N5—H120.8970C31—H31B0.9900
N6—C251.393 (4)C32—H32A0.9900
N6—C361.470 (4)C32—H32B0.9900
N6—C331.478 (4)C33—C341.504 (4)
N7—C271.368 (4)C33—H33A0.9900
N7—H10.8963C33—H33B0.9900
N7—H40.9266C34—C381.517 (4)
N8—C221.344 (4)C34—H341.0000
N8—C231.406 (4)C35—C371.519 (4)
N8—C301.466 (4)C35—C361.524 (4)
C1—C21.486 (4)C35—H351.0000
C2—C31.376 (4)C36—H36A0.9900
C2—C101.435 (4)C36—H36B0.9900
C3—H30.9500C37—H37A0.9800
C4—C51.381 (4)C37—H37B0.9800
C4—C91.425 (4)C37—H37C0.9800
C5—C61.413 (4)C38—H38A0.9800
C6—C71.383 (4)C38—H38B0.9800
C7—C81.396 (4)C38—H38C0.9800
O9—S1—O10112.08 (13)N1—C16—H16108.8
O9—S1—O8109.56 (13)C18—C16—H16108.8
O10—S1—O8108.60 (12)C17—C16—H16108.8
O9—S1—O7109.88 (12)N2—C17—C16110.7 (2)
O10—S1—O7109.60 (12)N2—C17—H17A109.5
O8—S1—O7106.98 (12)C16—C17—H17A109.5
C1—O2—H6106.7N2—C17—H17B109.5
C20—O5—H9106.3C16—C17—H17B109.5
H18—O11—H1499.2H17A—C17—H17B108.1
H12D—O12—H12C90.3C16—C18—H18A109.5
H13C—O13—H13D97.9C16—C18—H18B109.5
H14C—O14—H14D107.3H18A—C18—H18B109.5
H15A—O15—H15B94.0C16—C18—H18C109.5
C15—N1—C16113.8 (2)H18A—C18—H18C109.5
C15—N1—H5107.5H18B—C18—H18C109.5
C16—N1—H5109.8C15—C19—H19A109.5
C15—N1—H13118.6C15—C19—H19B109.5
C16—N1—H13103.6H19A—C19—H19B109.5
H5—N1—H13102.8C15—C19—H19C109.5
C6—N2—C14122.5 (2)H19A—C19—H19C109.5
C6—N2—C17123.6 (3)H19B—C19—H19C109.5
C14—N2—C17111.9 (2)O4—C20—O5122.0 (3)
C8—N3—H2113.4O4—C20—C21121.6 (3)
C8—N3—H10123.2O5—C20—C21116.4 (3)
H2—N3—H10118.9C22—C21—C29120.2 (3)
C3—N4—C4120.4 (3)C22—C21—C20118.1 (3)
C3—N4—C11118.2 (2)C29—C21—C20121.6 (3)
C4—N4—C11120.8 (2)N8—C22—C21123.8 (3)
C35—N5—C34113.0 (2)N8—C22—H22118.1
C35—N5—H8114.5C21—C22—H22118.1
C34—N5—H8104.3C24—C23—N8121.7 (3)
C35—N5—H12113.9C24—C23—C28118.8 (3)
C34—N5—H12118.1N8—C23—C28119.4 (3)
H8—N5—H1290.6F4—C24—C23119.1 (3)
C25—N6—C36120.9 (2)F4—C24—C25117.0 (3)
C25—N6—C33118.8 (2)C23—C24—C25123.7 (3)
C36—N6—C33112.4 (2)C26—C25—N6125.5 (3)
C27—N7—H1117.0C26—C25—C24114.8 (3)
C27—N7—H4122.7N6—C25—C24119.6 (3)
H1—N7—H4112.4F3—C26—C27115.2 (3)
C22—N8—C23119.8 (3)F3—C26—C25119.2 (3)
C22—N8—C30118.9 (2)C27—C26—C25125.6 (3)
C23—N8—C30120.8 (2)N7—C27—C26119.4 (3)
O1—C1—O2121.2 (3)N7—C27—C28122.4 (3)
O1—C1—C2122.7 (3)C26—C27—C28118.1 (3)
O2—C1—C2116.1 (3)C23—C28—C27118.4 (3)
C3—C2—C10119.9 (3)C23—C28—C29119.7 (3)
C3—C2—C1118.1 (3)C27—C28—C29121.9 (3)
C10—C2—C1121.9 (3)O6—C29—C21121.1 (3)
N4—C3—C2123.6 (3)O6—C29—C28122.4 (3)
N4—C3—H3118.2C21—C29—C28116.4 (3)
C2—C3—H3118.2N8—C30—C32116.2 (2)
C5—C4—N4121.8 (3)N8—C30—C31118.2 (3)
C5—C4—C9119.2 (3)C32—C30—C3160.6 (2)
N4—C4—C9119.0 (3)N8—C30—H30116.7
F1—C5—C4119.9 (3)C32—C30—H30116.7
F1—C5—C6116.2 (3)C31—C30—H30116.7
C4—C5—C6123.7 (3)C30—C31—C3259.39 (19)
N2—C6—C7124.4 (3)C30—C31—H31A117.8
N2—C6—C5120.8 (3)C32—C31—H31A117.8
C7—C6—C5114.7 (3)C30—C31—H31B117.8
F2—C7—C6119.6 (3)C32—C31—H31B117.8
F2—C7—C8115.0 (3)H31A—C31—H31B115.0
C6—C7—C8125.4 (3)C30—C32—C3159.99 (19)
N3—C8—C7119.0 (3)C30—C32—H32A117.8
N3—C8—C9123.3 (3)C31—C32—H32A117.8
C7—C8—C9117.6 (3)C30—C32—H32B117.8
C4—C9—C8118.6 (3)C31—C32—H32B117.8
C4—C9—C10120.2 (3)H32A—C32—H32B114.9
C8—C9—C10121.1 (3)N6—C33—C34109.9 (2)
O3—C10—C2120.7 (3)N6—C33—H33A109.7
O3—C10—C9122.6 (3)C34—C33—H33A109.7
C2—C10—C9116.8 (3)N6—C33—H33B109.7
N4—C11—C13116.2 (3)C34—C33—H33B109.7
N4—C11—C12118.0 (3)H33A—C33—H33B108.2
C13—C11—C1260.0 (2)N5—C34—C33107.6 (2)
N4—C11—H11116.8N5—C34—C38110.0 (2)
C13—C11—H11116.8C33—C34—C38113.0 (2)
C12—C11—H11116.8N5—C34—H34108.7
C13—C12—C1159.9 (2)C33—C34—H34108.7
C13—C12—H12A117.8C38—C34—H34108.7
C11—C12—H12A117.8N5—C35—C37108.6 (2)
C13—C12—H12B117.8N5—C35—C36109.7 (2)
C11—C12—H12B117.8C37—C35—C36111.1 (3)
H12A—C12—H12B114.9N5—C35—H35109.1
C11—C13—C1260.1 (2)C37—C35—H35109.1
C11—C13—H13A117.8C36—C35—H35109.1
C12—C13—H13A117.8N6—C36—C35110.2 (2)
C11—C13—H13B117.8N6—C36—H36A109.6
C12—C13—H13B117.8C35—C36—H36A109.6
H13A—C13—H13B114.9N6—C36—H36B109.6
N2—C14—C15109.7 (2)C35—C36—H36B109.6
N2—C14—H14A109.7H36A—C36—H36B108.1
C15—C14—H14A109.7C35—C37—H37A109.5
N2—C14—H14B109.7C35—C37—H37B109.5
C15—C14—H14B109.7H37A—C37—H37B109.5
H14A—C14—H14B108.2C35—C37—H37C109.5
N1—C15—C14107.6 (2)H37A—C37—H37C109.5
N1—C15—C19109.5 (2)H37B—C37—H37C109.5
C14—C15—C19113.3 (2)C34—C38—H38A109.5
N1—C15—H15108.8C34—C38—H38B109.5
C14—C15—H15108.8H38A—C38—H38B109.5
C19—C15—H15108.8C34—C38—H38C109.5
N1—C16—C18108.5 (2)H38A—C38—H38C109.5
N1—C16—C17110.8 (2)H38B—C38—H38C109.5
C18—C16—C17111.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O8i0.921.812.724 (3)170
N1—H5···S1i0.922.993.860 (3)158
N1—H13···O10ii0.842.122.799 (3)138
N1—H13···O12ii0.842.603.257 (4)135
N3—H2···O30.861.972.670 (3)138
N3—H10···O110.892.072.965 (3)174
N5—H8···O12iii0.901.802.687 (3)169
N5—H12···O80.901.832.722 (3)174
N5—H12···S10.902.803.628 (3)154
N7—H1···O60.902.002.673 (3)131
N7—H4···O150.932.102.997 (3)162
O2—H6···O30.881.702.523 (3)156
O5—H9···O60.961.642.543 (3)156
O11—H18···O13iv0.862.062.918 (3)177
O11—H14···O10iv0.822.042.846 (3)169
O12—H12D···O70.931.812.680 (3)155
O12—H12D···S10.932.683.479 (2)145
O12—H12C···O130.941.922.748 (3)146
O13—H13C···O140.841.902.725 (3)169
O13—H13D···O4v0.901.952.774 (3)153
O14—H14C···O11.001.892.834 (3)157
O14—H14D···O9vi0.891.832.715 (3)170
O15—H15A···O7vii0.911.852.748 (3)168
O15—H15A···S1vii0.912.873.680 (2)150
O15—H15B···O1iii0.892.292.979 (3)134
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x+1, y, z1; (vi) x, y+1, z; (vii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula2C19H23F2N4O3+·SO42·5H2O
Mr972.97
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.1961 (3), 9.6892 (4), 15.6136 (5)
α, β, γ (°)84.760 (6), 83.045 (5), 88.619 (5)
V3)1076.03 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD/AFC
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.966, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
8268, 6614, 5665
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.086, 0.97
No. of reflections6614
No. of parameters620
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O8i0.921.812.724 (3)170.1
N1—H5···S1i0.922.993.860 (3)158.0
N1—H13···O10ii0.842.122.799 (3)137.6
N1—H13···O12ii0.842.603.257 (4)135.1
N3—H2···O30.861.972.670 (3)138.2
N3—H10···O110.892.072.965 (3)173.9
N5—H8···O12iii0.901.802.687 (3)168.8
N5—H12···O80.901.832.722 (3)174.3
N5—H12···S10.902.803.628 (3)154.3
N7—H1···O60.902.002.673 (3)131.0
N7—H4···O150.932.102.997 (3)162.1
O2—H6···O30.881.702.523 (3)156.1
O5—H9···O60.961.642.543 (3)155.7
O11—H18···O13iv0.862.062.918 (3)176.6
O11—H14···O10iv0.822.042.846 (3)169.0
O12—H12D···O70.931.812.680 (3)154.7
O12—H12D···S10.932.683.479 (2)144.6
O12—H12C···O130.941.922.748 (3)145.5
O13—H13C···O140.841.902.725 (3)168.9
O13—H13D···O4v0.901.952.774 (3)152.6
O14—H14C···O11.001.892.834 (3)156.9
O14—H14D···O9vi0.891.832.715 (3)170.4
O15—H15A···O7vii0.911.852.748 (3)168.4
O15—H15A···S1vii0.912.873.680 (2)149.7
O15—H15B···O1iii0.892.292.979 (3)133.6
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x+1, y, z1; (vi) x, y+1, z; (vii) x1, y+1, z.
 

Acknowledgements

The work was supported by a grant from the National Science Foundation of China (31170520).

References

First citationKalliopi, C. S., Catherine, P., Raptopoulou, B., Vassilis, P., Dimitris, P. K. & George, P. (2000). Polyhedron, 28, 3265–3271.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). Inorg. Chem. Commun. 10, 459–462.  Web of Science CSD CrossRef CAS Google Scholar
First citationSivalakshmidevi, A., Vyas, K. & Om Reddy, G. (2000). Acta Cryst. C56, e115–e116.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTruffot-Pernot, C. L., Grosset, M. & Ji, B. (1993). Antimicrob. Agents Chemother. 37, 407–413.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds