organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4,6-Di­methyl­pyrimidin-2-yl)thio­urea

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: sohail262001@yahoo.com

(Received 23 October 2011; accepted 13 November 2011; online 19 November 2011)

In the crystal structure of the title compound, C7H10N4S, weak inter­molecular N—H⋯S inter­actions form a two-dimensional network parallel to the ab plane. An intra­molecular N—H⋯N hydrogen bond occurs.

Related literature

For structural characterization of N-substituted thio­urea derivatives with heterocyclic substituents, see: Saeed et al. (2010a[Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010a). Cent. Eur. J. Chem. 8, 550-558.],b[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010b). Eur. J. Med. Chem. 45, 1323-1331.], 2011[Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74-84.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N4S

  • Mr = 182.25

  • Orthorhombic, P n a 21

  • a = 8.3372 (5) Å

  • b = 15.8303 (10) Å

  • c = 6.618 (1) Å

  • V = 873.45 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Oxford DiffractionXcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.910, Tmax = 0.945

  • 7240 measured reflections

  • 2057 independent reflections

  • 1588 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.144

  • S = 1.10

  • 2057 reflections

  • 120 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4 0.90 (2) 1.99 (3) 2.676 (3) 131 (3)
N1—H1B⋯S1i 0.87 (2) 2.58 (2) 3.399 (2) 159 (4)
N2—H2A⋯S1ii 0.85 (2) 2.53 (2) 3.338 (2) 160 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of the title compound is a byproduct of the reaction of 1-(4,6-dimethylpyrimidin-2-yl)-3-(3,5-dinitrophenyl)thiourea with a copper acetate salt. It is related to our previous studies on the structural chemistry of heterocyclic compounds containing an N-substituted thiourea (Saeed et al., 2010a, 2010b, 2011). Herein, as a continuation of these studies, the structure of the title compound, (I), C7H10N4S, is described.

In the title compound, (I), (Fig. 1) the crystal packing is realized by intramolecular N1—H1···N4 hydrogen bonds and weak N—H···S intermolecular interactions (Table 1) forming a 2-D network along [110] (Fig. 2). Bond distances are in normal ranges (Allen et al. (1987).

Related literature top

For structural characterization of N-substituted thiourea derivatives with heterocyclic substituents, see: Saeed et al. (2010a,b, 2011). For standard bond lengths, see Allen et al. (1987).

Experimental top

After refluxing a reaction mixture of 1-(4,6-dimethylpyrimidin-2-yl)-3- (3,5-dinitrophenyl)thiourea with copper acetate salt, it was transfered into cold water. The crude solid product was filtered, washed again with water and purified by re-crystallization from ethanol (Yield: 45%). Single crystals of the title compound were obtained by recrystallisation from a dichloromethane/ethanol mixture (2:1).

Refinement top

H1A, H1B and H2A were located in a Fourier map and refined isotropically. All other H atoms were placed in their calculated positions and then refined using the riding model with atom—H bond lengths of 0.95Å (CH) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19 (CH) or 1.48–1.50 (CH3) times Ueq of the parent atom. 928 Friedel pairs were measured.

Structure description top

The crystal structure of the title compound is a byproduct of the reaction of 1-(4,6-dimethylpyrimidin-2-yl)-3-(3,5-dinitrophenyl)thiourea with a copper acetate salt. It is related to our previous studies on the structural chemistry of heterocyclic compounds containing an N-substituted thiourea (Saeed et al., 2010a, 2010b, 2011). Herein, as a continuation of these studies, the structure of the title compound, (I), C7H10N4S, is described.

In the title compound, (I), (Fig. 1) the crystal packing is realized by intramolecular N1—H1···N4 hydrogen bonds and weak N—H···S intermolecular interactions (Table 1) forming a 2-D network along [110] (Fig. 2). Bond distances are in normal ranges (Allen et al. (1987).

For structural characterization of N-substituted thiourea derivatives with heterocyclic substituents, see: Saeed et al. (2010a,b, 2011). For standard bond lengths, see Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate weak N—H···S intermolecular interactions forming a 2-D network along [110].
1-(4,6-Dimethylpyrimidin-2-yl)thiourea top
Crystal data top
C7H10N4SF(000) = 384
Mr = 182.25Dx = 1.386 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2136 reflections
a = 8.3372 (5) Åθ = 3.3–32.5°
b = 15.8303 (10) ŵ = 0.32 mm1
c = 6.618 (1) ÅT = 173 K
V = 873.45 (15) Å3Block, pale yellow
Z = 40.30 × 0.20 × 0.18 mm
Data collection top
Oxford DiffractionXcalibur Eos Gemini
diffractometer
2057 independent reflections
Radiation source: Enhance (Mo) X-ray Source1588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.1500 pixels mm-1θmax = 27.9°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 2020
Tmin = 0.910, Tmax = 0.945l = 88
7240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.3395P]
where P = (Fo2 + 2Fc2)/3
2057 reflections(Δ/σ)max = 0.021
120 parametersΔρmax = 0.57 e Å3
4 restraintsΔρmin = 0.23 e Å3
Crystal data top
C7H10N4SV = 873.45 (15) Å3
Mr = 182.25Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.3372 (5) ŵ = 0.32 mm1
b = 15.8303 (10) ÅT = 173 K
c = 6.618 (1) Å0.30 × 0.20 × 0.18 mm
Data collection top
Oxford DiffractionXcalibur Eos Gemini
diffractometer
2057 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1588 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.945Rint = 0.043
7240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0534 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.57 e Å3
2057 reflectionsΔρmin = 0.23 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39504 (8)0.77736 (4)0.3627 (3)0.0334 (2)
N10.2593 (2)0.62628 (14)0.3662 (11)0.0295 (5)
H1A0.261 (4)0.5693 (11)0.374 (13)0.035*
H1B0.179 (3)0.6589 (17)0.338 (8)0.035*
N20.5367 (2)0.62855 (12)0.3683 (10)0.0241 (5)
H2A0.615 (3)0.6613 (16)0.345 (9)0.029*
N30.7243 (2)0.52446 (13)0.3633 (9)0.0309 (6)
N40.4441 (3)0.48807 (14)0.3725 (8)0.0263 (5)
C10.3948 (3)0.67031 (15)0.3601 (11)0.0246 (6)
C20.5672 (3)0.54221 (16)0.3715 (9)0.0265 (6)
C30.7616 (3)0.44226 (17)0.3597 (12)0.0310 (6)
C40.6435 (3)0.38055 (16)0.3665 (14)0.0318 (6)
H4A0.67110.32250.37860.038*
C50.4852 (3)0.40536 (17)0.3554 (10)0.0292 (7)
C60.3496 (3)0.34350 (17)0.3676 (15)0.0403 (8)
H6A0.26090.36290.28230.060*
H6B0.31300.33900.50790.060*
H6C0.38630.28810.32050.060*
C70.9355 (3)0.42072 (19)0.3708 (14)0.0413 (9)
H7A0.99910.46840.32060.062*
H7B0.95680.37070.28780.062*
H7C0.96480.40890.51140.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0193 (3)0.0239 (3)0.0570 (5)0.0017 (2)0.0110 (6)0.0034 (11)
N10.0161 (10)0.0256 (10)0.0466 (15)0.0014 (8)0.007 (3)0.008 (3)
N20.0173 (10)0.0222 (10)0.0328 (13)0.0013 (8)0.005 (3)0.005 (3)
N30.0206 (11)0.0298 (12)0.0424 (16)0.0013 (8)0.015 (2)0.008 (3)
N40.0254 (11)0.0278 (10)0.0257 (14)0.0015 (8)0.006 (2)0.003 (2)
C10.0197 (11)0.0293 (12)0.0248 (15)0.0002 (9)0.012 (2)0.001 (3)
C20.0257 (13)0.0284 (12)0.0254 (16)0.0001 (9)0.008 (3)0.003 (3)
C30.0247 (13)0.0335 (14)0.0347 (17)0.0019 (10)0.009 (3)0.006 (3)
C40.0270 (13)0.0255 (12)0.0430 (17)0.0021 (10)0.007 (4)0.007 (4)
C50.0258 (13)0.0304 (13)0.0315 (18)0.0027 (10)0.009 (2)0.003 (3)
C60.0283 (14)0.0319 (14)0.061 (2)0.0073 (11)0.013 (4)0.001 (5)
C70.0291 (14)0.0356 (15)0.059 (2)0.0061 (12)0.014 (4)0.001 (4)
Geometric parameters (Å, º) top
S1—C11.695 (3)C3—C41.388 (4)
N1—C11.328 (3)C3—C71.491 (4)
N1—H1A0.904 (17)C4—C51.379 (4)
N1—H1B0.869 (18)C4—H4A0.9500
N2—C11.356 (3)C5—C61.497 (4)
N2—C21.390 (3)C6—H6A0.9800
N2—H2A0.846 (17)C6—H6B0.9800
N3—C31.338 (3)C6—H6C0.9800
N3—C21.341 (3)C7—H7A0.9800
N4—C21.337 (3)C7—H7B0.9800
N4—C51.358 (3)C7—H7C0.9800
C1—N1—H1A120.7 (19)C5—C4—H4A120.8
C1—N1—H1B110 (2)C3—C4—H4A120.8
H1A—N1—H1B128 (3)N4—C5—C4120.8 (3)
C1—N2—C2129.7 (2)N4—C5—C6115.8 (3)
C1—N2—H2A112 (2)C4—C5—C6122.2 (2)
C2—N2—H2A118 (2)C5—C6—H6A109.5
C3—N3—C2115.6 (2)C5—C6—H6B109.5
C2—N4—C5115.1 (2)H6A—C6—H6B109.5
N1—C1—N2119.0 (2)C5—C6—H6C109.5
N1—C1—S1121.71 (19)H6A—C6—H6C109.5
N2—C1—S1119.07 (17)H6B—C6—H6C109.5
N4—C2—N3128.0 (2)C3—C7—H7A109.5
N4—C2—N2119.3 (2)C3—C7—H7B109.5
N3—C2—N2112.6 (2)H7A—C7—H7B109.5
N3—C3—C4121.2 (2)C3—C7—H7C109.5
N3—C3—C7116.6 (2)H7A—C7—H7C109.5
C4—C3—C7121.8 (2)H7B—C7—H7C109.5
C5—C4—C3118.5 (2)
C2—N2—C1—N14.0 (12)C2—N3—C3—C40.7 (11)
C2—N2—C1—S1178.8 (6)C2—N3—C3—C7174.2 (6)
C5—N4—C2—N32.7 (10)N3—C3—C4—C56.9 (12)
C5—N4—C2—N2173.7 (5)C7—C3—C4—C5180.0 (8)
C3—N3—C2—N41.4 (10)C2—N4—C5—C49.0 (11)
C3—N3—C2—N2178.1 (6)C2—N4—C5—C6176.8 (6)
C1—N2—C2—N42.1 (11)C3—C4—C5—N411.2 (12)
C1—N2—C2—N3174.9 (8)C3—C4—C5—C6178.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N40.90 (2)1.99 (3)2.676 (3)131 (3)
N1—H1B···S1i0.87 (2)2.58 (2)3.399 (2)159 (4)
N2—H2A···S1ii0.85 (2)2.53 (2)3.338 (2)160 (4)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC7H10N4S
Mr182.25
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)8.3372 (5), 15.8303 (10), 6.618 (1)
V3)873.45 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerOxford DiffractionXcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.910, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
7240, 2057, 1588
Rint0.043
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.144, 1.10
No. of reflections2057
No. of parameters120
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N40.904 (17)1.99 (3)2.676 (3)131 (3)
N1—H1B···S1i0.869 (18)2.58 (2)3.399 (2)159 (4)
N2—H2A···S1ii0.846 (17)2.53 (2)3.338 (2)160 (4)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010a). Cent. Eur. J. Chem. 8, 550–558.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010b). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds