organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-[2-(Tri­fluoro­meth­yl)benzyl­­idene]thio­semicarbazide

aCollege of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China
*Correspondence e-mail: jzl74@tust.edu.cn

(Received 10 October 2011; accepted 10 November 2011; online 19 November 2011)

In the crystal structure of the title compound, C9H8F3N3S, all atoms except for two of the F atoms are located on a mirror plane. In the crystal, the molecules are connected by N—H⋯S hydrogen bonds, forming a mol­ecular tape along the a axis.

Related literature

For general background to metal complexes with Shiff bases, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Deng et al. (2005[Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545-o2546.]). For related structures, see: Guo et al. (2006[Guo, M.-J., Sun, J.-C., Jing, Z.-L., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o820-o821.]); Jing et al. (2005[Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3208-o3209.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]); Yu et al. (2005[Yu, M., Chen, X. & Jing, Z.-L. (2005). Acta Cryst. E61, o1345-o1346.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8F3N3S

  • Mr = 247.24

  • Orthorhombic, P n m a

  • a = 8.628 (2) Å

  • b = 6.9795 (17) Å

  • c = 18.222 (4) Å

  • V = 1097.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 294 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.886, Tmax = 0.912

  • 5953 measured reflections

  • 1228 independent reflections

  • 869 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.113

  • S = 1.07

  • 1228 reflections

  • 101 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯S1i 0.88 (4) 2.54 (4) 3.418 (3) 174 (3)
N2—H2A⋯S1ii 0.82 (3) 2.61 (3) 3.430 (2) 173 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{5\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands (Yu et al., 2005; Deng et al., 2005; Jing, Fan et al., 2005; Guo, Sun et al., 2006), we report the synthesis and structure of the title compound, (I). In the molecular structure of the title compound (Fig. 1), the expected geometric parameters are observed. The molecules are associated via weak intermolecular N—H···S hydrogen-bonding interactions (Table 1) to form a supramolecular network as illustrated in Fig. 2.

Related literature top

For general background to metal complexes with Shiff bases, see: Kahwa et al. (1986); Deng et al. (2005). For related structures, see: Guo et al. (2006); Jing et al. (2005); Santos et al. (2001); Yu et al. (2005).

Experimental top

An anhydrous ethanol solution(50 mL) of thiosemicarbazide (0.91 g, 10 mmol) was added to an anhydrous ethanol solution(50 mL) of 2-(trifluoromethyl)benzaldehyde (1.74 g, 10 mmol) and the mixture was stirred at 350 K for 6 h under N2, whereupon a straw colorless solution appeared. The solvent was removed and the residue recrystallized from anhydrous ethanol. The product was isolated and then dried in vacuo to give pure (I) in 77% yield (Fig. 3). The colorless single crystals suitable for X-ray analysis were obtained by slow evaporation of an anhydrous ethanol solution of (I).

Refinement top

The N-bound H atoms were located in a difference Fourier map and their positions were refined freely with Uiso(H) = 1.2Ueq(N) [N—H = 0.82 (3)–0.93 (4) Å]. C-bound H atoms were included in calculated positions (C—H = 0.93 Å) and refined using the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands (Yu et al., 2005; Deng et al., 2005; Jing, Fan et al., 2005; Guo, Sun et al., 2006), we report the synthesis and structure of the title compound, (I). In the molecular structure of the title compound (Fig. 1), the expected geometric parameters are observed. The molecules are associated via weak intermolecular N—H···S hydrogen-bonding interactions (Table 1) to form a supramolecular network as illustrated in Fig. 2.

For general background to metal complexes with Shiff bases, see: Kahwa et al. (1986); Deng et al. (2005). For related structures, see: Guo et al. (2006); Jing et al. (2005); Santos et al. (2001); Yu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the b axis, showing intermolecular hydrogen bonds (dashed lines).
[Figure 3] Fig. 3. The synthetic scheme of the title compound.
(Z)-1-[2-(Trifluoromethyl)benzylidene]thiosemicarbazide top
Crystal data top
C9H8F3N3SF(000) = 504
Mr = 247.24Dx = 1.497 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2111 reflections
a = 8.628 (2) Åθ = 2.6–26.2°
b = 6.9795 (17) ŵ = 0.31 mm1
c = 18.222 (4) ÅT = 294 K
V = 1097.2 (5) Å3Block, colorless
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1228 independent reflections
Radiation source: fine-focus sealed tube869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 26.4°, θmin = 2.2°
phi and ω scansh = 107
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 78
Tmin = 0.886, Tmax = 0.912l = 2222
5953 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3737P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1228 reflectionsΔρmax = 0.19 e Å3
101 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (19)
Crystal data top
C9H8F3N3SV = 1097.2 (5) Å3
Mr = 247.24Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.628 (2) ŵ = 0.31 mm1
b = 6.9795 (17) ÅT = 294 K
c = 18.222 (4) Å0.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1228 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
869 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.912Rint = 0.028
5953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.19 e Å3
1228 reflectionsΔρmin = 0.20 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72882 (8)0.25001.28034 (4)0.0803 (4)
F10.0437 (2)0.25000.91939 (12)0.0999 (8)
F20.15033 (14)0.0964 (2)1.00795 (8)0.0891 (5)
N10.6005 (2)0.25001.07458 (11)0.0465 (6)
N20.5981 (2)0.25001.14995 (12)0.0519 (6)
H2A0.513 (4)0.25001.1704 (16)0.062*
N30.8620 (3)0.25001.14879 (15)0.0726 (9)
H3A0.862 (4)0.25001.098 (2)0.087*
H3B0.953 (5)0.25001.1704 (19)0.087*
C10.1665 (3)0.25000.96416 (18)0.0636 (8)
C20.3177 (3)0.25000.92383 (15)0.0490 (7)
C30.3171 (4)0.25000.84755 (17)0.0691 (9)
H30.22310.25000.82260.083*
C40.4530 (4)0.25000.80832 (18)0.0847 (11)
H40.45100.25000.75730.102*
C50.5928 (4)0.25000.84529 (17)0.0775 (10)
H50.68510.25000.81890.093*
C60.5970 (3)0.25000.92107 (16)0.0561 (8)
H60.69220.25000.94510.067*
C70.4604 (3)0.25000.96217 (14)0.0428 (6)
C80.4682 (3)0.25001.04285 (14)0.0442 (6)
H80.37770.25001.07060.053*
C90.7324 (3)0.25001.18753 (16)0.0538 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0329 (4)0.1575 (10)0.0504 (4)0.0000.0050 (3)0.000
F10.0416 (10)0.161 (2)0.0973 (15)0.0000.0225 (9)0.000
F20.0515 (7)0.1089 (12)0.1070 (11)0.0201 (7)0.0044 (7)0.0278 (10)
N10.0349 (11)0.0577 (15)0.0469 (12)0.0000.0003 (9)0.000
N20.0282 (11)0.0807 (18)0.0468 (12)0.0000.0005 (9)0.000
N30.0300 (11)0.132 (3)0.0555 (14)0.0000.0005 (11)0.000
C10.0383 (14)0.082 (2)0.071 (2)0.0000.0100 (13)0.000
C20.0419 (13)0.0487 (16)0.0565 (15)0.0000.0049 (12)0.000
C30.0595 (18)0.091 (3)0.0566 (17)0.0000.0154 (14)0.000
C40.074 (2)0.129 (3)0.0511 (17)0.0000.0017 (17)0.000
C50.062 (2)0.113 (3)0.0578 (18)0.0000.0124 (15)0.000
C60.0410 (14)0.069 (2)0.0587 (16)0.0000.0015 (12)0.000
C70.0381 (13)0.0409 (15)0.0495 (14)0.0000.0003 (11)0.000
C80.0305 (12)0.0507 (16)0.0513 (14)0.0000.0019 (10)0.000
C90.0321 (12)0.074 (2)0.0554 (15)0.0000.0012 (11)0.000
Geometric parameters (Å, º) top
S1—C91.691 (3)C2—C31.390 (4)
F1—C11.338 (3)C2—C71.416 (3)
F2—C11.343 (2)C3—C41.373 (5)
N1—C81.279 (3)C3—H30.9300
N1—N21.374 (3)C4—C51.381 (5)
N2—C91.346 (3)C4—H40.9300
N2—H2A0.82 (3)C5—C61.381 (4)
N3—C91.322 (3)C5—H50.9300
N3—H3A0.93 (4)C6—C71.397 (4)
N3—H3B0.88 (4)C6—H60.9300
C1—F2i1.343 (2)C7—C81.472 (3)
C1—C21.497 (4)C8—H80.9300
C8—N1—N2116.0 (2)C3—C4—C5119.4 (3)
C9—N2—N1119.7 (2)C3—C4—H4120.3
C9—N2—H2A122 (2)C5—C4—H4120.3
N1—N2—H2A118 (2)C6—C5—C4120.7 (3)
C9—N3—H3A122 (2)C6—C5—H5119.7
C9—N3—H3B121 (2)C4—C5—H5119.7
H3A—N3—H3B117 (3)C5—C6—C7120.9 (3)
F1—C1—F2i106.24 (16)C5—C6—H6119.5
F1—C1—F2106.24 (16)C7—C6—H6119.5
F2i—C1—F2105.8 (3)C6—C7—C2118.0 (2)
F1—C1—C2113.0 (3)C6—C7—C8119.8 (2)
F2i—C1—C2112.47 (15)C2—C7—C8122.2 (2)
F2—C1—C2112.47 (15)N1—C8—C7119.5 (2)
C3—C2—C7119.8 (3)N1—C8—H8120.3
C3—C2—C1119.2 (3)C7—C8—H8120.3
C7—C2—C1121.0 (2)N3—C9—N2117.1 (2)
C4—C3—C2121.2 (3)N3—C9—S1123.3 (2)
C4—C3—H3119.4N2—C9—S1119.5 (2)
C2—C3—H3119.4
C8—N1—N2—C9180.000 (1)C5—C6—C7—C20.000 (2)
F1—C1—C2—C30.000 (2)C5—C6—C7—C8180.000 (1)
F2i—C1—C2—C3120.30 (18)C3—C2—C7—C60.000 (2)
F2—C1—C2—C3120.30 (18)C1—C2—C7—C6180.000 (1)
F1—C1—C2—C7180.000 (1)C3—C2—C7—C8180.000 (1)
F2i—C1—C2—C759.70 (18)C1—C2—C7—C80.000 (1)
F2—C1—C2—C759.70 (18)N2—N1—C8—C7180.000 (1)
C7—C2—C3—C40.000 (2)C6—C7—C8—N10.000 (1)
C1—C2—C3—C4180.000 (1)C2—C7—C8—N1180.000 (1)
C2—C3—C4—C50.000 (2)N1—N2—C9—N30.000 (2)
C3—C4—C5—C60.000 (2)N1—N2—C9—S1180.0
C4—C5—C6—C70.000 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···S1ii0.88 (4)2.54 (4)3.418 (3)174 (3)
N2—H2A···S1iii0.82 (3)2.61 (3)3.430 (2)173 (3)
Symmetry codes: (ii) x+1/2, y, z+5/2; (iii) x1/2, y, z+5/2.

Experimental details

Crystal data
Chemical formulaC9H8F3N3S
Mr247.24
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)294
a, b, c (Å)8.628 (2), 6.9795 (17), 18.222 (4)
V3)1097.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.886, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
5953, 1228, 869
Rint0.028
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.113, 1.07
No. of reflections1228
No. of parameters101
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···S1i0.88 (4)2.54 (4)3.418 (3)174 (3)
N2—H2A···S1ii0.82 (3)2.61 (3)3.430 (2)173 (3)
Symmetry codes: (i) x+1/2, y, z+5/2; (ii) x1/2, y, z+5/2.
 

Acknowledgements

This work was supported by the Tianjn University of Science and Technology Research Fund (No. 20090216).

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545–o2546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, M.-J., Sun, J.-C., Jing, Z.-L., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o820–o821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3208–o3209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, M., Chen, X. & Jing, Z.-L. (2005). Acta Cryst. E61, o1345–o1346.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds