metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ3-5-amino­isophthalato-κ3O1:O3:N)(1H-imidazole-κN3)zinc] 0.25-hydrate]

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: hyitshy@126.com

(Received 11 September 2011; accepted 22 November 2011; online 25 November 2011)

In the title coordination polymer, {[Zn(C8H5NO4)(C3H4N2)]·0.25H2O}n, the Zn2+ cation has an N2O2 donor set involving two carboxyl­ate O atoms from two 5-amino­isophthalate anions, one N atom from a 5-amino­isophthalate anion, and one imidazole N atom displaying a slightly distorted tetra­hedral geometry with two additional O-atom neighbours, with Zn-to-ligand distances of 2.711 (2) and 2.717 (2) Å, respectively. Each 5-amino­isophthalate anion acts as a μ3-bridge linking symmetry-related ZnII ions into a layered polymeric structure parallel to (100). The asymmetric unit also comprises a disordered crystal water molecule located on an inversion centre with 0.25 occupancy. In the crystal, N—H⋯O hydrogen bonds form a three-dimensional network.

Related literature

For related structures, see: Zhang et al. (2007[Zhang, K.-L., Qiao, N., Gao, H.-Y., Zhou, F. & Zhang, M. (2007). Polyhedron, 26, 2461-2469.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5NO4)(C3H4N2)]·0.25H2O

  • Mr = 317.09

  • Monoclinic, P 21 /c

  • a = 9.6239 (11) Å

  • b = 10.1916 (11) Å

  • c = 12.1927 (13) Å

  • β = 95.146 (2)°

  • V = 1191.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.681, Tmax = 0.706

  • 6327 measured reflections

  • 2340 independent reflections

  • 1542 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.098

  • S = 1.09

  • 2340 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

N2—Zn1 1.983 (3)
O2—Zn1 1.989 (2)
Zn1—O4i 1.998 (3)
Zn1—N1ii 2.082 (3)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O4iii 0.91 2.21 3.018 (4) 147
N1—H1A⋯O2iv 0.88 2.17 2.943 (4) 146
N3—H3⋯O3v 0.95 1.88 2.822 (4) 174
Symmetry codes: (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5-Aminoisophthalic acid is often used as organic ligand to synthesise complexes with variable coordination modes. Herein, we report the crystal structure of title coordination polymer. The asymmetric unit consists of one zinc ion, one 5-aminoisophthalate anion, one imidazole and partly occupied crystal water. Each Zn ion has a N2O2 donor set and is coordinated by two carboxylate O atoms from two 5-aminoisophthalate anions, one N atom from the amino group of 5-aminoisophthalate anion, and one N atom from an imidazole, displaying a slightly distorted tetrahedral geometry (Fig. 1 and Table 1) with the two additional neighbours O1 and O3 with Zn-ligad distances of 2.711 (2) and 2.717 (2) Å, respectively. Each 5-aminoisophthalate anion acts as a µ3-bridge. So in the structure of title complex, every 5-aminoisophthalate anion links three zinc ions and every zinc ion bridges three 5-aminoisophthalate anions. This kind of connection proceeds infinitely to form a layer (Fig. 2). Whithin the crystal structure, there are N—H···O hydrogen bonds (Table 2).

Related literature top

For related structures, see: Zhang et al. (2007).

Experimental top

Reaction mixture of zinc nitrate hexahydrate (29.7 mg, 0.1 mmol), 5-aminoisophthalic acid (18.1 mg, 0.1 mmol), imidazole (6.81 mg, 0.1 mmol), and potassium hydroxide (11.2 mg, 0.2 mmol) in 8 mL H2O was sealed in a 16 mL Teflon-lined stainless steel container and heated to(1) 453 K for 3 days. After cooling to the room temperature, colourless block crystals of the title complex were obtained.

Refinement top

The hydrogen atoms in all C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms in N or O atoms can be found at reasonable positions in the difference Fourier maps and located there [Uiso(H) = 1.2Ueq(N or O)].

Structure description top

5-Aminoisophthalic acid is often used as organic ligand to synthesise complexes with variable coordination modes. Herein, we report the crystal structure of title coordination polymer. The asymmetric unit consists of one zinc ion, one 5-aminoisophthalate anion, one imidazole and partly occupied crystal water. Each Zn ion has a N2O2 donor set and is coordinated by two carboxylate O atoms from two 5-aminoisophthalate anions, one N atom from the amino group of 5-aminoisophthalate anion, and one N atom from an imidazole, displaying a slightly distorted tetrahedral geometry (Fig. 1 and Table 1) with the two additional neighbours O1 and O3 with Zn-ligad distances of 2.711 (2) and 2.717 (2) Å, respectively. Each 5-aminoisophthalate anion acts as a µ3-bridge. So in the structure of title complex, every 5-aminoisophthalate anion links three zinc ions and every zinc ion bridges three 5-aminoisophthalate anions. This kind of connection proceeds infinitely to form a layer (Fig. 2). Whithin the crystal structure, there are N—H···O hydrogen bonds (Table 2).

For related structures, see: Zhang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of zinc ion in the title complex with the ellipsoids drawn at the 30% probability level. Symmetry code used: (A) x, 1/2 - y, 1/2 + z; (B) x, -1 + y, z; (C) x, 1 + y, z; (D) x, 1/2 - y, -1/2 + z.
[Figure 2] Fig. 2. The layer built from infinite connection of zinc ions and 5-aminoisophthalate anions.
Poly[[(µ3-5-aminoisophthalato- κ3O1:O3:N)(1H-imidazole-κN3)zinc] 0.25-hydrate] top
Crystal data top
[Zn(C8H5NO4)(C3H4N2)]·0.25H2OF(000) = 642
Mr = 317.09Dx = 1.768 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2609 reflections
a = 9.6239 (11) Åθ = 2.6–28.0°
b = 10.1916 (11) ŵ = 2.08 mm1
c = 12.1927 (13) ÅT = 293 K
β = 95.146 (2)°Block, colourless
V = 1191.1 (2) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2340 independent reflections
Radiation source: sealed tube1542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
phi and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.681, Tmax = 0.706k = 1212
6327 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
2340 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Zn(C8H5NO4)(C3H4N2)]·0.25H2OV = 1191.1 (2) Å3
Mr = 317.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6239 (11) ŵ = 2.08 mm1
b = 10.1916 (11) ÅT = 293 K
c = 12.1927 (13) Å0.20 × 0.20 × 0.18 mm
β = 95.146 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2340 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1542 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.706Rint = 0.038
6327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.09Δρmax = 0.56 e Å3
2340 reflectionsΔρmin = 0.57 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6575 (4)0.3910 (3)0.9523 (3)0.0326 (9)
C20.6177 (4)0.3912 (4)0.8394 (3)0.0351 (9)
H20.60370.31230.80160.042*
C30.5989 (4)0.5098 (3)0.7836 (3)0.0320 (8)
C40.6275 (4)0.6274 (3)0.8374 (3)0.0346 (9)
H40.61880.70600.79870.042*
C50.6696 (4)0.6277 (3)0.9507 (3)0.0330 (9)
C60.6827 (4)0.5094 (4)1.0076 (3)0.0361 (9)
H60.70840.50931.08300.043*
C70.6734 (4)0.2659 (4)1.0171 (3)0.0359 (9)
C80.6970 (4)0.7532 (4)1.0138 (3)0.0350 (9)
C90.9582 (5)0.1183 (4)1.2027 (4)0.0439 (11)
H90.90930.19361.21880.053*
C101.0136 (5)0.0654 (4)1.1370 (3)0.0441 (10)
H101.00930.14331.09720.053*
C111.1245 (5)0.0237 (4)1.2012 (4)0.0449 (10)
H111.20950.06671.21490.054*
N10.5567 (3)0.5092 (3)0.6679 (2)0.0355 (7)
H1B0.49830.44050.65090.043*
H1A0.50650.57940.64880.043*
N20.9069 (3)0.0238 (3)1.1382 (3)0.0353 (7)
N31.0886 (4)0.0935 (3)1.2423 (3)0.0438 (9)
H31.14180.14961.29210.053*
O10.6978 (3)0.2682 (2)1.1177 (2)0.0401 (7)
O20.6629 (3)0.1581 (2)0.9615 (2)0.0339 (6)
O30.7375 (3)0.7512 (2)1.1132 (2)0.0438 (7)
O40.6761 (3)0.8610 (2)0.9600 (2)0.0384 (7)
O1W0.00000.00000.50000.047 (2)0.50
H1X0.04220.03590.44950.056*0.25
H1Y0.04530.01370.56200.056*0.25
Zn10.71550 (5)0.01074 (4)1.06385 (4)0.03453 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.0284 (18)0.034 (2)0.0003 (16)0.0028 (18)0.0004 (15)
C20.035 (2)0.032 (2)0.036 (2)0.0002 (16)0.0064 (17)0.0001 (16)
C30.0285 (19)0.035 (2)0.0310 (19)0.0022 (16)0.0039 (15)0.0037 (16)
C40.040 (2)0.029 (2)0.034 (2)0.0010 (16)0.0003 (18)0.0027 (15)
C50.034 (2)0.032 (2)0.031 (2)0.0018 (15)0.0062 (17)0.0021 (15)
C60.038 (2)0.036 (2)0.032 (2)0.0021 (16)0.0083 (16)0.0001 (15)
C70.035 (2)0.034 (2)0.037 (2)0.0038 (16)0.0038 (17)0.0024 (17)
C80.035 (2)0.032 (2)0.037 (2)0.0009 (15)0.0066 (18)0.0025 (16)
C90.048 (3)0.0297 (19)0.051 (3)0.0036 (18)0.014 (2)0.0107 (18)
C100.049 (3)0.037 (2)0.044 (3)0.0067 (19)0.0099 (19)0.0063 (18)
C110.044 (2)0.043 (2)0.046 (3)0.002 (2)0.0061 (19)0.003 (2)
N10.0411 (18)0.0330 (17)0.0302 (17)0.0026 (14)0.0086 (13)0.0019 (13)
N20.0377 (18)0.0316 (16)0.0345 (18)0.0041 (14)0.0080 (14)0.0050 (14)
N30.041 (2)0.0408 (19)0.045 (2)0.0043 (16)0.0191 (17)0.0124 (15)
O10.0579 (19)0.0300 (14)0.0304 (16)0.0015 (12)0.0078 (13)0.0032 (11)
O20.0494 (17)0.0292 (13)0.0213 (12)0.0004 (12)0.0069 (12)0.0014 (10)
O30.0579 (19)0.0308 (14)0.0385 (17)0.0036 (13)0.0185 (14)0.0028 (12)
O40.0510 (18)0.0314 (15)0.0303 (14)0.0001 (12)0.0095 (13)0.0026 (11)
O1W0.050 (5)0.056 (5)0.034 (4)0.001 (4)0.004 (4)0.004 (4)
Zn10.0402 (3)0.0300 (3)0.0312 (3)0.0001 (2)0.00893 (17)0.0000 (2)
Geometric parameters (Å, º) top
C1—C61.394 (5)C9—H90.9300
C1—C21.396 (5)C10—C111.335 (6)
C1—C71.500 (5)C10—N21.372 (5)
C2—C31.391 (5)C10—H100.9300
C2—H20.9300C11—N31.352 (5)
C3—C41.382 (5)C11—H110.9300
C3—N11.432 (4)N1—Zn1i2.082 (3)
C4—C51.405 (5)N1—H1B0.9104
C4—H40.9300N1—H1A0.8832
C5—C61.391 (5)N2—Zn11.983 (3)
C5—C81.503 (5)N3—H30.9504
C6—H60.9300O2—Zn11.989 (2)
C7—O11.229 (5)O4—Zn1ii1.998 (3)
C7—O21.290 (4)O1W—H1X0.8500
C8—O31.239 (5)O1W—H1Y0.8501
C8—O41.287 (4)Zn1—O4iii1.998 (3)
C9—N21.312 (5)Zn1—N1iv2.082 (3)
C9—N31.327 (5)
C6—C1—C2119.8 (3)C11—C10—N2110.1 (4)
C6—C1—C7118.4 (3)C11—C10—H10125.0
C2—C1—C7121.8 (3)N2—C10—H10125.0
C3—C2—C1119.7 (3)C10—C11—N3106.3 (4)
C3—C2—H2120.1C10—C11—H11126.9
C1—C2—H2120.1N3—C11—H11126.9
C4—C3—C2120.6 (3)C3—N1—Zn1i116.3 (2)
C4—C3—N1119.9 (3)C3—N1—H1B110.0
C2—C3—N1119.4 (3)Zn1i—N1—H1B105.0
C3—C4—C5119.8 (3)C3—N1—H1A110.9
C3—C4—H4120.1Zn1i—N1—H1A109.4
C5—C4—H4120.1H1B—N1—H1A104.5
C6—C5—C4119.6 (3)C9—N2—C10104.5 (3)
C6—C5—C8118.6 (3)C9—N2—Zn1127.4 (3)
C4—C5—C8121.8 (3)C10—N2—Zn1128.0 (3)
C5—C6—C1120.3 (3)C9—N3—C11107.4 (3)
C5—C6—H6119.8C9—N3—H3123.7
C1—C6—H6119.8C11—N3—H3128.8
O1—C7—O2122.7 (3)C7—O2—Zn1108.0 (2)
O1—C7—C1120.7 (3)C8—O4—Zn1ii108.5 (2)
O2—C7—C1116.6 (3)H1X—O1W—H1Y109.5
O3—C8—O4122.3 (3)N2—Zn1—O2114.21 (12)
O3—C8—C5120.8 (3)N2—Zn1—O4iii117.19 (12)
O4—C8—C5117.0 (3)O2—Zn1—O4iii98.96 (10)
N2—C9—N3111.7 (3)N2—Zn1—N1iv115.47 (13)
N2—C9—H9124.1O2—Zn1—N1iv107.26 (12)
N3—C9—H9124.1O4iii—Zn1—N1iv101.77 (12)
C6—C1—C2—C32.2 (6)C4—C3—N1—Zn1i92.1 (4)
C7—C1—C2—C3177.4 (4)C2—C3—N1—Zn1i84.6 (4)
C1—C2—C3—C44.0 (6)N3—C9—N2—C100.6 (5)
C1—C2—C3—N1179.4 (4)N3—C9—N2—Zn1177.5 (3)
C2—C3—C4—C53.0 (6)C11—C10—N2—C90.9 (5)
N1—C3—C4—C5179.6 (4)C11—C10—N2—Zn1177.2 (3)
C3—C4—C5—C60.3 (6)N2—C9—N3—C110.1 (5)
C3—C4—C5—C8177.8 (4)C10—C11—N3—C90.5 (5)
C4—C5—C6—C11.5 (6)O1—C7—O2—Zn16.9 (5)
C8—C5—C6—C1179.6 (4)C1—C7—O2—Zn1171.8 (3)
C2—C1—C6—C50.6 (6)O3—C8—O4—Zn1ii1.3 (5)
C7—C1—C6—C5179.8 (4)C5—C8—O4—Zn1ii178.6 (3)
C6—C1—C7—O15.4 (6)C9—N2—Zn1—O259.6 (4)
C2—C1—C7—O1174.2 (4)C10—N2—Zn1—O2122.8 (3)
C6—C1—C7—O2173.3 (3)C9—N2—Zn1—O4iii174.6 (3)
C2—C1—C7—O27.1 (6)C10—N2—Zn1—O4iii7.7 (4)
C6—C5—C8—O33.8 (6)C9—N2—Zn1—N1iv65.5 (4)
C4—C5—C8—O3178.1 (4)C10—N2—Zn1—N1iv112.2 (3)
C6—C5—C8—O4176.1 (4)C7—O2—Zn1—N258.7 (3)
C4—C5—C8—O42.0 (6)C7—O2—Zn1—O4iii176.0 (3)
N2—C10—C11—N30.8 (5)C7—O2—Zn1—N1iv70.6 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4v0.912.213.018 (4)147
N1—H1A···O2vi0.882.172.943 (4)146
N3—H3···O3vii0.951.882.822 (4)174
Symmetry codes: (v) x+1, y1/2, z+3/2; (vi) x+1, y+1/2, z+3/2; (vii) x+2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H5NO4)(C3H4N2)]·0.25H2O
Mr317.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.6239 (11), 10.1916 (11), 12.1927 (13)
β (°) 95.146 (2)
V3)1191.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.681, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
6327, 2340, 1542
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.098, 1.09
No. of reflections2340
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.57

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N2—Zn11.983 (3)Zn1—O4i1.998 (3)
O2—Zn11.989 (2)Zn1—N1ii2.082 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4iii0.912.213.018 (4)147.2
N1—H1A···O2iv0.882.172.943 (4)145.7
N3—H3···O3v0.951.882.822 (4)174.4
Symmetry codes: (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+2, y1/2, z+5/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K.-L., Qiao, N., Gao, H.-Y., Zhou, F. & Zhang, M. (2007). Polyhedron, 26, 2461–2469.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds