organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-N3-[(E)-(6-bromo­pyridin-2-yl)methyl­­idene]pyridine-3,4-di­amine

aDepartment of Chemistry, Tangshan Normal University, Tangshan 063000, People's Republic of China
*Correspondence e-mail: cmj_1237@yahoo.com.cn

(Received 2 October 2011; accepted 10 November 2011; online 23 November 2011)

The title compound, C11H8Br2N4, is a Schiff base obtained from 6-bromo­picolinaldehyde and 5-bromo­pyridine-3,4-diamine. The mol­ecule has an E configuration about the C=N bond and the dihedral angle between the two pyridine rings is 14.02 (1)°. The observed conformation is stabilised by an intramolecular N—H⋯N hydrogen bond. In the crystal, mol­ecules are stacked along the b axis and are linked through N—H⋯N hydrogen bonds into chains along the c axis.

Related literature

For the use of Schiff bases in coordination, see: Burkhardt & Plass (2008[Burkhardt, A. & Plass, W. (2008). Inorg. Chem. Commun. 11, 303-306.]); Keypour et al. (2011[Keypour, H., Arzhangi, P., Rahpeyma, N., Rezaeivala, M., Elerman, Y. & Khavasi, H. R. (2011). Inorg. Chim. Acta, 367, 9-14.]); Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691-2698.]). For their properties, see: Kocyigit et al. (2010[Kocyigit, O., Kursunlu, A. N. & Guler, E. (2010). J. Hazard. Mater. 183, 334-340.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8Br2N4

  • Mr = 356.03

  • Monoclinic, C c

  • a = 24.941 (2) Å

  • b = 3.8306 (6) Å

  • c = 15.0868 (14) Å

  • β = 126.116 (14)°

  • V = 1164.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.94 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn 724CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.337, Tmax = 0.490

  • 5047 measured reflections

  • 2282 independent reflections

  • 2070 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.055

  • S = 0.89

  • 2282 reflections

  • 118 parameters

  • 38 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1093 Friedel pairs

  • Flack parameter: 0.002 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N2 0.88 2.33 2.686 (6) 104
N4—H4A⋯N1i 0.88 2.44 3.043 (5) 126
Symmetry code: (i) [x, -y-1, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2009[Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Schiff bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals (Burkhardt & Plass, 2008; Keypour, et al., 2011; Tarafder, et al., 2002). They possess important properties, such as an ability to reversibly bind oxygen, catalytic activity in hydrogenation of olefins, transfer of an amino group, photochromic properties and complexing ability towards toxic metals (Kocyigit et al., 2010). In this paper, a new Schiff base compound derived from condensation of 6-bromopicolinaldehyde with 5-bromopyridine-3,4-diamine is reported. The molecule of the title compound has an E configuration about the C6=N2 bond (Fig.1). The dihedral angle between the two pyridyl rings is 14.02 (1)°. An intramolecular N—H···N hydrogen bond forms five-membered ring. The five-membered ring and two pyridyl ring form dihedral angles of 3.60 (1)° and 4.02 (1)°. In the crystal, molecules are stacked along y axis and are linked through intermolecular N—H···N hydrogen bonds into chains propagating along z axis (Fig.2).

Related literature top

For the use of Schiff bases in coordination, see: Burkhardt & Plass (2008); Keypour et al. (2011); Tarafder et al. (2002). For their properties, see: Kocyigit et al. (2010).

Experimental top

A solution of 6-bromopicolinaldehyde and 5-bromopyridine-3,4-diamine in methanol was refluxed for 30 min, and then the crude product was filtered and recrystallized from methanol to yield yellowish title compound. A small amount of the product was dissolved in methanol and the solution was kept for 5 days at ambient temperature to produce yellowish acicular crystals on slow evaporation of the solvent.

Refinement top

Amino H atoms were located in a difference fourier map and were put in ideal positions with N—H=0.88 Å. The remaining H atoms were positioned geometrically, with C—H=0.95 Å, and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(C/N).

Structure description top

Schiff bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals (Burkhardt & Plass, 2008; Keypour, et al., 2011; Tarafder, et al., 2002). They possess important properties, such as an ability to reversibly bind oxygen, catalytic activity in hydrogenation of olefins, transfer of an amino group, photochromic properties and complexing ability towards toxic metals (Kocyigit et al., 2010). In this paper, a new Schiff base compound derived from condensation of 6-bromopicolinaldehyde with 5-bromopyridine-3,4-diamine is reported. The molecule of the title compound has an E configuration about the C6=N2 bond (Fig.1). The dihedral angle between the two pyridyl rings is 14.02 (1)°. An intramolecular N—H···N hydrogen bond forms five-membered ring. The five-membered ring and two pyridyl ring form dihedral angles of 3.60 (1)° and 4.02 (1)°. In the crystal, molecules are stacked along y axis and are linked through intermolecular N—H···N hydrogen bonds into chains propagating along z axis (Fig.2).

For the use of Schiff bases in coordination, see: Burkhardt & Plass (2008); Keypour et al. (2011); Tarafder et al. (2002). For their properties, see: Kocyigit et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines
5-bromo-N3-[(E)-(6-bromopyridin-2-yl)methylidene]pyridine- 3,4-diamine top
Crystal data top
C11H8Br2N4F(000) = 688
Mr = 356.03Dx = 2.031 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 24.941 (2) ÅCell parameters from 2086 reflections
b = 3.8306 (6) Åθ = 1.7–27.9°
c = 15.0868 (14) ŵ = 6.94 mm1
β = 126.116 (14)°T = 113 K
V = 1164.4 (2) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn 724CCD
diffractometer
2282 independent reflections
Radiation source: rotating anode2070 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.046
Detector resolution: 14.22 pixels mm-1θmax = 26.4°, θmin = 2.0°
ω scansh = 3029
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 44
Tmin = 0.337, Tmax = 0.490l = 1818
5047 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max < 0.001
S = 0.89Δρmax = 0.45 e Å3
2282 reflectionsΔρmin = 0.63 e Å3
118 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
38 restraintsExtinction coefficient: 0.00177 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1093 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.002 (12)
Crystal data top
C11H8Br2N4V = 1164.4 (2) Å3
Mr = 356.03Z = 4
Monoclinic, CcMo Kα radiation
a = 24.941 (2) ŵ = 6.94 mm1
b = 3.8306 (6) ÅT = 113 K
c = 15.0868 (14) Å0.20 × 0.18 × 0.12 mm
β = 126.116 (14)°
Data collection top
Rigaku Saturn 724CCD
diffractometer
2282 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
2070 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 0.490Rint = 0.046
5047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.45 e Å3
S = 0.89Δρmin = 0.63 e Å3
2282 reflectionsAbsolute structure: Flack (1983), 1093 Friedel pairs
118 parametersAbsolute structure parameter: 0.002 (12)
38 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt)etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32411 (2)1.16292 (13)0.65216 (3)0.01513 (13)
Br20.60799 (2)0.03838 (13)0.34064 (3)0.01849 (14)
C60.4590 (3)0.6690 (12)0.5248 (4)0.0102 (6)
H60.49590.76570.59130.012*
C10.3284 (3)0.9595 (12)0.5398 (4)0.0102 (7)
C90.5986 (3)0.1427 (11)0.4469 (4)0.0102 (6)
N20.4692 (2)0.4839 (10)0.4673 (3)0.0102 (6)
C40.3354 (3)0.6323 (13)0.3902 (4)0.0117 (12)
H40.33930.51140.33930.014*
C50.3928 (3)0.7397 (13)0.4927 (4)0.0102 (7)
C80.5367 (3)0.2611 (13)0.4152 (4)0.0102 (6)
N10.3883 (2)0.9064 (10)0.5679 (3)0.0102 (10)
N30.6504 (2)0.2897 (11)0.6358 (3)0.0160 (11)
C20.2699 (3)0.8765 (12)0.4417 (4)0.0102 (7)
H20.22820.93410.42660.012*
C100.6531 (3)0.1634 (12)0.5552 (4)0.0102 (6)
H100.69470.08460.57380.012*
N40.4818 (2)0.2585 (10)0.3118 (3)0.0156 (10)
H4A0.48340.17850.25870.019*
H4B0.44410.33670.29690.019*
C30.2743 (3)0.7040 (13)0.3652 (4)0.0136 (12)
H30.23530.63680.29630.016*
C110.5907 (3)0.3985 (12)0.6050 (4)0.0127 (13)
H110.58780.48930.66060.015*
C70.5329 (3)0.3906 (12)0.4994 (4)0.0102 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0168 (3)0.0139 (3)0.0191 (3)0.0022 (2)0.0129 (2)0.0024 (2)
Br20.0207 (3)0.0179 (3)0.0219 (3)0.0026 (3)0.0153 (3)0.0004 (3)
C60.0118 (15)0.0111 (14)0.0086 (13)0.0005 (15)0.0064 (12)0.0002 (13)
C10.0100 (17)0.0077 (15)0.0135 (17)0.0007 (12)0.0073 (14)0.0026 (12)
C90.0122 (15)0.0052 (13)0.0154 (14)0.0006 (10)0.0094 (12)0.0015 (10)
N20.0118 (15)0.0111 (14)0.0086 (13)0.0005 (15)0.0064 (12)0.0002 (13)
C40.018 (3)0.010 (3)0.010 (3)0.001 (2)0.010 (3)0.002 (2)
C50.0100 (17)0.0077 (15)0.0135 (17)0.0007 (12)0.0073 (14)0.0026 (12)
C80.0122 (15)0.0052 (13)0.0154 (14)0.0006 (10)0.0094 (12)0.0015 (10)
N10.013 (3)0.008 (2)0.008 (2)0.0011 (18)0.006 (2)0.0017 (17)
N30.009 (3)0.023 (3)0.012 (2)0.003 (2)0.004 (2)0.0014 (19)
C20.0100 (17)0.0077 (15)0.0135 (17)0.0007 (12)0.0073 (14)0.0026 (12)
C100.0122 (15)0.0052 (13)0.0154 (14)0.0006 (10)0.0094 (12)0.0015 (10)
N40.005 (2)0.031 (3)0.010 (2)0.0035 (19)0.004 (2)0.0036 (18)
C30.008 (3)0.017 (3)0.008 (3)0.003 (2)0.000 (2)0.004 (2)
C110.016 (3)0.011 (3)0.012 (3)0.002 (2)0.009 (3)0.000 (2)
C70.0122 (15)0.0052 (13)0.0154 (14)0.0006 (10)0.0094 (12)0.0015 (10)
Geometric parameters (Å, º) top
Br1—C11.925 (5)C5—N11.363 (6)
Br2—C91.884 (5)C8—N41.337 (6)
C6—N21.256 (5)C8—C71.418 (7)
C6—C51.447 (7)N3—C111.339 (6)
C6—H60.9500N3—C101.347 (5)
C1—N11.305 (7)C2—C31.389 (7)
C1—C21.370 (7)C2—H20.9500
C9—C101.380 (6)C10—H100.9500
C9—C81.397 (7)N4—H4A0.8800
N2—C71.407 (7)N4—H4B0.8800
C4—C31.363 (7)C3—H30.9500
C4—C51.414 (7)C11—C71.382 (7)
C4—H40.9500C11—H110.9500
N2—C6—C5122.0 (4)C11—N3—C10115.9 (5)
N2—C6—H6119.0C1—C2—C3116.9 (5)
C5—C6—H6119.0C1—C2—H2121.6
N1—C1—C2127.0 (5)C3—C2—H2121.6
N1—C1—Br1115.1 (4)N3—C10—C9123.4 (5)
C2—C1—Br1117.9 (4)N3—C10—H10118.3
C10—C9—C8120.4 (5)C9—C10—H10118.3
C10—C9—Br2119.9 (4)C8—N4—H4A120.0
C8—C9—Br2119.6 (4)C8—N4—H4B120.0
C6—N2—C7123.5 (4)H4A—N4—H4B120.0
C3—C4—C5119.4 (5)C4—C3—C2119.2 (5)
C3—C4—H4120.3C4—C3—H3120.4
C5—C4—H4120.3C2—C3—H3120.4
N1—C5—C4121.3 (5)N3—C11—C7125.8 (5)
N1—C5—C6116.6 (5)N3—C11—H11117.1
C4—C5—C6122.1 (5)C7—C11—H11117.1
N4—C8—C9124.2 (5)C11—C7—N2126.2 (5)
N4—C8—C7119.0 (5)C11—C7—C8117.7 (5)
C9—C8—C7116.8 (5)N2—C7—C8116.0 (5)
C1—N1—C5116.2 (4)
C5—C6—N2—C7175.6 (5)C11—N3—C10—C90.3 (7)
C3—C4—C5—N11.5 (7)C8—C9—C10—N31.1 (7)
C3—C4—C5—C6179.4 (4)Br2—C9—C10—N3180.0 (4)
N2—C6—C5—N1172.0 (4)C5—C4—C3—C21.0 (7)
N2—C6—C5—C46.0 (7)C1—C2—C3—C41.0 (7)
C10—C9—C8—N4178.3 (4)C10—N3—C11—C70.2 (8)
Br2—C9—C8—N40.6 (7)N3—C11—C7—N2175.7 (5)
C10—C9—C8—C71.8 (7)N3—C11—C7—C81.0 (8)
Br2—C9—C8—C7179.3 (3)C6—N2—C7—C1119.0 (8)
C2—C1—N1—C52.4 (7)C6—N2—C7—C8164.2 (4)
Br1—C1—N1—C5175.4 (3)N4—C8—C7—C11178.4 (4)
C4—C5—N1—C10.1 (7)C9—C8—C7—C111.7 (7)
C6—C5—N1—C1177.9 (4)N4—C8—C7—N24.5 (7)
N1—C1—C2—C32.9 (7)C9—C8—C7—N2175.4 (4)
Br1—C1—C2—C3174.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N20.882.332.686 (6)104
N4—H4A···N1i0.882.443.043 (5)126
Symmetry code: (i) x, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H8Br2N4
Mr356.03
Crystal system, space groupMonoclinic, Cc
Temperature (K)113
a, b, c (Å)24.941 (2), 3.8306 (6), 15.0868 (14)
β (°) 126.116 (14)
V3)1164.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.94
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn 724CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.337, 0.490
No. of measured, independent and
observed [I > 2σ(I)] reflections
5047, 2282, 2070
Rint0.046
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.055, 0.89
No. of reflections2282
No. of parameters118
No. of restraints38
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.63
Absolute structureFlack (1983), 1093 Friedel pairs
Absolute structure parameter0.002 (12)

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), CrystalStructure (Rigaku/MSC, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N20.882.332.686 (6)104.4
N4—H4A···N1i0.882.443.043 (5)125.9
Symmetry code: (i) x, y1, z+1/2.
 

Acknowledgements

The authors thank Professor Wang, Department of Chemistry, Nankai University, for providing experimental facilities.

References

First citationBurkhardt, A. & Plass, W. (2008). Inorg. Chem. Commun. 11, 303–306.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKeypour, H., Arzhangi, P., Rahpeyma, N., Rezaeivala, M., Elerman, Y. & Khavasi, H. R. (2011). Inorg. Chim. Acta, 367, 9–14.  Web of Science CSD CrossRef CAS Google Scholar
First citationKocyigit, O., Kursunlu, A. N. & Guler, E. (2010). J. Hazard. Mater. 183, 334–340.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds