organic compounds
N,N′-Dicyclopentyl-N′′,N′′-dimethylphosphoric triamide
aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, and bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
*Correspondence e-mail: a.raissi_shabari@yahoo.com
The P atom in the title molecule, C12H26N3OP, has a distorted tetrahedral configuration: its bond angles lie in the range 101.1 (2)–119.1 (2)°. The P—N bonds to the two cyclopentylamido moieties are significantly different [1.619 (4) and 1.643 (4) Å], with the shorter bond related to an anti orientation of the of the corresponding N atom relative to the P=O bond. The O atom of the P=O group acts as a double hydrogen-bond acceptor and is involved in two different intermolecular N—H⋯O(P) hydrogen bonds, building R22(8) rings that are further linked into chains along [001].
Related literature
For background to phosphoric triamide compounds, see: Pourayoubi & Tarahhomi et al. (2011). For applications of phosphoric triamides as oxygen-donor ligands, see: Pourayoubi & Golen et al. (2011). For bond lengths and angles in compounds having a [(N)P(O)(N)2] skeleton, see: Sabbaghi et al. (2011). For double hydrogen-bond acceptors, see: Steiner (2002).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2009); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).
Supporting information
https://doi.org/10.1107/S1600536811048549/ld2034sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811048549/ld2034Isup2.hkl
Synthesis of ((CH3)2N)P(O)Cl2: [(CH3)2NH2]Cl (0.184 mol) and P(O)Cl3 (0.552 mol) were refluxed for 8 h and afterwards the excess of P(O)Cl3 was removed in vacuum.
Synthesis of title compound: a solution of cyclopentylamine (14.8 mmol) in CH3CN (25 ml) was added to a solution of ((CH3)2N)P(O)Cl2 (3.7 mmol) in CH3CN (15 ml) at 273 K. After stirring for 4 h, the solvent was removed and the product was washed with deionized water and recrystallized from CH3CN at room temperature.
The N-bound H atoms were found in difference Fourier map and then constrained to refine with the parent atoms with Uiso(H) equal to 1.2Ueq(N). The remaining H atoms were positioned geometrically and constrained to refine in a riding-model approximation with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(methyl). A rotating group model was applied to the methyl groups.
The
of the title molecule was done as part of a project on the synthesis of new phosphoric triamide compounds (Pourayoubi & Tarahhomi et al., 2011) and their application as oxygen donor ligands (Pourayoubi & Golen et al., 2011).The P═O and P—N bond lengths and the C—N—P bond angles match those found for the other compounds having a [(N)P(O)(N)2] skeleton (Sabbaghi et al., 2011).
The tetrahedral configuration of phosphorus atom (Fig. 1) is significantly distorted as it has also been noted for other phosphoric triamides: the bond angles at the P atom vary in the range from 101.1 (2) [N1—P1—N3] to 119.1 (2)° [O1—P1—N1].
The O atom of the P═O group acts as a double hydrogen-bond acceptor (Steiner, 2002); so, in the each molecule is hydrogen-bonded to two adjacent molecules by forming the [N—H]2···O(P) grouping within a 1-D hydrogen-bonded arrangement parallel to the c axis (Fig. 2, Table 1).
For background to phosphoric triamide compounds, see: Pourayoubi & Tarahhomi et al. (2011). For applications of phosphoric triamides as oxygen-donor ligands, see: Pourayoubi & Golen et al. (2011). For bond lengths and angles in compounds having a [(N)P(O)(N)2] skeleton, see: Sabbaghi et al. (2011). For double hydrogen-bond acceptors, see: Steiner (2002).
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).C12H26N3OP | F(000) = 568 |
Mr = 259.33 | Dx = 1.167 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2c -2ac | Cell parameters from 2536 reflections |
a = 10.962 (5) Å | θ = 2.0–27.5° |
b = 16.663 (5) Å | µ = 0.18 mm−1 |
c = 8.079 (5) Å | T = 291 K |
V = 1475.7 (12) Å3 | Needle, colourless |
Z = 4 | 0.35 × 0.11 × 0.05 mm |
Stoe IPDS 2T Image Plate diffractometer | 2573 independent reflections |
Radiation source: fine-focus sealed tube | 1482 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.095 |
Detector resolution: 0.15 pixels mm-1 | θmax = 25.5°, θmin = 2.2° |
ω scans | h = −11→13 |
Absorption correction: multi-scan [MULABS (Blessing, 1995) and PLATON (Spek, 2009)] | k = −20→20 |
Tmin = 0.961, Tmax = 1.000 | l = −8→9 |
7303 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0401P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.88 | (Δ/σ)max < 0.001 |
2573 reflections | Δρmax = 0.16 e Å−3 |
151 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1093 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.20 (18) |
C12H26N3OP | V = 1475.7 (12) Å3 |
Mr = 259.33 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 10.962 (5) Å | µ = 0.18 mm−1 |
b = 16.663 (5) Å | T = 291 K |
c = 8.079 (5) Å | 0.35 × 0.11 × 0.05 mm |
Stoe IPDS 2T Image Plate diffractometer | 2573 independent reflections |
Absorption correction: multi-scan [MULABS (Blessing, 1995) and PLATON (Spek, 2009)] | 1482 reflections with I > 2σ(I) |
Tmin = 0.961, Tmax = 1.000 | Rint = 0.095 |
7303 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.108 | Δρmax = 0.16 e Å−3 |
S = 0.88 | Δρmin = −0.23 e Å−3 |
2573 reflections | Absolute structure: Flack (1983), 1093 Friedel pairs |
151 parameters | Absolute structure parameter: −0.20 (18) |
1 restraint |
Experimental. IR (KBr, cm-1): 3290, 3151, 2955, 2866, 2835, 2794, 1459, 1291, 1197, 1159, 1107, 1090, 1030, 993, 932, 889, 762, 703, 555, 496, 464. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.83134 (10) | 1.79029 (6) | 0.70933 (17) | 0.0402 (3) | |
O1 | 0.6995 (2) | 1.78019 (14) | 0.7413 (4) | 0.0476 (9) | |
N1 | 0.8963 (4) | 1.73464 (16) | 0.5707 (5) | 0.0418 (10) | |
H1 | 0.8771 | 1.7422 | 0.4700 | 0.050* | |
N2 | 0.9056 (3) | 1.77094 (19) | 0.8814 (5) | 0.0452 (10) | |
H2 | 0.8616 | 1.7816 | 0.9651 | 0.054* | |
N3 | 0.8558 (4) | 1.8809 (2) | 0.6328 (4) | 0.0545 (12) | |
C1 | 0.9062 (4) | 1.6462 (2) | 0.5936 (6) | 0.0458 (12) | |
H1A | 0.9222 | 1.6352 | 0.7108 | 0.055* | |
C2 | 1.0064 (5) | 1.6094 (3) | 0.4926 (9) | 0.088 (2) | |
H2A | 1.0841 | 1.6147 | 0.5489 | 0.106* | |
H2B | 1.0121 | 1.6354 | 0.3854 | 0.106* | |
C3 | 0.9725 (6) | 1.5223 (3) | 0.4730 (10) | 0.100 (2) | |
H3A | 0.9884 | 1.5046 | 0.3606 | 0.121* | |
H3B | 1.0201 | 1.4894 | 0.5481 | 0.121* | |
C4 | 0.8410 (6) | 1.5149 (3) | 0.5115 (10) | 0.096 (2) | |
H4A | 0.8291 | 1.4821 | 0.6093 | 0.115* | |
H4B | 0.7979 | 1.4903 | 0.4197 | 0.115* | |
C5 | 0.7943 (5) | 1.5994 (2) | 0.5411 (7) | 0.0678 (17) | |
H5A | 0.7594 | 1.6216 | 0.4408 | 0.081* | |
H5B | 0.7328 | 1.5999 | 0.6275 | 0.081* | |
C6 | 1.0370 (4) | 1.7749 (2) | 0.9067 (6) | 0.0480 (12) | |
H6A | 1.0773 | 1.7747 | 0.7984 | 0.058* | |
C7 | 1.0855 (5) | 1.7061 (3) | 1.0069 (7) | 0.0700 (15) | |
H7A | 1.0208 | 1.6825 | 1.0729 | 0.084* | |
H7B | 1.1188 | 1.6650 | 0.9348 | 0.084* | |
C8 | 1.1810 (7) | 1.7386 (4) | 1.1141 (11) | 0.139 (2) | |
H8A | 1.1771 | 1.7136 | 1.2224 | 0.167* | |
H8B | 1.2607 | 1.7279 | 1.0669 | 0.167* | |
C9 | 1.1626 (7) | 1.8212 (4) | 1.1282 (9) | 0.139 (2) | |
H9A | 1.2401 | 1.8488 | 1.1166 | 0.167* | |
H9B | 1.1302 | 1.8334 | 1.2371 | 0.167* | |
C10 | 1.0791 (5) | 1.8495 (2) | 1.0034 (8) | 0.0702 (17) | |
H10A | 1.1195 | 1.8872 | 0.9301 | 0.084* | |
H10B | 1.0099 | 1.8761 | 1.0544 | 0.084* | |
C11 | 0.9700 (5) | 1.9066 (3) | 0.5626 (8) | 0.0808 (19) | |
H11A | 0.9552 | 1.9478 | 0.4820 | 0.121* | |
H11B | 1.0094 | 1.8619 | 0.5103 | 0.121* | |
H11C | 1.0215 | 1.9274 | 0.6487 | 0.121* | |
C12 | 0.7793 (6) | 1.9460 (2) | 0.6916 (10) | 0.093 (2) | |
H12A | 0.7768 | 1.9877 | 0.6098 | 0.139* | |
H12B | 0.8122 | 1.9669 | 0.7929 | 0.139* | |
H12C | 0.6982 | 1.9263 | 0.7109 | 0.139* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0424 (6) | 0.0398 (4) | 0.0385 (6) | −0.0033 (5) | −0.0014 (9) | 0.0013 (7) |
O1 | 0.0381 (18) | 0.0585 (16) | 0.046 (3) | −0.0026 (13) | −0.0026 (18) | 0.0068 (16) |
N1 | 0.054 (3) | 0.0364 (17) | 0.035 (2) | −0.0031 (17) | 0.000 (2) | 0.0055 (17) |
N2 | 0.039 (3) | 0.057 (2) | 0.039 (2) | −0.0055 (19) | 0.006 (2) | −0.0082 (19) |
N3 | 0.060 (3) | 0.0419 (19) | 0.061 (3) | −0.0004 (19) | 0.010 (2) | 0.0020 (16) |
C1 | 0.058 (3) | 0.042 (2) | 0.037 (3) | 0.010 (2) | −0.002 (3) | 0.001 (2) |
C2 | 0.073 (4) | 0.060 (3) | 0.131 (6) | 0.006 (3) | 0.038 (5) | 0.004 (4) |
C3 | 0.112 (6) | 0.067 (4) | 0.122 (6) | 0.022 (3) | 0.016 (6) | −0.035 (4) |
C4 | 0.098 (5) | 0.051 (3) | 0.140 (7) | 0.007 (3) | −0.010 (6) | −0.012 (3) |
C5 | 0.057 (4) | 0.052 (3) | 0.095 (5) | −0.002 (2) | −0.006 (3) | −0.002 (3) |
C6 | 0.038 (3) | 0.050 (3) | 0.056 (3) | 0.000 (2) | −0.004 (3) | 0.001 (2) |
C7 | 0.068 (4) | 0.058 (3) | 0.085 (4) | 0.005 (3) | −0.017 (4) | 0.007 (3) |
C8 | 0.158 (6) | 0.107 (3) | 0.154 (5) | 0.012 (4) | −0.095 (5) | −0.004 (3) |
C9 | 0.158 (6) | 0.107 (3) | 0.154 (5) | 0.012 (4) | −0.095 (5) | −0.004 (3) |
C10 | 0.064 (4) | 0.047 (3) | 0.099 (5) | −0.007 (2) | −0.017 (4) | −0.016 (3) |
C11 | 0.086 (5) | 0.059 (3) | 0.097 (5) | −0.016 (3) | 0.005 (4) | 0.025 (3) |
C12 | 0.129 (5) | 0.052 (3) | 0.098 (6) | 0.015 (3) | 0.034 (6) | −0.001 (4) |
P1—O1 | 1.478 (3) | C5—H5A | 0.9700 |
P1—N1 | 1.619 (4) | C5—H5B | 0.9700 |
P1—N2 | 1.643 (4) | C6—C7 | 1.500 (6) |
P1—N3 | 1.653 (4) | C6—C10 | 1.539 (6) |
N1—C1 | 1.489 (4) | C6—H6A | 0.9800 |
N1—H1 | 0.8499 | C7—C8 | 1.463 (8) |
N2—C6 | 1.456 (5) | C7—H7A | 0.9700 |
N2—H2 | 0.8489 | C7—H7B | 0.9700 |
N3—C11 | 1.440 (6) | C8—C9 | 1.395 (8) |
N3—C12 | 1.451 (6) | C8—H8A | 0.9700 |
C1—C2 | 1.499 (7) | C8—H8B | 0.9700 |
C1—C5 | 1.515 (6) | C9—C10 | 1.441 (7) |
C1—H1A | 0.9800 | C9—H9A | 0.9700 |
C2—C3 | 1.508 (6) | C9—H9B | 0.9700 |
C2—H2A | 0.9700 | C10—H10A | 0.9700 |
C2—H2B | 0.9700 | C10—H10B | 0.9700 |
C3—C4 | 1.480 (8) | C11—H11A | 0.9600 |
C3—H3A | 0.9700 | C11—H11B | 0.9600 |
C3—H3B | 0.9700 | C11—H11C | 0.9600 |
C4—C5 | 1.516 (6) | C12—H12A | 0.9600 |
C4—H4A | 0.9700 | C12—H12B | 0.9600 |
C4—H4B | 0.9700 | C12—H12C | 0.9600 |
O1—P1—N1 | 119.06 (19) | H5A—C5—H5B | 108.9 |
O1—P1—N2 | 108.3 (2) | N2—C6—C7 | 113.0 (4) |
N1—P1—N2 | 104.78 (19) | N2—C6—C10 | 113.9 (4) |
O1—P1—N3 | 109.13 (18) | C7—C6—C10 | 103.7 (4) |
N1—P1—N3 | 101.13 (19) | N2—C6—H6A | 108.7 |
N2—P1—N3 | 114.55 (18) | C7—C6—H6A | 108.7 |
C1—N1—P1 | 120.9 (3) | C10—C6—H6A | 108.7 |
C1—N1—H1 | 106.5 | C8—C7—C6 | 106.9 (4) |
P1—N1—H1 | 117.9 | C8—C7—H7A | 110.3 |
C6—N2—P1 | 126.8 (3) | C6—C7—H7A | 110.3 |
C6—N2—H2 | 116.2 | C8—C7—H7B | 110.3 |
P1—N2—H2 | 110.6 | C6—C7—H7B | 110.3 |
C11—N3—C12 | 114.1 (4) | H7A—C7—H7B | 108.6 |
C11—N3—P1 | 124.1 (3) | C9—C8—C7 | 108.1 (6) |
C12—N3—P1 | 117.8 (3) | C9—C8—H8A | 110.1 |
N1—C1—C2 | 113.0 (4) | C7—C8—H8A | 110.1 |
N1—C1—C5 | 114.6 (4) | C9—C8—H8B | 110.1 |
C2—C1—C5 | 103.3 (4) | C7—C8—H8B | 110.1 |
N1—C1—H1A | 108.6 | H8A—C8—H8B | 108.4 |
C2—C1—H1A | 108.6 | C8—C9—C10 | 110.9 (6) |
C5—C1—H1A | 108.6 | C8—C9—H9A | 109.5 |
C1—C2—C3 | 105.7 (4) | C10—C9—H9A | 109.5 |
C1—C2—H2A | 110.6 | C8—C9—H9B | 109.5 |
C3—C2—H2A | 110.6 | C10—C9—H9B | 109.5 |
C1—C2—H2B | 110.6 | H9A—C9—H9B | 108.0 |
C3—C2—H2B | 110.6 | C9—C10—C6 | 106.4 (4) |
H2A—C2—H2B | 108.7 | C9—C10—H10A | 110.5 |
C4—C3—C2 | 107.3 (4) | C6—C10—H10A | 110.5 |
C4—C3—H3A | 110.3 | C9—C10—H10B | 110.5 |
C2—C3—H3A | 110.3 | C6—C10—H10B | 110.5 |
C4—C3—H3B | 110.3 | H10A—C10—H10B | 108.6 |
C2—C3—H3B | 110.3 | N3—C11—H11A | 109.5 |
H3A—C3—H3B | 108.5 | N3—C11—H11B | 109.5 |
C3—C4—C5 | 106.6 (4) | H11A—C11—H11B | 109.5 |
C3—C4—H4A | 110.4 | N3—C11—H11C | 109.5 |
C5—C4—H4A | 110.4 | H11A—C11—H11C | 109.5 |
C3—C4—H4B | 110.4 | H11B—C11—H11C | 109.5 |
C5—C4—H4B | 110.4 | N3—C12—H12A | 109.5 |
H4A—C4—H4B | 108.6 | N3—C12—H12B | 109.5 |
C1—C5—C4 | 104.4 (4) | H12A—C12—H12B | 109.5 |
C1—C5—H5A | 110.9 | N3—C12—H12C | 109.5 |
C4—C5—H5A | 110.9 | H12A—C12—H12C | 109.5 |
C1—C5—H5B | 110.9 | H12B—C12—H12C | 109.5 |
C4—C5—H5B | 110.9 | ||
O1—P1—N1—C1 | −65.4 (4) | C5—C1—C2—C3 | −32.8 (6) |
N2—P1—N1—C1 | 55.8 (4) | C1—C2—C3—C4 | 17.9 (8) |
N3—P1—N1—C1 | 175.1 (3) | C2—C3—C4—C5 | 4.3 (8) |
O1—P1—N2—C6 | −178.9 (3) | N1—C1—C5—C4 | 158.6 (5) |
N1—P1—N2—C6 | 53.0 (4) | C2—C1—C5—C4 | 35.2 (6) |
N3—P1—N2—C6 | −56.8 (4) | C3—C4—C5—C1 | −24.6 (7) |
O1—P1—N3—C11 | −169.5 (4) | P1—N2—C6—C7 | −138.0 (4) |
N1—P1—N3—C11 | −43.2 (4) | P1—N2—C6—C10 | 104.0 (5) |
N2—P1—N3—C11 | 68.9 (4) | N2—C6—C7—C8 | −142.0 (5) |
O1—P1—N3—C12 | 34.3 (5) | C10—C6—C7—C8 | −18.2 (6) |
N1—P1—N3—C12 | 160.6 (4) | C6—C7—C8—C9 | 20.8 (8) |
N2—P1—N3—C12 | −87.3 (4) | C7—C8—C9—C10 | −14.8 (9) |
P1—N1—C1—C2 | −158.0 (4) | C8—C9—C10—C6 | 2.8 (8) |
P1—N1—C1—C5 | 84.1 (5) | N2—C6—C10—C9 | 132.9 (5) |
N1—C1—C2—C3 | −157.2 (5) | C7—C6—C10—C9 | 9.7 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.85 | 2.13 | 2.960 (5) | 167 |
N2—H2···O1ii | 0.85 | 2.33 | 3.131 (5) | 158 |
C11—H11B···N1 | 0.96 | 2.50 | 2.978 (6) | 110 |
C12—H12C···O1 | 0.96 | 2.45 | 2.926 (5) | 111 |
Symmetry codes: (i) −x+3/2, y, z−1/2; (ii) −x+3/2, y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H26N3OP |
Mr | 259.33 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 291 |
a, b, c (Å) | 10.962 (5), 16.663 (5), 8.079 (5) |
V (Å3) | 1475.7 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.18 |
Crystal size (mm) | 0.35 × 0.11 × 0.05 |
Data collection | |
Diffractometer | Stoe IPDS 2T Image Plate |
Absorption correction | Multi-scan [MULABS (Blessing, 1995) and PLATON (Spek, 2009)] |
Tmin, Tmax | 0.961, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7303, 2573, 1482 |
Rint | 0.095 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.108, 0.88 |
No. of reflections | 2573 |
No. of parameters | 151 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.23 |
Absolute structure | Flack (1983), 1093 Friedel pairs |
Absolute structure parameter | −0.20 (18) |
Computer programs: X-AREA (Stoe & Cie, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.85 | 2.13 | 2.960 (5) | 167 |
N2—H2···O1ii | 0.85 | 2.33 | 3.131 (5) | 158 |
Symmetry codes: (i) −x+3/2, y, z−1/2; (ii) −x+3/2, y, z+1/2. |
Acknowledgements
Support of this investigation by the North Tehran Branch, Islamic Azad University, is gratefully acknowledged.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Pourayoubi, M., Golen, J. A., Rostami Chaijan, M., Divjakovic, V., Negari, M. & Rheingold, A. L. (2011). Acta Cryst. C67, m160–m164. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Stoe & Cie (2009). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure determination of the title molecule was done as part of a project on the synthesis of new phosphoric triamide compounds (Pourayoubi & Tarahhomi et al., 2011) and their application as oxygen donor ligands (Pourayoubi & Golen et al., 2011).
The P═O and P—N bond lengths and the C—N—P bond angles match those found for the other compounds having a [(N)P(O)(N)2] skeleton (Sabbaghi et al., 2011).
The tetrahedral configuration of phosphorus atom (Fig. 1) is significantly distorted as it has also been noted for other phosphoric triamides: the bond angles at the P atom vary in the range from 101.1 (2) [N1—P1—N3] to 119.1 (2)° [O1—P1—N1].
The O atom of the P═O group acts as a double hydrogen-bond acceptor (Steiner, 2002); so, in the crystal structure, each molecule is hydrogen-bonded to two adjacent molecules by forming the [N—H]2···O(P) grouping within a 1-D hydrogen-bonded arrangement parallel to the c axis (Fig. 2, Table 1).