organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(butan-2-yl)-2-(2-meth­­oxy­phen­yl)-1H-benzimidazole-5-carboxyl­ate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
*Correspondence e-mail: aisyah@usm.my

(Received 17 October 2011; accepted 2 November 2011; online 9 November 2011)

In the title compound, C21H24N2O3, the mean planes of the benzene ring and the benzimidazole ring system form a dihedral angle of 69.94 (7)°. The ethyl group atoms of the ethano­ate fragment are disordered over two sets of sites, with refined occupancies of 0.742 (6) and 0.258 (6). In the crystal, there are weak C—H⋯N hydrogen bonds which connect mol­ecules into chains along the b axis. A weak inter­molecular C—H⋯π inter­action is also observed.

Related literature

For the synthesis and a closely related structure, see: Arumugam et al. (2010[Arumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o845.]). For background to microwave chemistry, see: Kappe & Dallinger (2006[Kappe, C. O. & Dallinger, D. (2006). Nat. Rev. Drug Discov. 5, 51-63.]); Hamzah et al. (2011[Hamzah, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2011). Acta Cryst. E67, o2704.]). For the synthesis of benzimidazole derivatives and their applications, see: Wang et al. (2011[Wang, S.-L., Ding, J., Jiang, B., Gao, Y. & Tu, S.-J. (2011). ACS Comb. Sci. 13, 572-577.]); VanVliet et al. (2005[VanVliet, D. S., Gillespi, P. & Scicinski, J. J. (2005). Tetrahedron Lett. 42, 6741-6743.]); Loupy (2002[Loupy, A. (2002). Editor. Microwaves in Organic Synthesis, 1st ed. Weinheim: Wiley-VCH.]); Santagada et al. (2001[Santagada, V., Perissutti, E., Fiorino, F., Vivenzo, B. & Caliendo, G. (2001). Tetrahedron Lett. 42, 2397-2400.]); Nicolaou et al. (2000[Nicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G. Q., Barluenga, S. & Mitchell, H. J. (2000). J. Am. Chem. Soc. 122, 9939-9953.]); Evans et al. (1988[Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235-2246.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O3

  • Mr = 352.42

  • Monoclinic, P 21 /n

  • a = 10.6746 (3) Å

  • b = 12.3344 (4) Å

  • c = 15.6158 (5) Å

  • β = 106.901 (1)°

  • V = 1967.25 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.52 × 0.44 × 0.32 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.975

  • 17688 measured reflections

  • 3475 independent reflections

  • 2712 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.05

  • 3475 reflections

  • 245 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/N2/C1/C2/C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N1i 0.93 2.56 3.471 (2) 165
C20A—H20CCgii 0.97 2.90 3.71 (4) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Microwave-assisted synthesis of heterocycles proves to be an invaluable technology in the fields of medicinal chemistry and drug discovery (Kappe & Dallinger, 2006). The utility of high-speed microwave chemistry is evident from the reported synthesis of privileged structures (Evans et al., 1988; Nicolaou et al., 2000) such as benzodiazepine (Santagada et al., 2001), indoles (Loupy, 2002) and benzimidazoles (Wang et al., 2011; VanVliet et al., 2005). As a part of our on-going work in benzimidazole synthesis under microwave conditions (Hamzah et al., 2011), we present herein the X-ray crystal structure of the title compound.

The molecular structure of the title compound (Fig. 1) is similiar to the previously reported ethyl 1-sec-butyl-2-(4-methoxyphenyl) -1H-benzimidazole-5-carboxylate (Arumugam et al., 2010) in that only the position of the methoxy group is different. The benzene [C8—C13] ring and benzimidazole ring system [N1/N2/C1-C7] are essentially planar with maximum deviation of 0.050 (1)Å for atom N2. The mean-planes of the rings form a dihedral angle of 69.94 (7)°. The bond lengths (Allen et al., 1987) and angles aree in the normal ranges and comparable to those in para-methoxy derivative. The ethyl atoms (C20 & C21) of ethanoate fragment are disordered over two positions with refined site occupancies of 0.742 (6) and 0.258 (6). In the crystal, a C12—H12···N1i hydrogen bond connects molecules to form a zigzag chain propagating along the b axis (Fig. 2). An weak intermolecular C20A—H20C···Cgii (minor component of disorder) interaction is also observed; Cg1 is the centroid of N1/N2/C1/C2/C7.

Related literature top

For the synthesis and a closely related structure, see: Arumugam et al. (2010). For background to microwave chemistry, see: Kappe & Dallinger (2006); Hamzah et al. (2011). For the synthesis of benzimidazole derivatives and their applications, see: Wang et al. (2011); VanVliet et al. (2005); Loupy (2002); Santagada et al. (2001); Nicolaou et al. (2000); Evans et al. (1988). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to our previous procedure (Arumugam et al., 2010). A solution of the sec-butyl phenylene diamine (1.0 mmol) and sodium bisulfite adduct of 2-methoxybenzaldehyde (3.5 mmol) in DMF was heated under focused microwave conditions at 403K for 2 minutes. The reaction mixture was diluted in EtOAc (20 ml) and washed with H2O (20 ml). The organic layer was pooled together, dried over Na2SO4, and then removed in vacuo. Recrystallization with ethyl acetate gave the title compound as colourless crystals.

Refinement top

All atoms were position geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H)= 1.2 or 1.5Ueq(C). The atoms C20 and C21 are disordered over two sites with site occupancies of 0.742 (6) and 0.258 (2). A rigid body restraint (DELU in SHELXL (Sheldrick, 2008)) was applied for atoms C17 and C18. A rotating group model was applied to the non-disordered methyl groups.

Structure description top

Microwave-assisted synthesis of heterocycles proves to be an invaluable technology in the fields of medicinal chemistry and drug discovery (Kappe & Dallinger, 2006). The utility of high-speed microwave chemistry is evident from the reported synthesis of privileged structures (Evans et al., 1988; Nicolaou et al., 2000) such as benzodiazepine (Santagada et al., 2001), indoles (Loupy, 2002) and benzimidazoles (Wang et al., 2011; VanVliet et al., 2005). As a part of our on-going work in benzimidazole synthesis under microwave conditions (Hamzah et al., 2011), we present herein the X-ray crystal structure of the title compound.

The molecular structure of the title compound (Fig. 1) is similiar to the previously reported ethyl 1-sec-butyl-2-(4-methoxyphenyl) -1H-benzimidazole-5-carboxylate (Arumugam et al., 2010) in that only the position of the methoxy group is different. The benzene [C8—C13] ring and benzimidazole ring system [N1/N2/C1-C7] are essentially planar with maximum deviation of 0.050 (1)Å for atom N2. The mean-planes of the rings form a dihedral angle of 69.94 (7)°. The bond lengths (Allen et al., 1987) and angles aree in the normal ranges and comparable to those in para-methoxy derivative. The ethyl atoms (C20 & C21) of ethanoate fragment are disordered over two positions with refined site occupancies of 0.742 (6) and 0.258 (6). In the crystal, a C12—H12···N1i hydrogen bond connects molecules to form a zigzag chain propagating along the b axis (Fig. 2). An weak intermolecular C20A—H20C···Cgii (minor component of disorder) interaction is also observed; Cg1 is the centroid of N1/N2/C1/C2/C7.

For the synthesis and a closely related structure, see: Arumugam et al. (2010). For background to microwave chemistry, see: Kappe & Dallinger (2006); Hamzah et al. (2011). For the synthesis of benzimidazole derivatives and their applications, see: Wang et al. (2011); VanVliet et al. (2005); Loupy (2002); Santagada et al. (2001); Nicolaou et al. (2000); Evans et al. (1988). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsods are drawn at the 40% probability level. Both disordered component are shown, atoms label with suffix A correspond to minor disorder component.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the a axis.
Ethyl 1-(butan-2-yl)-2-(2-methoxyphenyl)-1H-benzimidazole-5-carboxylate top
Crystal data top
C21H24N2O3F(000) = 752
Mr = 352.42Dx = 1.190 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8039 reflections
a = 10.6746 (3) Åθ = 2.1–25.0°
b = 12.3344 (4) ŵ = 0.08 mm1
c = 15.6158 (5) ÅT = 296 K
β = 106.901 (1)°Block, colourless
V = 1967.25 (11) Å30.52 × 0.44 × 0.32 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3475 independent reflections
Radiation source: fine-focus sealed tube2712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 2.1°
φ and ω scanh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1114
Tmin = 0.959, Tmax = 0.975l = 1817
17688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.5324P]
where P = (Fo2 + 2Fc2)/3
3475 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H24N2O3V = 1967.25 (11) Å3
Mr = 352.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6746 (3) ŵ = 0.08 mm1
b = 12.3344 (4) ÅT = 296 K
c = 15.6158 (5) Å0.52 × 0.44 × 0.32 mm
β = 106.901 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2712 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.975Rint = 0.025
17688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
3475 reflectionsΔρmin = 0.18 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.22019 (14)0.60261 (11)0.83252 (9)0.0694 (4)
O20.16647 (18)1.12078 (12)1.21044 (10)0.0894 (5)
O30.10964 (19)1.17279 (12)1.06857 (10)0.0917 (5)
N10.29480 (16)0.88252 (11)0.90695 (9)0.0562 (4)
N20.36352 (14)0.74369 (11)1.00207 (8)0.0475 (3)
C10.34617 (16)0.78558 (13)0.91776 (10)0.0467 (4)
C20.32104 (16)0.82294 (12)1.04995 (10)0.0445 (4)
C30.31600 (18)0.82949 (14)1.13790 (11)0.0551 (5)
H30.34500.77291.17810.066*
C40.26638 (18)0.92316 (14)1.16254 (11)0.0542 (4)
H40.26380.93041.22130.065*
C50.21963 (17)1.00806 (13)1.10246 (11)0.0496 (4)
C60.22494 (19)1.00099 (13)1.01515 (11)0.0540 (5)
H60.19421.05720.97480.065*
C70.27727 (17)0.90788 (13)0.98941 (10)0.0473 (4)
C80.38804 (17)0.72852 (14)0.84697 (10)0.0498 (4)
C90.49117 (19)0.76994 (16)0.82051 (12)0.0606 (5)
H90.53450.83160.84840.073*
C100.5308 (2)0.72096 (19)0.75319 (13)0.0711 (6)
H100.60030.74930.73580.085*
C110.4666 (2)0.63017 (18)0.71234 (13)0.0694 (6)
H110.49390.59660.66750.083*
C120.3627 (2)0.58773 (16)0.73630 (11)0.0608 (5)
H120.31960.52640.70760.073*
C130.32254 (18)0.63726 (14)0.80372 (11)0.0517 (4)
C140.1359 (2)0.52171 (19)0.78162 (15)0.0819 (6)
H14A0.09810.54730.72160.123*
H14B0.06750.50630.80840.123*
H14C0.18520.45690.78050.123*
C150.42814 (19)0.63962 (14)1.03579 (12)0.0601 (5)
H150.44830.60420.98520.072*
C160.3357 (2)0.56259 (16)1.06687 (15)0.0782 (6)
H16A0.31080.59571.11510.117*
H16B0.38000.49551.08690.117*
H16C0.25890.54881.01790.117*
C170.5563 (2)0.65788 (19)1.10606 (15)0.0816 (6)
H17A0.53950.69001.15830.098*
H17B0.59840.58841.12380.098*
C180.6475 (2)0.7294 (2)1.07565 (18)0.1013 (8)
H18A0.65830.70171.02080.152*
H18B0.73080.73121.12060.152*
H18C0.61200.80141.06600.152*
C190.1636 (2)1.10442 (15)1.13428 (13)0.0599 (5)
C200.0550 (11)1.2722 (4)1.0931 (10)0.103 (2)0.742 (6)
H20A0.02071.25601.11340.124*0.742 (6)
H20B0.11961.30911.14090.124*0.742 (6)
C210.0176 (5)1.3391 (3)1.0141 (4)0.1145 (15)0.742 (6)
H21A0.02251.40451.02690.172*0.742 (6)
H21B0.04361.30050.96670.172*0.742 (6)
H21C0.09381.35710.99630.172*0.742 (6)
C21A0.0967 (16)1.3540 (11)1.0711 (11)0.1145 (15)0.258 (6)
H21D0.05691.41751.08730.172*0.258 (6)
H21E0.09361.35811.00910.172*0.258 (6)
H21F0.18631.34951.10730.172*0.258 (6)
C20A0.027 (4)1.2591 (10)1.086 (3)0.103 (2)0.258 (6)
H20C0.06051.25611.04390.124*0.258 (6)
H20D0.02101.25621.14630.124*0.258 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0819 (9)0.0691 (9)0.0610 (8)0.0156 (7)0.0268 (7)0.0184 (6)
O20.1453 (15)0.0707 (10)0.0661 (9)0.0110 (9)0.0526 (10)0.0165 (7)
O30.1471 (15)0.0615 (9)0.0743 (10)0.0397 (9)0.0445 (10)0.0029 (8)
N10.0877 (11)0.0440 (8)0.0398 (8)0.0137 (7)0.0233 (7)0.0026 (6)
N20.0624 (9)0.0405 (7)0.0401 (7)0.0093 (6)0.0158 (6)0.0030 (6)
C10.0582 (10)0.0426 (9)0.0392 (9)0.0031 (8)0.0140 (7)0.0008 (7)
C20.0558 (10)0.0399 (9)0.0390 (9)0.0005 (7)0.0158 (7)0.0000 (7)
C30.0745 (12)0.0514 (10)0.0420 (9)0.0053 (9)0.0212 (8)0.0077 (8)
C40.0724 (12)0.0558 (11)0.0394 (9)0.0028 (9)0.0243 (8)0.0021 (8)
C50.0639 (11)0.0422 (9)0.0473 (10)0.0050 (8)0.0233 (8)0.0073 (7)
C60.0795 (12)0.0391 (9)0.0451 (10)0.0076 (8)0.0207 (9)0.0020 (7)
C70.0662 (11)0.0398 (9)0.0377 (9)0.0034 (8)0.0179 (8)0.0004 (7)
C80.0630 (11)0.0465 (10)0.0396 (9)0.0106 (8)0.0146 (8)0.0004 (7)
C90.0673 (12)0.0607 (12)0.0557 (11)0.0019 (9)0.0206 (9)0.0064 (9)
C100.0667 (12)0.0876 (15)0.0654 (12)0.0048 (11)0.0291 (10)0.0104 (11)
C110.0724 (13)0.0841 (15)0.0542 (11)0.0195 (11)0.0224 (10)0.0142 (10)
C120.0739 (13)0.0579 (11)0.0455 (10)0.0130 (10)0.0093 (9)0.0108 (8)
C130.0608 (11)0.0507 (10)0.0417 (9)0.0078 (8)0.0118 (8)0.0020 (8)
C140.0747 (14)0.0818 (15)0.0828 (15)0.0122 (12)0.0129 (11)0.0203 (12)
C150.0793 (13)0.0460 (10)0.0529 (11)0.0168 (9)0.0158 (9)0.0044 (8)
C160.1111 (18)0.0497 (11)0.0806 (14)0.0041 (11)0.0386 (13)0.0131 (10)
C170.0878 (15)0.0715 (14)0.0733 (14)0.0173 (11)0.0039 (11)0.0000 (11)
C180.0757 (16)0.101 (2)0.111 (2)0.0132 (13)0.0018 (13)0.0121 (15)
C190.0810 (13)0.0475 (10)0.0584 (12)0.0050 (9)0.0315 (10)0.0091 (9)
C200.153 (6)0.058 (2)0.108 (4)0.034 (3)0.053 (5)0.011 (2)
C210.117 (4)0.081 (2)0.142 (4)0.041 (3)0.031 (3)0.006 (3)
C21A0.117 (4)0.081 (2)0.142 (4)0.041 (3)0.031 (3)0.006 (3)
C20A0.153 (6)0.058 (2)0.108 (4)0.034 (3)0.053 (5)0.011 (2)
Geometric parameters (Å, º) top
O1—C131.365 (2)C12—C131.388 (2)
O1—C141.422 (2)C12—H120.9300
O2—C191.198 (2)C14—H14A0.9600
O3—C191.324 (2)C14—H14B0.9600
O3—C20A1.456 (5)C14—H14C0.9600
O3—C201.456 (4)C15—C171.501 (3)
N1—C11.306 (2)C15—C161.546 (3)
N1—C71.390 (2)C15—H150.9800
N2—C11.376 (2)C16—H16A0.9600
N2—C21.385 (2)C16—H16B0.9600
N2—C151.480 (2)C16—H16C0.9600
C1—C81.485 (2)C17—C181.489 (3)
C2—C31.392 (2)C17—H17A0.9700
C2—C71.397 (2)C17—H17B0.9700
C3—C41.372 (2)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C51.398 (2)C18—H18C0.9600
C4—H40.9300C20—C211.441 (12)
C5—C61.384 (2)C20—H20A0.9700
C5—C191.480 (2)C20—H20B0.9700
C6—C71.387 (2)C21—H21A0.9600
C6—H60.9300C21—H21B0.9600
C8—C91.381 (3)C21—H21C0.9600
C8—C131.392 (2)C21A—C20A1.440 (13)
C9—C101.381 (3)C21A—H21D0.9600
C9—H90.9300C21A—H21E0.9600
C10—C111.370 (3)C21A—H21F0.9600
C10—H100.9300C20A—H20C0.9700
C11—C121.373 (3)C20A—H20D0.9700
C11—H110.9300
C13—O1—C14118.20 (15)N2—C15—C17111.19 (16)
C19—O3—C20A118.4 (17)N2—C15—C16111.76 (15)
C19—O3—C20116.7 (6)C17—C15—C16113.08 (17)
C1—N1—C7104.53 (13)N2—C15—H15106.8
C1—N2—C2106.11 (12)C17—C15—H15106.8
C1—N2—C15125.83 (13)C16—C15—H15106.8
C2—N2—C15127.75 (13)C15—C16—H16A109.5
N1—C1—N2113.72 (13)C15—C16—H16B109.5
N1—C1—C8122.94 (14)H16A—C16—H16B109.5
N2—C1—C8123.27 (14)C15—C16—H16C109.5
N2—C2—C3133.33 (15)H16A—C16—H16C109.5
N2—C2—C7105.16 (13)H16B—C16—H16C109.5
C3—C2—C7121.52 (15)C18—C17—C15113.38 (19)
C4—C3—C2117.02 (15)C18—C17—H17A108.9
C4—C3—H3121.5C15—C17—H17A108.9
C2—C3—H3121.5C18—C17—H17B108.9
C3—C4—C5122.30 (15)C15—C17—H17B108.9
C3—C4—H4118.8H17A—C17—H17B107.7
C5—C4—H4118.8C17—C18—H18A109.5
C6—C5—C4120.35 (15)C17—C18—H18B109.5
C6—C5—C19121.18 (16)H18A—C18—H18B109.5
C4—C5—C19118.47 (15)C17—C18—H18C109.5
C5—C6—C7118.24 (15)H18A—C18—H18C109.5
C5—C6—H6120.9H18B—C18—H18C109.5
C7—C6—H6120.9O2—C19—O3122.81 (18)
C6—C7—N1128.98 (15)O2—C19—C5124.93 (19)
C6—C7—C2120.55 (14)O3—C19—C5112.26 (15)
N1—C7—C2110.46 (14)C21—C20—O3106.8 (8)
C9—C8—C13119.04 (15)C21—C20—H20A110.4
C9—C8—C1119.08 (16)O3—C20—H20A110.4
C13—C8—C1121.81 (16)C21—C20—H20B110.4
C10—C9—C8120.85 (19)O3—C20—H20B110.4
C10—C9—H9119.6H20A—C20—H20B108.6
C8—C9—H9119.6C20—C21—H21A109.5
C11—C10—C9119.33 (19)C20—C21—H21B109.5
C11—C10—H10120.3H21A—C21—H21B109.5
C9—C10—H10120.3C20—C21—H21C109.5
C10—C11—C12121.27 (17)H21A—C21—H21C109.5
C10—C11—H11119.4H21B—C21—H21C109.5
C12—C11—H11119.4C20A—C21A—H21D109.5
C11—C12—C13119.38 (18)C20A—C21A—H21E109.5
C11—C12—H12120.3H21D—C21A—H21E109.5
C13—C12—H12120.3C20A—C21A—H21F109.5
O1—C13—C12124.40 (17)H21D—C21A—H21F109.5
O1—C13—C8115.49 (14)H21E—C21A—H21F109.5
C12—C13—C8120.11 (17)C21A—C20A—O3101.4 (11)
O1—C14—H14A109.5C21A—C20A—H20C111.5
O1—C14—H14B109.5O3—C20A—H20C111.5
H14A—C14—H14B109.5C21A—C20A—H20D111.5
O1—C14—H14C109.5O3—C20A—H20D111.5
H14A—C14—H14C109.5H20C—C20A—H20D109.3
H14B—C14—H14C109.5
C7—N1—C1—N20.4 (2)C1—C8—C9—C10178.21 (17)
C7—N1—C1—C8176.62 (16)C8—C9—C10—C110.0 (3)
C2—N2—C1—N11.2 (2)C9—C10—C11—C120.8 (3)
C15—N2—C1—N1175.22 (16)C10—C11—C12—C130.5 (3)
C2—N2—C1—C8175.86 (16)C14—O1—C13—C1210.5 (3)
C15—N2—C1—C81.8 (3)C14—O1—C13—C8169.60 (17)
C1—N2—C2—C3178.75 (18)C11—C12—C13—O1179.54 (17)
C15—N2—C2—C34.9 (3)C11—C12—C13—C80.6 (3)
C1—N2—C2—C71.37 (18)C9—C8—C13—O1178.76 (16)
C15—N2—C2—C7175.26 (16)C1—C8—C13—O11.7 (2)
N2—C2—C3—C4180.00 (18)C9—C8—C13—C121.3 (3)
C7—C2—C3—C40.1 (3)C1—C8—C13—C12178.40 (16)
C2—C3—C4—C51.5 (3)C1—N2—C15—C17111.1 (2)
C3—C4—C5—C61.5 (3)C2—N2—C15—C1761.7 (2)
C3—C4—C5—C19177.90 (17)C1—N2—C15—C16121.50 (19)
C4—C5—C6—C70.2 (3)C2—N2—C15—C1665.7 (2)
C19—C5—C6—C7179.26 (17)N2—C15—C17—C1855.0 (2)
C5—C6—C7—N1178.97 (17)C16—C15—C17—C18178.28 (19)
C5—C6—C7—C21.2 (3)C20A—O3—C19—O213.3 (18)
C1—N1—C7—C6179.38 (19)C20—O3—C19—O21.3 (5)
C1—N1—C7—C20.5 (2)C20A—O3—C19—C5167.2 (17)
N2—C2—C7—C6178.70 (16)C20—O3—C19—C5178.2 (5)
C3—C2—C7—C61.2 (3)C6—C5—C19—O2172.8 (2)
N2—C2—C7—N11.19 (19)C4—C5—C19—O27.8 (3)
C3—C2—C7—N1178.91 (16)C6—C5—C19—O36.7 (3)
N1—C1—C8—C965.8 (2)C4—C5—C19—O3172.74 (17)
N2—C1—C8—C9110.9 (2)C19—O3—C20—C21172.8 (5)
N1—C1—C8—C13111.2 (2)C20A—O3—C20—C2186 (10)
N2—C1—C8—C1372.0 (2)C19—O3—C20A—C21A119 (2)
C13—C8—C9—C101.1 (3)C20—O3—C20A—C21A33 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/N2/C1/C2/C7 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···N1i0.932.563.471 (2)165
C20A—H20C···Cgii0.972.903.71 (4)141
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC21H24N2O3
Mr352.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.6746 (3), 12.3344 (4), 15.6158 (5)
β (°) 106.901 (1)
V3)1967.25 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.52 × 0.44 × 0.32
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.959, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
17688, 3475, 2712
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.05
No. of reflections3475
No. of parameters245
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/N2/C1/C2/C7 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···N1i0.932.563.471 (2)165
C20A—H20C···Cgii0.972.903.71 (4)141
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+2, z+2.
 

Acknowledgements

NA, HO and ASAR acknowledge the Ministry of Science, Technology and Innovations of Malaysia for funding the synthetic chemistry work under 304/PFARMASI/650544. NA thanks Universiti Sains Malaysia for the award of a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o845.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235–2246.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationHamzah, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2011). Acta Cryst. E67, o2704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKappe, C. O. & Dallinger, D. (2006). Nat. Rev. Drug Discov. 5, 51–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoupy, A. (2002). Editor. Microwaves in Organic Synthesis, 1st ed. Weinheim: Wiley-VCH.  Google Scholar
First citationNicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G. Q., Barluenga, S. & Mitchell, H. J. (2000). J. Am. Chem. Soc. 122, 9939–9953.  Web of Science CrossRef CAS Google Scholar
First citationSantagada, V., Perissutti, E., Fiorino, F., Vivenzo, B. & Caliendo, G. (2001). Tetrahedron Lett. 42, 2397–2400.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanVliet, D. S., Gillespi, P. & Scicinski, J. J. (2005). Tetrahedron Lett. 42, 6741–6743.  Web of Science CrossRef Google Scholar
First citationWang, S.-L., Ding, J., Jiang, B., Gao, Y. & Tu, S.-J. (2011). ACS Comb. Sci. 13, 572–577.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds