organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 6-oxo-2,7-di­aza­spiro[4.4]nonane-2-carboxyl­ate

aMicroscale Science Institute , Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: yangjiewf72@126.com

(Received 26 October 2011; accepted 24 November 2011; online 30 November 2011)

In the title mol­ecule, C12H20N2O3, both five-membered rings are in envelope conformations. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For applications of substituted pyrrolidines, see: Domagala et al. (1993[Domagala, J. M., Hagan, S. E., Joannides, T., Kiely, J. S., Laborde, E., Schroeder, M. C., Sesnie, J. A., Shapiro, M. A., Suto, M. J. S. & Vanderroest, S. (1993). J. Med. Chem. 36, 871-882.]); Pedder et al. (1976[Pedder, D. J., Fales, H. M., Jaouni, T., Blum, M., MacConnell, J. & Crewe, R. M. (1976). Tetrahedron, 32, 2275-227.]); Blanco & Sardina (1994[Blanco, M. J. & Sardina, F. J. (1994). Tetrahedron Lett., 35 , 8493-8396.]); Husinec & Savic (2005[Husinec, S. & Savic, V. (2005). Tetrahedron Asymmetry, 16, 2047-2061.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H20N2O3

  • Mr = 240.30

  • Monoclinic, C 2

  • a = 10.495 (5) Å

  • b = 6.283 (3) Å

  • c = 19.247 (10) Å

  • β = 97.029 (8)°

  • V = 1259.7 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.21 × 0.15 × 0.06 mm

Data collection
  • Rigaku Saturn 724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.995

  • 3265 measured reflections

  • 1557 independent reflections

  • 1452 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.105

  • S = 1.09

  • 1557 reflections

  • 157 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.97 2.848 (3) 175
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Depending on the substitution pattern and functionalization, different substituted pyrrolidines have been shown to be effective antibacterials or fungicides agents and glycosidase inhibitors (Domagala et al., 1993; Pedder et al., 1976; Blanco et al., 1994); Husinec et al., 2005). The crystal structure of the title compound is reportede herein.

In the molecule (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987). Both five-membered rings are in envelope conformations with C3 and C5 forming the flap. Atoms C6-C8/O2/O3/N2 are essentially planar, with a maximum deviation of 0.0082 (24) Å. In the crystal, N—H···O hydrogen bonds link molecules to form one dimensional chains along [010] (see Table 1).

Related literature top

For applications of substituted pyrrolidines, see: Domagala et al. (1993); Pedder et al. (1976); Blanco & Sardina (1994); Husinec & Savic (2005). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Tert-butyl 6-oxo-2,7-diazasiro[4.4]nonane-2-carboxylate was synthesized with methyl 1-tert-butyl 3-ethyl 3-(cyanomethyl)pyrrolidine-1,3-dicarboxylate (13.4g) and Raney Ni (3.4g) in methanol under H2(50 Psi) atmosphere at room temperature.

Single crystals of the compound suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature. In the absence of anomalous dispersion effects the Friedel pairs were merged.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances in the range 0.98–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). The N—H distance is 0.88 Å, with Uiso(H) = 1.2Ueq(N).

Structure description top

Depending on the substitution pattern and functionalization, different substituted pyrrolidines have been shown to be effective antibacterials or fungicides agents and glycosidase inhibitors (Domagala et al., 1993; Pedder et al., 1976; Blanco et al., 1994); Husinec et al., 2005). The crystal structure of the title compound is reportede herein.

In the molecule (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987). Both five-membered rings are in envelope conformations with C3 and C5 forming the flap. Atoms C6-C8/O2/O3/N2 are essentially planar, with a maximum deviation of 0.0082 (24) Å. In the crystal, N—H···O hydrogen bonds link molecules to form one dimensional chains along [010] (see Table 1).

For applications of substituted pyrrolidines, see: Domagala et al. (1993); Pedder et al. (1976); Blanco & Sardina (1994); Husinec & Savic (2005). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids are drawn at the 30% probability level.
tert-Butyl 6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate top
Crystal data top
C12H20N2O3F(000) = 520
Mr = 240.30Dx = 1.267 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2422 reflections
a = 10.495 (5) Åθ = 1.1–27.5°
b = 6.283 (3) ŵ = 0.09 mm1
c = 19.247 (10) ÅT = 173 K
β = 97.029 (8)°Platelet, colorless
V = 1259.7 (11) Å30.21 × 0.15 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn 724+
diffractometer
1557 independent reflections
Radiation source: rotating anode1452 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 137
Tmin = 0.981, Tmax = 0.995k = 88
3265 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.032P)2 + 0.9713P]
where P = (Fo2 + 2Fc2)/3
1557 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C12H20N2O3V = 1259.7 (11) Å3
Mr = 240.30Z = 4
Monoclinic, C2Mo Kα radiation
a = 10.495 (5) ŵ = 0.09 mm1
b = 6.283 (3) ÅT = 173 K
c = 19.247 (10) Å0.21 × 0.15 × 0.06 mm
β = 97.029 (8)°
Data collection top
Rigaku Saturn 724+
diffractometer
1557 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1452 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.995Rint = 0.039
3265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.105H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
1557 reflectionsΔρmin = 0.18 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Absolute configuration is unknown, there being no firm chemical evidence for its assignment to hand and it having not been established by anomalous dispersion effects in diffraction measurements on the crystal. An arbitrary choice of enantiomer has been made.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2715 (2)0.4600 (3)0.43850 (10)0.0313 (5)
O20.33362 (17)0.2042 (3)0.18571 (9)0.0289 (5)
O30.55006 (19)0.1382 (4)0.19625 (10)0.0332 (5)
N10.3406 (2)0.8081 (4)0.44345 (11)0.0255 (5)
H10.30280.84740.47980.031*
N20.4618 (2)0.3546 (4)0.27139 (12)0.0275 (5)
C10.3315 (3)0.6117 (5)0.41741 (13)0.0219 (6)
C20.4181 (3)0.9527 (5)0.40704 (14)0.0279 (6)
H2B0.50370.97510.43390.033*
H2A0.37501.09200.39840.033*
C30.4286 (3)0.8347 (5)0.33812 (13)0.0234 (6)
H3B0.51340.85960.32200.028*
H3A0.36050.88130.30110.028*
C40.4118 (3)0.5993 (5)0.35651 (13)0.0209 (5)
C50.5419 (3)0.4915 (5)0.38093 (13)0.0241 (6)
H5B0.60510.59630.40270.029*
H5A0.53170.37660.41500.029*
C60.5835 (3)0.4018 (5)0.31360 (15)0.0303 (7)
H6B0.63360.50780.29020.036*
H6A0.63570.27140.32300.036*
C70.3515 (2)0.4573 (5)0.29695 (13)0.0233 (6)
H7B0.29360.35050.31430.028*
H7A0.30240.54280.25960.028*
C80.4568 (2)0.2247 (5)0.21527 (13)0.0244 (6)
C90.3028 (3)0.0912 (5)0.11865 (14)0.0290 (7)
C100.3776 (3)0.1875 (7)0.06389 (15)0.0461 (9)
H10A0.34440.13210.01760.069*
H10C0.46860.15010.07450.069*
H10B0.36830.34270.06410.069*
C110.3283 (3)0.1464 (6)0.12960 (17)0.0381 (8)
H11B0.27170.20310.16200.057*
H11C0.41800.16800.14920.057*
H11A0.31170.22050.08460.057*
C120.1607 (3)0.1350 (7)0.10196 (17)0.0419 (8)
H12A0.12810.06480.05790.063*
H12C0.14660.28880.09740.063*
H12B0.11540.07990.13980.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0348 (12)0.0317 (11)0.0293 (10)0.0073 (10)0.0115 (8)0.0027 (10)
O20.0228 (10)0.0378 (11)0.0253 (9)0.0021 (10)0.0002 (7)0.0106 (10)
O30.0261 (11)0.0410 (13)0.0335 (10)0.0050 (10)0.0074 (8)0.0098 (10)
N10.0263 (12)0.0276 (13)0.0234 (11)0.0030 (11)0.0066 (9)0.0023 (11)
N20.0190 (11)0.0345 (13)0.0284 (11)0.0033 (11)0.0004 (9)0.0091 (11)
C10.0200 (13)0.0256 (13)0.0200 (11)0.0001 (12)0.0015 (10)0.0016 (11)
C20.0280 (15)0.0235 (13)0.0322 (14)0.0000 (13)0.0033 (11)0.0014 (13)
C30.0197 (13)0.0265 (14)0.0247 (12)0.0022 (12)0.0059 (10)0.0037 (12)
C40.0193 (12)0.0224 (13)0.0211 (11)0.0013 (12)0.0025 (10)0.0009 (11)
C50.0206 (13)0.0249 (14)0.0262 (13)0.0010 (12)0.0001 (10)0.0014 (12)
C60.0183 (13)0.0383 (18)0.0336 (14)0.0040 (13)0.0001 (11)0.0076 (13)
C70.0181 (13)0.0271 (13)0.0252 (12)0.0021 (12)0.0053 (10)0.0021 (12)
C80.0219 (13)0.0270 (14)0.0248 (13)0.0016 (12)0.0048 (10)0.0003 (12)
C90.0309 (15)0.0351 (16)0.0212 (13)0.0022 (14)0.0033 (11)0.0045 (13)
C100.048 (2)0.062 (3)0.0283 (15)0.009 (2)0.0058 (14)0.0031 (17)
C110.0388 (18)0.0359 (17)0.0394 (17)0.0022 (16)0.0030 (14)0.0081 (15)
C120.0337 (18)0.050 (2)0.0395 (17)0.0044 (17)0.0073 (14)0.0070 (17)
Geometric parameters (Å, º) top
O1—C11.238 (3)C5—C61.525 (4)
O2—C81.353 (3)C5—H5B0.9900
O2—C91.474 (3)C5—H5A0.9900
O3—C81.214 (3)C6—H6B0.9900
N1—C11.331 (4)C6—H6A0.9900
N1—C21.454 (4)C7—H7B0.9900
N1—H10.8800C7—H7A0.9900
N2—C81.350 (3)C9—C121.511 (4)
N2—C61.458 (4)C9—C101.516 (4)
N2—C71.462 (3)C9—C111.526 (5)
C1—C41.527 (4)C10—H10A0.9800
C2—C31.535 (4)C10—H10C0.9800
C2—H2B0.9900C10—H10B0.9800
C2—H2A0.9900C11—H11B0.9800
C3—C41.536 (4)C11—H11C0.9800
C3—H3B0.9900C11—H11A0.9800
C3—H3A0.9900C12—H12A0.9800
C4—C71.527 (4)C12—H12C0.9800
C4—C51.545 (4)C12—H12B0.9800
C8—O2—C9120.7 (2)N2—C6—H6A111.1
C1—N1—C2114.6 (2)C5—C6—H6A111.1
C1—N1—H1122.7H6B—C6—H6A109.1
C2—N1—H1122.7N2—C7—C4103.8 (2)
C8—N2—C6121.0 (2)N2—C7—H7B111.0
C8—N2—C7125.5 (2)C4—C7—H7B111.0
C6—N2—C7113.5 (2)N2—C7—H7A111.0
O1—C1—N1127.3 (3)C4—C7—H7A111.0
O1—C1—C4124.3 (3)H7B—C7—H7A109.0
N1—C1—C4108.4 (2)O3—C8—N2123.9 (3)
N1—C2—C3102.6 (2)O3—C8—O2126.5 (3)
N1—C2—H2B111.2N2—C8—O2109.6 (2)
C3—C2—H2B111.2O2—C9—C12101.8 (2)
N1—C2—H2A111.2O2—C9—C10109.8 (3)
C3—C2—H2A111.2C12—C9—C10111.2 (3)
H2B—C2—H2A109.2O2—C9—C11109.5 (2)
C2—C3—C4104.1 (2)C12—C9—C11111.1 (3)
C2—C3—H3B110.9C10—C9—C11112.9 (3)
C4—C3—H3B110.9C9—C10—H10A109.5
C2—C3—H3A110.9C9—C10—H10C109.5
C4—C3—H3A110.9H10A—C10—H10C109.5
H3B—C3—H3A109.0C9—C10—H10B109.5
C1—C4—C7112.9 (2)H10A—C10—H10B109.5
C1—C4—C3102.6 (2)H10C—C10—H10B109.5
C7—C4—C3116.0 (2)C9—C11—H11B109.5
C1—C4—C5109.8 (2)C9—C11—H11C109.5
C7—C4—C5104.0 (2)H11B—C11—H11C109.5
C3—C4—C5111.7 (2)C9—C11—H11A109.5
C6—C5—C4103.8 (2)H11B—C11—H11A109.5
C6—C5—H5B111.0H11C—C11—H11A109.5
C4—C5—H5B111.0C9—C12—H12A109.5
C6—C5—H5A111.0C9—C12—H12C109.5
C4—C5—H5A111.0H12A—C12—H12C109.5
H5B—C5—H5A109.0C9—C12—H12B109.5
N2—C6—C5103.1 (2)H12A—C12—H12B109.5
N2—C6—H6B111.1H12C—C12—H12B109.5
C5—C6—H6B111.1
C2—N1—C1—O1179.7 (3)C7—N2—C6—C515.7 (3)
C2—N1—C1—C41.7 (3)C4—C5—C6—N230.5 (3)
C1—N1—C2—C315.7 (3)C8—N2—C7—C4175.1 (3)
N1—C2—C3—C425.8 (3)C6—N2—C7—C45.9 (3)
O1—C1—C4—C737.5 (4)C1—C4—C7—N2143.8 (2)
N1—C1—C4—C7143.8 (2)C3—C4—C7—N298.2 (3)
O1—C1—C4—C3163.1 (3)C5—C4—C7—N224.9 (3)
N1—C1—C4—C318.2 (3)C6—N2—C8—O30.5 (4)
O1—C1—C4—C578.0 (3)C7—N2—C8—O3178.4 (3)
N1—C1—C4—C5100.7 (3)C6—N2—C8—O2179.2 (3)
C2—C3—C4—C126.7 (3)C7—N2—C8—O20.3 (4)
C2—C3—C4—C7150.2 (2)C9—O2—C8—O38.6 (4)
C2—C3—C4—C590.8 (2)C9—O2—C8—N2172.7 (2)
C1—C4—C5—C6155.7 (2)C8—O2—C9—C12172.4 (3)
C7—C4—C5—C634.6 (3)C8—O2—C9—C1054.6 (4)
C3—C4—C5—C691.2 (3)C8—O2—C9—C1169.9 (3)
C8—N2—C6—C5163.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.848 (3)175
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H20N2O3
Mr240.30
Crystal system, space groupMonoclinic, C2
Temperature (K)173
a, b, c (Å)10.495 (5), 6.283 (3), 19.247 (10)
β (°) 97.029 (8)
V3)1259.7 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.15 × 0.06
Data collection
DiffractometerRigaku Saturn 724+
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.981, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
3265, 1557, 1452
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.105, 1.09
No. of reflections1557
No. of parameters157
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.848 (3)174.5
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The author would like to thank the Shandong Provincial Natural Science Foundation, China (Y2008B29) and the Weifang Technology Development Project (2010).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlanco, M. J. & Sardina, F. J. (1994). Tetrahedron Lett., 35 , 8493–8396.  CrossRef CAS Web of Science Google Scholar
First citationDomagala, J. M., Hagan, S. E., Joannides, T., Kiely, J. S., Laborde, E., Schroeder, M. C., Sesnie, J. A., Shapiro, M. A., Suto, M. J. S. & Vanderroest, S. (1993). J. Med. Chem. 36, 871–882.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHusinec, S. & Savic, V. (2005). Tetrahedron Asymmetry, 16, 2047–2061.  Web of Science CrossRef CAS Google Scholar
First citationPedder, D. J., Fales, H. M., Jaouni, T., Blum, M., MacConnell, J. & Crewe, R. M. (1976). Tetrahedron, 32, 2275–227.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds