metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-carb­­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2N3,O4)cadmium N,N-di­methyl­formamide disolvate

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Enviroment Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China, and cCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 21 November 2011; accepted 23 November 2011; online 30 November 2011)

In the title complex, [Cd(C8H9N2O4)2(H2O)2]·2C3H7NO, the six-coordinate CdII ion is in a slightly distorted octa­hedral environment, defined by two O atoms from two coordinated water mol­ecules and two carboxyl­ate O atoms and two N atoms from two N,O-bidentate 5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ate ligands. In the crystal, complex mol­ecules and dimethyl­formamide solvent mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds into a two-dimensional supra­molecular structure. The propyl groups of the ligands are disordered over two conformations with refined occupancies of 0.680 (7) and 0.320 (7).

Related literature

For our past work based on the H3PIDC (2-propyl-imidazol-4,5-dicarb­oxy­lic acid) ligand, see: Fan et al. (2010[Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.]); Li, Song, Miao, Tong et al. (2011[Li, S. J., Song, W. D., Miao, D. L., Tong, S. W., Yan, J. B. & &Ji, L. L. (2011). Chin. J. Inorg. Chem. 27, 2088-2094.]); Li, Miao et al. (2010[Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096-m1097.]); Li, Yan et al. (2010[Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.]); Song et al. (2010[Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.]); He et al. (2010[He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.]); Yan et al. (2010[Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.]). For our past work based on the H3EIDC (2-ethyl-1H-imidazol-4,5-dicarb­oxy­lic acid) ligand, see: Li, Ma et al. (2011[Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295-m296.]); Li, Song, Miao, Hu et al. (2011[Li, S. J., Song, W. D., Miao, D. L., Hu, S. W., Ji, L. L. & Ma, D. Y. (2011). Z. Anorg. Allg. Chem. 637, 1246-1252.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H9N2O4)2(H2O)2]·2C3H7NO

  • Mr = 688.97

  • Orthorhombic, P n a 21

  • a = 16.6040 (14) Å

  • b = 9.8516 (8) Å

  • c = 18.4154 (16) Å

  • V = 3012.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 295 K

  • 0.27 × 0.24 × 0.21 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.815, Tmax = 0.851

  • 16187 measured reflections

  • 4421 independent reflections

  • 3111 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.079

  • S = 1.00

  • 4421 reflections

  • 444 parameters

  • 233 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1285 Friedel pairs

  • Flack parameter: −0.04 (4)

Table 1
Selected bond lengths (Å)

Cd1—N4 2.262 (4)
Cd1—N2 2.262 (4)
Cd1—O2W 2.325 (6)
Cd1—O1W 2.322 (5)
Cd1—O4 2.356 (5)
Cd1—O8 2.357 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.69 2.460 (6) 155
O6—H6⋯O7 0.82 1.64 2.453 (6) 174
O1W—H1W⋯O10 0.83 (2) 1.94 (2) 2.763 (6) 175 (9)
O1W—H2W⋯O5i 0.82 (2) 2.00 (4) 2.771 (6) 158 (9)
O2W—H3W⋯O1ii 0.80 (2) 2.02 (3) 2.787 (6) 161 (7)
O2W—H4W⋯O9 0.80 (2) 2.02 (3) 2.791 (6) 162 (8)
N1—H1A⋯O10iii 0.86 1.91 2.761 (6) 170
N3—H3A⋯O9iv 0.86 1.94 2.792 (6) 171
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, structures containing metals and N-heterocyclic carboxylic acids have drawn increasing attention due to their fascinating structures and potential applications in many fields. For instance, N-heterocyclic carboxylic acids H3IDC (imidazole-4,5-dicarboxylic acid) which can be deprotonated to form H2IDC-, HIDC2- and IDC3- anions under various pH conditions, have been broadly used to obtain a variety of metal-organic frameworks with novel structures and exceptional properties. In our previous research, efforts have been focused on the design and synthesis of interesting metal organic complexes with derivatives of H3IDC, such as H3PIDC (2-propyl-imidazole-4,5-dicarboxylic acid) (Fan et al., 2010; Li, Miao et al., 2010; Li, Yan et al., 2010; Li, Song, Miao, Tong et al., 2011; He et al., 2010; Song et al., 2010; Yan et al., 2010) and H3EIDC (2-ethyl-1H-imidazole-4,5-dicarboxylic acid) (Li, Song, Miao, Hu et al., 2011; Li, Ma et al., 2011). To continue our studies, we report the synthesis and structure of a new Cd(II) complex obtained from the H3PIDC ligand and cadmiun nitrate under hydrothermal conditions.

As shown in the Fig. 1, the title complex consists of one CdII ion, two mono-deprotonated H2PIDC ligands, two coordinated water molecules and two dimethylformamide solvent molecules. The CdII atom is six-coordinate in a slightly distorted octahedral geometry, connected with two N,O-bidentate ligands [Cd—O = 2.321 (5) Å and Cd—N = 2.262 (4) Å] and two coordinated water molecules [Cd—O = 2.356 (5) Å]. It is noted that the two imidazole rings are nearly coplanar. In the crystal structure, the complex molecules and dimethylformamide solvent molecules are connected via hydrogen bonds (Table 1) into a two-dimensional supramolecular structure. The propyl groups of H2PIDC- are disordered over conformations with refined occupancies of 0.679 (7):0.321 (7).

Related literature top

For our past work based on the H3PIDC (2-propyl-imidazole-4,5-dicarboxylic acid ) ligand, see: Fan et al. (2010); Li, Song, Miao, Tong et al. (2011); Li, Miao et al. (2010); Li, Yan et al. (2010); Song et al. (2010); He et al. (2010); Yan et al. (2010). For our past work based on the H3EIDC (2-ethyl-1H-imidazole-4,5-dicarboxylic acid) ligand, see: Li, Ma et al. (2011); Li, Song, Miao, Hu et al. (2011).

Experimental top

A mixture of Cd(CH3COO)2 (0.2 mmol, 0.046 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid (0.2 mmol, 0.39 g) in 15 ml DMF was sealed in an autoclave equipped with a Teflon liner (25 ml) and then heated at 413 K for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and refined subject to O—H distance restraints of 0.82 (1) Å, and Uiso(H) = 1.5 Ueq. The H···H distances within the water molecules were restraint to 1.30 (1) Å. Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(O). Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5 Ueq(C, N). The propyl groups of H2PIDC- are split over two sites with refined occupancies of 0.679 (7):0.321 (7).

Structure description top

In recent years, structures containing metals and N-heterocyclic carboxylic acids have drawn increasing attention due to their fascinating structures and potential applications in many fields. For instance, N-heterocyclic carboxylic acids H3IDC (imidazole-4,5-dicarboxylic acid) which can be deprotonated to form H2IDC-, HIDC2- and IDC3- anions under various pH conditions, have been broadly used to obtain a variety of metal-organic frameworks with novel structures and exceptional properties. In our previous research, efforts have been focused on the design and synthesis of interesting metal organic complexes with derivatives of H3IDC, such as H3PIDC (2-propyl-imidazole-4,5-dicarboxylic acid) (Fan et al., 2010; Li, Miao et al., 2010; Li, Yan et al., 2010; Li, Song, Miao, Tong et al., 2011; He et al., 2010; Song et al., 2010; Yan et al., 2010) and H3EIDC (2-ethyl-1H-imidazole-4,5-dicarboxylic acid) (Li, Song, Miao, Hu et al., 2011; Li, Ma et al., 2011). To continue our studies, we report the synthesis and structure of a new Cd(II) complex obtained from the H3PIDC ligand and cadmiun nitrate under hydrothermal conditions.

As shown in the Fig. 1, the title complex consists of one CdII ion, two mono-deprotonated H2PIDC ligands, two coordinated water molecules and two dimethylformamide solvent molecules. The CdII atom is six-coordinate in a slightly distorted octahedral geometry, connected with two N,O-bidentate ligands [Cd—O = 2.321 (5) Å and Cd—N = 2.262 (4) Å] and two coordinated water molecules [Cd—O = 2.356 (5) Å]. It is noted that the two imidazole rings are nearly coplanar. In the crystal structure, the complex molecules and dimethylformamide solvent molecules are connected via hydrogen bonds (Table 1) into a two-dimensional supramolecular structure. The propyl groups of H2PIDC- are disordered over conformations with refined occupancies of 0.679 (7):0.321 (7).

For our past work based on the H3PIDC (2-propyl-imidazole-4,5-dicarboxylic acid ) ligand, see: Fan et al. (2010); Li, Song, Miao, Tong et al. (2011); Li, Miao et al. (2010); Li, Yan et al. (2010); Song et al. (2010); He et al. (2010); Yan et al. (2010). For our past work based on the H3EIDC (2-ethyl-1H-imidazole-4,5-dicarboxylic acid) ligand, see: Li, Ma et al. (2011); Li, Song, Miao, Hu et al. (2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, non-H atoms are shown with 30% probability displacement ellipsoids.
Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)cadmium N,N-dimethylformamide disolvate top
Crystal data top
[Cd(C8H9N2O4)2(H2O)2]·2C3H7NOF(000) = 1416
Mr = 688.97Dx = 1.519 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3600 reflections
a = 16.6040 (14) Åθ = 1.4–28°
b = 9.8516 (8) ŵ = 0.79 mm1
c = 18.4154 (16) ÅT = 295 K
V = 3012.3 (4) Å3Block, colourless
Z = 40.27 × 0.24 × 0.21 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4421 independent reflections
Radiation source: fine-focus sealed tube3111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 26.3°, θmin = 2.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 2020
Tmin = 0.815, Tmax = 0.851k = 1112
16187 measured reflectionsl = 2211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.020P)2 + 3.2P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
4421 reflectionsΔρmax = 0.41 e Å3
444 parametersΔρmin = 0.39 e Å3
233 restraintsAbsolute structure: Flack (1983), 1285 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
[Cd(C8H9N2O4)2(H2O)2]·2C3H7NOV = 3012.3 (4) Å3
Mr = 688.97Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.6040 (14) ŵ = 0.79 mm1
b = 9.8516 (8) ÅT = 295 K
c = 18.4154 (16) Å0.27 × 0.24 × 0.21 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4421 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3111 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.851Rint = 0.046
16187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.41 e Å3
S = 1.00Δρmin = 0.39 e Å3
4421 reflectionsAbsolute structure: Flack (1983), 1285 Friedel pairs
444 parametersAbsolute structure parameter: 0.04 (4)
233 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.61035 (2)0.49830 (5)0.52305 (9)0.04966 (12)
O10.4830 (3)1.1346 (4)0.5670 (3)0.0656 (16)
O20.5807 (3)1.0620 (5)0.6382 (3)0.0668 (14)
H20.59620.98820.65340.080*
O30.6581 (3)0.8521 (5)0.6574 (3)0.0677 (14)
O40.6630 (3)0.6406 (4)0.6142 (3)0.0614 (13)
O50.7407 (3)0.1351 (4)0.4749 (3)0.0665 (16)
O60.6439 (3)0.0594 (5)0.4016 (3)0.0674 (14)
H60.61610.00920.39870.081*
O70.5653 (3)0.1490 (4)0.3846 (3)0.0614 (13)
O80.5579 (2)0.3569 (4)0.4313 (3)0.0572 (13)
O1W0.7047 (3)0.5956 (4)0.4459 (4)0.0730 (16)
H1W0.748 (3)0.554 (6)0.440 (5)0.110*
H2W0.718 (4)0.675 (3)0.442 (5)0.110*
O2W0.5174 (3)0.4033 (4)0.6026 (3)0.0662 (15)
H3W0.519 (4)0.325 (3)0.590 (4)0.099*
H4W0.473 (2)0.434 (6)0.596 (5)0.099*
N10.4706 (3)0.8811 (4)0.4998 (3)0.0429 (15)
H1A0.43580.93710.48260.051*
N20.5401 (2)0.6945 (4)0.5161 (4)0.0391 (11)
N30.7518 (3)0.1189 (5)0.5425 (3)0.0483 (17)
H3A0.78730.06360.55920.058*
N40.6815 (2)0.3026 (4)0.5273 (4)0.0418 (11)
C10.5241 (3)0.9076 (5)0.5542 (3)0.0398 (14)
C20.5677 (3)0.7909 (5)0.5641 (3)0.0396 (14)
C30.5277 (4)1.0437 (6)0.5882 (4)0.0517 (18)
C40.6343 (4)0.7584 (6)0.6152 (4)0.0527 (17)
C50.4819 (3)0.7508 (5)0.4775 (3)0.0414 (14)
C6A0.4334 (10)0.686 (2)0.4188 (5)0.059 (3)0.680 (7)
H6A0.38420.73790.41190.071*0.680 (7)
H6B0.41830.59530.43380.071*0.680 (7)
C7A0.4787 (7)0.6779 (11)0.3461 (6)0.076 (3)0.680 (7)
H7A0.53350.64770.35440.091*0.680 (7)
H7B0.45250.61260.31450.091*0.680 (7)
C8A0.4793 (9)0.8133 (12)0.3110 (7)0.105 (4)0.680 (7)
H8A0.49930.80500.26230.158*0.680 (7)
H8B0.51340.87350.33800.158*0.680 (7)
H8C0.42550.84910.30980.158*0.680 (7)
C6B0.439 (2)0.676 (4)0.4189 (8)0.065 (4)0.320 (7)
H6C0.38240.66900.43240.077*0.320 (7)
H6D0.46030.58460.41670.077*0.320 (7)
C7B0.4436 (13)0.738 (3)0.3427 (13)0.080 (3)0.320 (7)
H7C0.40130.70080.31240.096*0.320 (7)
H7D0.43540.83580.34580.096*0.320 (7)
C8B0.5227 (14)0.710 (3)0.3096 (14)0.105 (6)0.320 (7)
H8D0.51540.68380.25980.157*0.320 (7)
H8E0.54870.63790.33570.157*0.320 (7)
H8F0.55560.79020.31180.157*0.320 (7)
C90.6991 (3)0.0907 (5)0.4879 (3)0.0409 (15)
C100.6547 (3)0.2079 (5)0.4781 (3)0.0399 (14)
C110.7400 (3)0.2446 (5)0.5661 (3)0.0434 (15)
C120.6953 (4)0.0449 (6)0.4524 (4)0.0501 (17)
C130.5881 (4)0.2408 (6)0.4287 (4)0.0467 (16)
C14A0.7785 (8)0.3070 (14)0.6317 (5)0.075 (3)0.680 (7)
H14A0.76340.40180.63530.091*0.680 (7)
H14B0.83670.30170.62760.091*0.680 (7)
C15A0.7501 (10)0.2293 (14)0.7006 (7)0.108 (3)0.680 (7)
H15A0.69170.22930.70270.129*0.680 (7)
H15B0.76820.13580.69820.129*0.680 (7)
C16A0.7827 (10)0.2939 (17)0.7661 (6)0.132 (4)0.680 (7)
H16A0.76360.24650.80830.199*0.680 (7)
H16B0.76530.38670.76810.199*0.680 (7)
H16C0.84040.29060.76480.199*0.680 (7)
C14B0.7994 (14)0.320 (3)0.6113 (10)0.068 (4)0.320 (7)
H14C0.79170.41680.60470.081*0.320 (7)
H14D0.85360.29760.59550.081*0.320 (7)
C15B0.7901 (14)0.284 (3)0.6922 (12)0.093 (4)0.320 (7)
H15C0.79660.18740.69900.112*0.320 (7)
H15D0.83120.33050.72030.112*0.320 (7)
C16B0.7095 (15)0.327 (3)0.7171 (14)0.113 (6)0.320 (7)
H16D0.70640.31800.76890.169*0.320 (7)
H16E0.66930.27020.69490.169*0.320 (7)
H16F0.70030.41960.70370.169*0.320 (7)
O90.3702 (2)0.5396 (4)0.6089 (3)0.0675 (14)
N50.3911 (3)0.7234 (5)0.6798 (3)0.0514 (13)
C170.3557 (3)0.6572 (5)0.6270 (3)0.0559 (19)
H17A0.31620.70310.60090.067*
C180.3685 (3)0.8631 (5)0.6949 (3)0.080 (2)
H18A0.32480.88920.66370.119*
H18B0.41380.92150.68640.119*
H18C0.35190.87090.74470.119*
C190.4499 (5)0.6607 (9)0.7254 (5)0.087 (3)
H19A0.45000.56450.71700.131*
H19B0.43710.67840.77530.131*
H19C0.50220.69710.71450.131*
O100.8514 (2)0.4647 (4)0.4356 (3)0.0676 (15)
N60.8302 (3)0.2882 (5)0.3600 (3)0.0548 (14)
C200.8676 (4)0.3505 (7)0.4120 (4)0.060 (2)
H20A0.91040.30500.43360.072*
C210.7640 (4)0.3522 (8)0.3232 (5)0.075 (2)
H21A0.78360.42720.29510.112*
H21B0.72580.38430.35830.112*
H21C0.73840.28760.29170.112*
C220.8521 (5)0.1525 (7)0.3359 (5)0.084 (3)
H22A0.80670.09290.34160.126*
H22B0.89620.11960.36460.126*
H22C0.86760.15530.28570.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04830 (18)0.02748 (15)0.0732 (3)0.00652 (16)0.0012 (3)0.0011 (2)
O10.060 (3)0.033 (2)0.104 (5)0.009 (2)0.004 (3)0.005 (2)
O20.079 (4)0.040 (3)0.082 (4)0.000 (3)0.002 (3)0.019 (3)
O30.080 (4)0.054 (3)0.069 (4)0.003 (2)0.028 (3)0.015 (3)
O40.062 (3)0.047 (3)0.075 (4)0.005 (2)0.024 (3)0.003 (3)
O50.063 (3)0.031 (2)0.105 (5)0.011 (2)0.008 (3)0.005 (3)
O60.075 (4)0.039 (3)0.088 (4)0.004 (3)0.011 (3)0.019 (3)
O70.070 (3)0.048 (3)0.067 (3)0.003 (2)0.015 (3)0.008 (2)
O80.060 (3)0.038 (2)0.074 (4)0.010 (2)0.015 (3)0.002 (2)
O1W0.066 (3)0.040 (3)0.113 (5)0.001 (2)0.022 (4)0.002 (3)
O2W0.064 (3)0.037 (2)0.098 (4)0.001 (2)0.017 (3)0.005 (3)
N10.038 (3)0.033 (2)0.059 (4)0.008 (2)0.001 (3)0.008 (2)
N20.040 (2)0.030 (2)0.047 (3)0.0019 (17)0.008 (3)0.007 (3)
N30.037 (3)0.036 (2)0.072 (5)0.007 (2)0.002 (3)0.012 (3)
N40.038 (2)0.0281 (19)0.059 (3)0.0001 (17)0.003 (3)0.008 (3)
C10.037 (3)0.031 (3)0.052 (4)0.002 (2)0.004 (3)0.000 (3)
C20.043 (3)0.031 (3)0.045 (4)0.001 (2)0.002 (3)0.004 (3)
C30.047 (4)0.035 (3)0.073 (5)0.005 (3)0.016 (4)0.007 (3)
C40.052 (4)0.048 (4)0.057 (5)0.000 (3)0.010 (4)0.008 (4)
C50.036 (3)0.035 (3)0.053 (4)0.001 (3)0.001 (3)0.002 (3)
C6A0.056 (4)0.056 (4)0.064 (5)0.001 (4)0.011 (4)0.006 (4)
C7A0.068 (5)0.081 (5)0.079 (5)0.004 (4)0.009 (4)0.006 (4)
C8A0.112 (7)0.109 (6)0.095 (7)0.021 (6)0.006 (6)0.017 (6)
C6B0.061 (6)0.064 (6)0.069 (6)0.002 (5)0.010 (5)0.005 (5)
C7B0.079 (6)0.081 (6)0.080 (6)0.002 (5)0.007 (5)0.004 (5)
C8B0.106 (9)0.104 (9)0.103 (9)0.006 (7)0.006 (8)0.001 (8)
C90.045 (3)0.025 (3)0.053 (4)0.004 (2)0.012 (3)0.003 (3)
C100.043 (3)0.033 (3)0.044 (4)0.004 (2)0.004 (3)0.002 (3)
C110.045 (4)0.036 (3)0.050 (4)0.001 (3)0.003 (3)0.002 (3)
C120.045 (4)0.034 (3)0.071 (5)0.007 (3)0.018 (4)0.007 (3)
C130.053 (4)0.033 (3)0.054 (5)0.002 (3)0.005 (4)0.003 (3)
C14A0.075 (5)0.070 (5)0.082 (5)0.004 (4)0.018 (5)0.009 (5)
C15A0.108 (6)0.119 (6)0.097 (5)0.025 (5)0.002 (5)0.011 (5)
C16A0.150 (8)0.152 (8)0.095 (5)0.016 (7)0.017 (6)0.010 (6)
C14B0.068 (7)0.067 (6)0.067 (7)0.011 (6)0.012 (6)0.004 (6)
C15B0.098 (6)0.097 (6)0.084 (6)0.022 (5)0.012 (6)0.008 (6)
C16B0.122 (9)0.114 (9)0.102 (9)0.010 (8)0.011 (8)0.008 (8)
O90.052 (3)0.053 (3)0.098 (4)0.003 (2)0.003 (3)0.012 (3)
N50.045 (3)0.050 (3)0.059 (4)0.002 (3)0.005 (3)0.002 (3)
C170.043 (4)0.045 (4)0.080 (6)0.004 (3)0.002 (4)0.006 (4)
C180.108 (6)0.046 (4)0.084 (6)0.000 (4)0.012 (5)0.013 (4)
C190.090 (6)0.092 (6)0.080 (7)0.018 (5)0.010 (6)0.008 (5)
O100.049 (3)0.053 (3)0.101 (4)0.002 (2)0.013 (3)0.026 (3)
N60.056 (3)0.051 (3)0.058 (4)0.006 (3)0.005 (3)0.011 (3)
C200.039 (3)0.058 (4)0.082 (6)0.001 (3)0.006 (4)0.001 (4)
C210.058 (5)0.090 (6)0.076 (6)0.017 (4)0.007 (4)0.019 (5)
C220.110 (7)0.051 (4)0.092 (7)0.001 (4)0.029 (6)0.011 (4)
Geometric parameters (Å, º) top
Cd1—N42.262 (4)C7B—H7D0.9700
Cd1—N22.262 (4)C8B—H8D0.9600
Cd1—O2W2.325 (6)C8B—H8E0.9600
Cd1—O1W2.322 (5)C8B—H8F0.9600
Cd1—O42.356 (5)C9—C101.381 (7)
Cd1—O82.357 (5)C9—C121.489 (8)
O1—C31.227 (7)C10—C131.468 (9)
O2—C31.287 (8)C11—C14B1.490 (9)
O2—H20.8200C11—C14A1.499 (8)
O3—C41.269 (8)C14A—C15A1.555 (11)
O4—C41.255 (7)C14A—H14A0.9700
O5—C121.236 (7)C14A—H14B0.9700
O6—C121.275 (8)C15A—C16A1.467 (11)
O6—H60.8200C15A—H15A0.9700
O7—C131.274 (7)C15A—H15B0.9700
O8—C131.251 (6)C16A—H16A0.9600
O1W—H1W0.83 (2)C16A—H16B0.9600
O1W—H2W0.82 (2)C16A—H16C0.9600
O2W—H3W0.80 (2)C14B—C15B1.537 (12)
O2W—H4W0.80 (2)C14B—H14C0.9700
N1—C51.360 (7)C14B—H14D0.9700
N1—C11.363 (7)C15B—C16B1.475 (12)
N1—H1A0.8600C15B—H15C0.9700
N2—C51.321 (7)C15B—H15D0.9700
N2—C21.376 (7)C16B—H16D0.9600
N3—C111.327 (7)C16B—H16E0.9600
N3—C91.363 (7)C16B—H16F0.9600
N3—H3A0.8600O9—C171.229 (6)
N4—C111.334 (7)N5—C171.311 (7)
N4—C101.375 (8)N5—C191.429 (9)
C1—C21.372 (7)N5—C181.454 (6)
C1—C31.480 (8)C17—H17A0.9300
C2—C41.486 (9)C18—H18A0.9600
C5—C6B1.490 (9)C18—H18B0.9600
C5—C6A1.492 (7)C18—H18C0.9600
C6A—C7A1.537 (11)C19—H19A0.9600
C6A—H6A0.9700C19—H19B0.9600
C6A—H6B0.9700C19—H19C0.9600
C7A—C8A1.483 (10)O10—C201.235 (7)
C7A—H7A0.9700N6—C201.296 (8)
C7A—H7B0.9700N6—C211.436 (9)
C8A—H8A0.9600N6—C221.455 (8)
C8A—H8B0.9600C20—H20A0.9300
C8A—H8C0.9600C21—H21A0.9600
C6B—C7B1.534 (12)C21—H21B0.9600
C6B—H6C0.9700C21—H21C0.9600
C6B—H6D0.9700C22—H22A0.9600
C7B—C8B1.476 (12)C22—H22B0.9600
C7B—H7C0.9700C22—H22C0.9600
N4—Cd1—N2178.7 (3)N3—C9—C10105.6 (5)
N4—Cd1—O2W88.96 (17)N3—C9—C12122.3 (5)
N2—Cd1—O2W92.14 (18)C10—C9—C12132.1 (6)
N4—Cd1—O1W91.17 (18)N4—C10—C9108.0 (5)
N2—Cd1—O1W87.75 (17)N4—C10—C13120.1 (5)
O2W—Cd1—O1W178.6 (2)C9—C10—C13131.8 (6)
N4—Cd1—O4106.78 (19)N3—C11—N4109.4 (5)
N2—Cd1—O473.93 (18)N3—C11—C14B123.4 (14)
O2W—Cd1—O492.1 (2)N4—C11—C14B124.6 (14)
O1W—Cd1—O486.57 (18)N3—C11—C14A125.7 (8)
N4—Cd1—O873.39 (19)N4—C11—C14A124.5 (8)
N2—Cd1—O8105.90 (17)O5—C12—O6125.0 (6)
O2W—Cd1—O888.21 (17)O5—C12—C9118.2 (7)
O1W—Cd1—O893.1 (2)O6—C12—C9116.8 (6)
O4—Cd1—O8179.7 (2)O8—C13—O7123.6 (6)
C3—O2—H2109.5O8—C13—C10118.8 (6)
C4—O4—Cd1114.8 (4)O7—C13—C10117.6 (5)
C12—O6—H6109.5C11—C14A—C15A109.1 (8)
C13—O8—Cd1114.8 (4)C11—C14A—H14A109.9
Cd1—O1W—H1W117 (6)C15A—C14A—H14A109.9
Cd1—O1W—H2W129 (6)C11—C14A—H14B109.9
H1W—O1W—H2W104 (4)C15A—C14A—H14B109.9
Cd1—O2W—H3W101 (6)H14A—C14A—H14B108.3
Cd1—O2W—H4W111 (6)C16A—C15A—C14A110.3 (10)
H3W—O2W—H4W109 (4)C16A—C15A—H15A109.6
C5—N1—C1108.2 (4)C14A—C15A—H15A109.6
C5—N1—H1A125.9C16A—C15A—H15B109.6
C1—N1—H1A125.9C14A—C15A—H15B109.6
C5—N2—C2107.5 (4)H15A—C15A—H15B108.1
C5—N2—Cd1140.0 (4)C11—C14B—C15B111.2 (16)
C2—N2—Cd1112.4 (4)C11—C14B—H14C109.4
C11—N3—C9109.7 (5)C15B—C14B—H14C109.4
C11—N3—H3A125.2C11—C14B—H14D109.4
C9—N3—H3A125.2C15B—C14B—H14D109.4
C11—N4—C10107.3 (4)H14C—C14B—H14D108.0
C11—N4—Cd1139.8 (5)C16B—C15B—C14B109.2 (11)
C10—N4—Cd1112.8 (4)C16B—C15B—H15C109.8
N1—C1—C2106.3 (5)C14B—C15B—H15C109.8
N1—C1—C3120.7 (5)C16B—C15B—H15D109.8
C2—C1—C3132.9 (6)C14B—C15B—H15D109.8
C1—C2—N2108.4 (5)H15C—C15B—H15D108.3
C1—C2—C4131.1 (6)C15B—C16B—H16D109.5
N2—C2—C4120.5 (5)C15B—C16B—H16E109.5
O1—C3—O2122.6 (6)H16D—C16B—H16E109.5
O1—C3—C1120.1 (7)C15B—C16B—H16F109.5
O2—C3—C1117.3 (6)H16D—C16B—H16F109.5
O4—C4—O3124.2 (6)H16E—C16B—H16F109.5
O4—C4—C2118.2 (6)C17—N5—C19121.9 (6)
O3—C4—C2117.6 (5)C17—N5—C18119.9 (6)
N2—C5—N1109.5 (5)C19—N5—C18118.2 (6)
N2—C5—C6B122 (2)O9—C17—N5125.6 (5)
N1—C5—C6B128 (2)O9—C17—H17A117.2
N2—C5—C6A127.3 (10)N5—C17—H17A117.2
N1—C5—C6A123.2 (10)N5—C18—H18A109.5
C5—C6A—C7A113.0 (9)N5—C18—H18B109.5
C5—C6A—H6A109.0H18A—C18—H18B109.5
C7A—C6A—H6A109.0N5—C18—H18C109.5
C5—C6A—H6B109.0H18A—C18—H18C109.5
C7A—C6A—H6B109.0H18B—C18—H18C109.5
H6A—C6A—H6B107.8N5—C19—H19A109.5
C8A—C7A—C6A109.6 (10)N5—C19—H19B109.5
C8A—C7A—H7A109.8H19A—C19—H19B109.5
C6A—C7A—H7A109.8N5—C19—H19C109.5
C8A—C7A—H7B109.8H19A—C19—H19C109.5
C6A—C7A—H7B109.8H19B—C19—H19C109.5
H7A—C7A—H7B108.2C20—N6—C21120.5 (6)
C5—C6B—C7B116 (2)C20—N6—C22122.7 (7)
C5—C6B—H6C108.3C21—N6—C22116.8 (6)
C7B—C6B—H6C108.3O10—C20—N6125.9 (6)
C5—C6B—H6D108.3O10—C20—H20A117.0
C7B—C6B—H6D108.3N6—C20—H20A117.0
H6C—C6B—H6D107.4N6—C21—H21A109.5
C8B—C7B—C6B110.4 (12)N6—C21—H21B109.5
C8B—C7B—H7C109.6H21A—C21—H21B109.5
C6B—C7B—H7C109.6N6—C21—H21C109.5
C8B—C7B—H7D109.6H21A—C21—H21C109.5
C6B—C7B—H7D109.6H21B—C21—H21C109.5
H7C—C7B—H7D108.1N6—C22—H22A109.5
C7B—C8B—H8D109.5N6—C22—H22B109.5
C7B—C8B—H8E109.5H22A—C22—H22B109.5
H8D—C8B—H8E109.5N6—C22—H22C109.5
C7B—C8B—H8F109.5H22A—C22—H22C109.5
H8D—C8B—H8F109.5H22B—C22—H22C109.5
H8E—C8B—H8F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.692.460 (6)155
O6—H6···O70.821.642.453 (6)174
O1W—H1W···O100.83 (2)1.94 (2)2.763 (6)175 (9)
O1W—H2W···O5i0.82 (2)2.00 (4)2.771 (6)158 (9)
O2W—H3W···O1ii0.80 (2)2.02 (3)2.787 (6)161 (7)
O2W—H4W···O90.80 (2)2.02 (3)2.791 (6)162 (8)
N1—H1A···O10iii0.861.912.761 (6)170
N3—H3A···O9iv0.861.942.792 (6)171
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H9N2O4)2(H2O)2]·2C3H7NO
Mr688.97
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)16.6040 (14), 9.8516 (8), 18.4154 (16)
V3)3012.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.27 × 0.24 × 0.21
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.815, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
16187, 4421, 3111
Rint0.046
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.00
No. of reflections4421
No. of parameters444
No. of restraints233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.39
Absolute structureFlack (1983), 1285 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N42.262 (4)Cd1—O1W2.322 (5)
Cd1—N22.262 (4)Cd1—O42.356 (5)
Cd1—O2W2.325 (6)Cd1—O82.357 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.692.460 (6)155.2
O6—H6···O70.821.642.453 (6)173.9
O1W—H1W···O100.83 (2)1.94 (2)2.763 (6)175 (9)
O1W—H2W···O5i0.82 (2)2.00 (4)2.771 (6)158 (9)
O2W—H3W···O1ii0.80 (2)2.02 (3)2.787 (6)161 (7)
O2W—H4W···O90.80 (2)2.02 (3)2.791 (6)162 (8)
N1—H1A···O10iii0.861.912.761 (6)170.3
N3—H3A···O9iv0.861.942.792 (6)170.8
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Guangdong Province Key Project in the Field of Social Development (grant No. A2009011–007(c)), the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002).

References

First citationFan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLi, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295–m296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S. J., Song, W. D., Miao, D. L., Hu, S. W., Ji, L. L. & Ma, D. Y. (2011). Z. Anorg. Allg. Chem. 637, 1246–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S. J., Song, W. D., Miao, D. L., Tong, S. W., Yan, J. B. & &Ji, L. L. (2011). Chin. J. Inorg. Chem. 27, 2088–2094.  CAS Google Scholar
First citationLi, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds