metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline-κ2N,N′)zinc]-μ-4-sulfonato­benzo­triazolido-κ3N3,O:N1]

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: shxycheng@163.com

(Received 7 November 2011; accepted 9 November 2011; online 12 November 2011)

In the title complex, [Zn(C6H3N3O3S)(C12H8N2)]n, the Zn2+ cation is coordinated by two N atoms from two 4-sulfonato­benzotriazolide dianions, two N atoms from a 1,10-phenanthroline mol­ecule and a sulfonate O atom from a 4-sulfonato­benzotriazolide anion, displaying a distorted ZnN4O trigonal–bipyramidal geometry. Each 1,10-phenanthroline ligand displays a bidentate chelating coordinating mode and the 4-sulfonato­benzotriazolide ions act as μ2-bridges, linking different Zn2+ cations into a chain along the b axis. The crystal structure is consolidated by C—H⋯O hydrogen-bonding inter­actions.

Related literature

For related structures, see: Xia et al. (2010[Xia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741-3744.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H3N3O3S)(C12H8N2)]

  • Mr = 442.75

  • Orthorhombic, P c c n

  • a = 14.5562 (19) Å

  • b = 25.903 (3) Å

  • c = 8.9239 (12) Å

  • V = 3364.8 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.738, Tmax = 0.738

  • 19596 measured reflections

  • 3819 independent reflections

  • 2895 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.147

  • S = 1.10

  • 3819 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.49 3.351 (5) 154
C12—H12⋯O2ii 0.93 2.55 3.369 (5) 148
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzotriazole-4-sulfonic acid is often used as a ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of the title complex. The asymmetric unit consists of one zinc ion, one 1,10-phenanthroline molecule, and one 4-sulfonatobenzotriazolide anion. each Zn ion is coordinated by two N atoms from two different 4-sulfonatobenzotriazolide anions, two N atoms from one 1,10-phenanthroline molecule, and one sulfonate O atoms from one 4-sulfonatobenzotriazolide anions, displaying a distorted ZnN4O trigonal bipyramidal geometry (Fig. 1). Each 1,10-phenanthroline displays a bidentate coordinating mode. And every 4-sulfonatobenzotriazolide acts as a µ2-bridge, linking different zinc ions to form a one-dimensional chain along the b axis direction. The crystal structure is consolidated by hydrogen bonding interactions of the type C—H···O (Table 1).

Related literature top

For related structures, see: Xia et al. (2010).

Experimental top

A mixture of zinc nitrate hexahydrate (59.4 mg, 0.2 mmol), benzotriazole-4-sulfonic acid (39.8 mg, 0.2 mmol), 1,10-phenanthroline (36.0 mg, 0.2 mmol) and potassium hydroxide (22.4 mg, 0.4 mmol) in 12 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 413 K for 3 days. After cooling the container to the room temperature, colorless block crystals of the title complex were obtained.

Refinement top

The hydrogen atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Benzotriazole-4-sulfonic acid is often used as a ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of the title complex. The asymmetric unit consists of one zinc ion, one 1,10-phenanthroline molecule, and one 4-sulfonatobenzotriazolide anion. each Zn ion is coordinated by two N atoms from two different 4-sulfonatobenzotriazolide anions, two N atoms from one 1,10-phenanthroline molecule, and one sulfonate O atoms from one 4-sulfonatobenzotriazolide anions, displaying a distorted ZnN4O trigonal bipyramidal geometry (Fig. 1). Each 1,10-phenanthroline displays a bidentate coordinating mode. And every 4-sulfonatobenzotriazolide acts as a µ2-bridge, linking different zinc ions to form a one-dimensional chain along the b axis direction. The crystal structure is consolidated by hydrogen bonding interactions of the type C—H···O (Table 1).

For related structures, see: Xia et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The coordination environment of zinc ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms are omitted for clarity. Symmetry codes: A = x, -y + 1/2, z + 1/2; B = x, -y + 1/2, z - 1/2.
catena-Poly[[(1,10-phenanthroline-κ2N,N')zinc]-µ- 4-sulfonatobenzotriazolido-κ3N3,O:N1] top
Crystal data top
[Zn(C6H3N3O3S)(C12H8N2)]F(000) = 1792
Mr = 442.75Dx = 1.748 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2885 reflections
a = 14.5562 (19) Åθ = 2.7–25.0°
b = 25.903 (3) ŵ = 1.62 mm1
c = 8.9239 (12) ÅT = 293 K
V = 3364.8 (8) Å3Block, colorless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3819 independent reflections
Radiation source: fine-focus sealed tube2895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
φ and ω scansθmax = 27.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.738, Tmax = 0.738k = 3333
19596 measured reflectionsl = 711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0628P)2 + 1.2933P]
where P = (Fo2 + 2Fc2)/3
3819 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Zn(C6H3N3O3S)(C12H8N2)]V = 3364.8 (8) Å3
Mr = 442.75Z = 8
Orthorhombic, PccnMo Kα radiation
a = 14.5562 (19) ŵ = 1.62 mm1
b = 25.903 (3) ÅT = 293 K
c = 8.9239 (12) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3819 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2895 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.738Rint = 0.092
19596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.10Δρmax = 0.82 e Å3
3819 reflectionsΔρmin = 0.70 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.97927 (3)0.330127 (13)0.19495 (5)0.02895 (17)
N50.8384 (2)0.34450 (11)0.1826 (3)0.0334 (7)
C170.8148 (2)0.38273 (12)0.0857 (4)0.0333 (8)
C90.9411 (4)0.47031 (16)0.1724 (5)0.0581 (13)
H90.93130.49730.23920.070*
C100.8673 (3)0.44934 (14)0.0912 (5)0.0454 (10)
C130.7232 (3)0.39803 (14)0.0600 (5)0.0421 (9)
C140.6559 (3)0.36901 (16)0.1331 (5)0.0497 (11)
H140.59420.37670.11700.060*
C71.0419 (3)0.41028 (15)0.0526 (5)0.0459 (10)
H71.10120.39770.03980.055*
C180.8878 (3)0.40801 (12)0.0054 (4)0.0337 (8)
C160.7712 (3)0.31927 (15)0.2529 (5)0.0420 (9)
H160.78650.29370.32160.050*
C150.6784 (3)0.32995 (16)0.2270 (6)0.0508 (12)
H150.63280.31050.27350.061*
N40.9732 (2)0.38901 (11)0.0256 (4)0.0356 (7)
S11.10686 (6)0.40039 (3)0.37277 (12)0.0366 (2)
N10.99027 (19)0.29840 (10)0.4183 (3)0.0279 (6)
N20.9579 (2)0.25262 (10)0.4630 (3)0.0312 (6)
C11.1157 (2)0.35655 (11)0.5213 (4)0.0293 (7)
C21.1777 (3)0.35925 (14)0.6343 (5)0.0392 (9)
H21.21710.38750.63910.047*
C31.1841 (3)0.32053 (16)0.7447 (5)0.0441 (10)
H31.22670.32420.82170.053*
O11.10445 (18)0.36563 (10)0.2416 (3)0.0391 (6)
O31.1878 (2)0.43226 (10)0.3728 (4)0.0511 (8)
O21.0199 (2)0.42648 (11)0.3896 (4)0.0628 (10)
N31.0018 (2)0.23706 (11)0.5874 (3)0.0307 (6)
C61.0567 (2)0.31302 (11)0.5174 (4)0.0257 (7)
C51.0640 (2)0.27433 (12)0.6254 (4)0.0294 (7)
C41.1290 (3)0.27760 (15)0.7414 (4)0.0375 (8)
H41.13440.25170.81300.045*
C120.7058 (3)0.44058 (16)0.0377 (6)0.0551 (12)
H120.64560.45140.05260.066*
C110.7738 (3)0.46542 (16)0.1083 (6)0.0581 (13)
H110.76020.49350.16920.070*
C81.0273 (3)0.45068 (18)0.1525 (6)0.0553 (12)
H81.07640.46440.20590.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0395 (3)0.0203 (2)0.0271 (3)0.00316 (14)0.00219 (17)0.00023 (15)
N50.0423 (17)0.0270 (14)0.0309 (17)0.0015 (12)0.0001 (13)0.0032 (12)
C170.0427 (19)0.0239 (16)0.033 (2)0.0031 (13)0.0079 (16)0.0106 (14)
C90.100 (4)0.032 (2)0.043 (3)0.005 (2)0.005 (3)0.0132 (18)
C100.074 (3)0.0236 (17)0.038 (2)0.0022 (17)0.016 (2)0.0010 (16)
C130.045 (2)0.041 (2)0.041 (2)0.0082 (17)0.0131 (19)0.0133 (17)
C140.041 (2)0.052 (2)0.055 (3)0.0053 (18)0.006 (2)0.022 (2)
C70.054 (2)0.036 (2)0.048 (3)0.0056 (17)0.007 (2)0.0085 (18)
C180.048 (2)0.0231 (16)0.0296 (19)0.0012 (14)0.0052 (16)0.0027 (14)
C160.051 (2)0.0347 (19)0.041 (2)0.0063 (17)0.007 (2)0.0041 (17)
C150.046 (2)0.047 (3)0.059 (3)0.0087 (18)0.008 (2)0.018 (2)
N40.0468 (18)0.0287 (15)0.0312 (17)0.0009 (12)0.0005 (14)0.0031 (13)
S10.0427 (5)0.0234 (4)0.0437 (6)0.0010 (3)0.0040 (4)0.0088 (4)
N10.0386 (15)0.0217 (13)0.0232 (14)0.0007 (11)0.0012 (12)0.0012 (11)
N20.0422 (16)0.0241 (14)0.0273 (15)0.0041 (11)0.0026 (13)0.0017 (12)
C10.0381 (18)0.0188 (15)0.0311 (18)0.0014 (12)0.0053 (15)0.0012 (13)
C20.045 (2)0.0339 (19)0.038 (2)0.0103 (15)0.0016 (18)0.0019 (16)
C30.045 (2)0.051 (2)0.036 (2)0.0136 (18)0.016 (2)0.0041 (19)
O10.0430 (14)0.0394 (15)0.0350 (14)0.0068 (11)0.0000 (12)0.0070 (12)
O30.0644 (18)0.0334 (14)0.0557 (19)0.0201 (13)0.0057 (15)0.0051 (13)
O20.060 (2)0.0438 (17)0.084 (3)0.0201 (14)0.0185 (17)0.0227 (17)
N30.0406 (16)0.0248 (14)0.0267 (16)0.0011 (11)0.0032 (13)0.0029 (12)
C60.0327 (17)0.0222 (14)0.0221 (16)0.0027 (12)0.0009 (14)0.0006 (12)
C50.0370 (18)0.0223 (15)0.0288 (18)0.0012 (13)0.0008 (15)0.0001 (13)
C40.042 (2)0.038 (2)0.032 (2)0.0055 (15)0.0067 (17)0.0088 (16)
C120.059 (3)0.051 (3)0.056 (3)0.021 (2)0.025 (2)0.011 (2)
C110.078 (3)0.035 (2)0.061 (3)0.015 (2)0.028 (3)0.006 (2)
C80.073 (3)0.046 (2)0.048 (3)0.014 (2)0.006 (2)0.010 (2)
Geometric parameters (Å, º) top
Zn1—N3i2.014 (3)C15—H150.9300
Zn1—O12.083 (3)S1—O31.439 (3)
Zn1—N52.086 (3)S1—O21.443 (3)
Zn1—N42.149 (3)S1—O11.477 (3)
Zn1—N12.162 (3)S1—C11.750 (4)
N5—C161.334 (5)N1—N21.337 (4)
N5—C171.359 (5)N1—C61.364 (4)
C17—C131.410 (5)N2—N31.343 (4)
C17—C181.440 (5)C1—C21.355 (5)
C9—C81.365 (7)C1—C61.418 (4)
C9—C101.405 (7)C2—C31.409 (6)
C9—H90.9300C2—H20.9300
C10—C181.407 (5)C3—C41.372 (5)
C10—C111.431 (6)C3—H30.9300
C13—C141.397 (6)N3—C51.366 (4)
C13—C121.427 (6)N3—Zn1ii2.014 (3)
C14—C151.354 (7)C6—C51.395 (4)
C14—H140.9300C5—C41.405 (5)
C7—N41.338 (5)C4—H40.9300
C7—C81.391 (6)C12—C111.338 (7)
C7—H70.9300C12—H120.9300
C18—N41.349 (5)C11—H110.9300
C16—C151.398 (6)C8—H80.9300
C16—H160.9300
N3i—Zn1—O1109.52 (12)C18—N4—Zn1113.0 (2)
N3i—Zn1—N5106.80 (12)O3—S1—O2116.73 (18)
O1—Zn1—N5142.30 (11)O3—S1—O1111.69 (17)
N3i—Zn1—N4106.53 (12)O2—S1—O1110.3 (2)
O1—Zn1—N482.14 (11)O3—S1—C1108.17 (18)
N5—Zn1—N478.21 (11)O2—S1—C1106.83 (18)
N3i—Zn1—N195.67 (11)O1—S1—C1101.91 (15)
O1—Zn1—N185.34 (11)N2—N1—C6107.6 (3)
N5—Zn1—N1100.92 (11)N2—N1—Zn1125.9 (2)
N4—Zn1—N1157.12 (11)C6—N1—Zn1123.0 (2)
C16—N5—C17118.1 (3)N1—N2—N3110.2 (3)
C16—N5—Zn1127.5 (3)C2—C1—C6117.6 (3)
C17—N5—Zn1114.4 (2)C2—C1—S1125.4 (3)
N5—C17—C13123.2 (4)C6—C1—S1116.9 (3)
N5—C17—C18117.5 (3)C1—C2—C3121.9 (3)
C13—C17—C18119.3 (3)C1—C2—H2119.1
C8—C9—C10119.4 (4)C3—C2—H2119.1
C8—C9—H9120.3C4—C3—C2121.5 (4)
C10—C9—H9120.3C4—C3—H3119.2
C9—C10—C18116.6 (4)C2—C3—H3119.2
C9—C10—C11124.0 (4)S1—O1—Zn1116.64 (16)
C18—C10—C11119.3 (4)N2—N3—C5108.0 (3)
C14—C13—C17115.8 (4)N2—N3—Zn1ii125.1 (2)
C14—C13—C12125.3 (4)C5—N3—Zn1ii126.9 (2)
C17—C13—C12118.9 (4)N1—C6—C5107.6 (3)
C15—C14—C13121.4 (4)N1—C6—C1131.8 (3)
C15—C14—H14119.3C5—C6—C1120.5 (3)
C13—C14—H14119.3N3—C5—C6106.6 (3)
N4—C7—C8122.0 (4)N3—C5—C4132.2 (3)
N4—C7—H7119.0C6—C5—C4121.1 (3)
C8—C7—H7119.0C3—C4—C5117.3 (3)
N4—C18—C10123.7 (4)C3—C4—H4121.3
N4—C18—C17116.6 (3)C5—C4—H4121.3
C10—C18—C17119.6 (3)C11—C12—C13121.9 (4)
N5—C16—C15122.3 (4)C11—C12—H12119.1
N5—C16—H16118.9C13—C12—H12119.1
C15—C16—H16118.9C12—C11—C10120.9 (4)
C14—C15—C16119.0 (4)C12—C11—H11119.6
C14—C15—H15120.5C10—C11—H11119.6
C16—C15—H15120.5C9—C8—C7120.3 (4)
C7—N4—C18117.9 (3)C9—C8—H8119.9
C7—N4—Zn1128.9 (3)C7—C8—H8119.9
N3i—Zn1—N5—C1670.4 (3)N3i—Zn1—N1—C6117.1 (3)
O1—Zn1—N5—C16125.6 (3)O1—Zn1—N1—C67.9 (3)
N4—Zn1—N5—C16174.3 (3)N5—Zn1—N1—C6134.6 (3)
N1—Zn1—N5—C1629.0 (3)N4—Zn1—N1—C649.0 (4)
N3i—Zn1—N5—C17106.6 (2)C6—N1—N2—N30.4 (4)
O1—Zn1—N5—C1757.5 (3)Zn1—N1—N2—N3158.8 (2)
N4—Zn1—N5—C172.6 (2)O3—S1—C1—C212.6 (4)
N1—Zn1—N5—C17154.0 (2)O2—S1—C1—C2113.8 (4)
C16—N5—C17—C132.1 (5)O1—S1—C1—C2130.4 (3)
Zn1—N5—C17—C13179.4 (3)O3—S1—C1—C6163.3 (3)
C16—N5—C17—C18177.2 (3)O2—S1—C1—C670.3 (3)
Zn1—N5—C17—C180.0 (4)O1—S1—C1—C645.5 (3)
C8—C9—C10—C181.1 (6)C6—C1—C2—C30.0 (6)
C8—C9—C10—C11177.1 (4)S1—C1—C2—C3175.9 (3)
N5—C17—C13—C144.2 (5)C1—C2—C3—C41.3 (7)
C18—C17—C13—C14175.2 (3)O3—S1—O1—Zn1165.49 (16)
N5—C17—C13—C12176.5 (3)O2—S1—O1—Zn133.9 (2)
C18—C17—C13—C124.2 (5)C1—S1—O1—Zn179.25 (19)
C17—C13—C14—C152.3 (6)N3i—Zn1—O1—S1152.98 (16)
C12—C13—C14—C15178.3 (4)N5—Zn1—O1—S143.2 (3)
C9—C10—C18—N41.6 (6)N4—Zn1—O1—S1102.19 (18)
C11—C10—C18—N4177.9 (4)N1—Zn1—O1—S158.61 (17)
C9—C10—C18—C17176.5 (3)N1—N2—N3—C50.7 (4)
C11—C10—C18—C170.2 (5)N1—N2—N3—Zn1ii178.7 (2)
N5—C17—C18—N44.5 (5)N2—N1—C6—C50.0 (4)
C13—C17—C18—N4174.8 (3)Zn1—N1—C6—C5160.0 (2)
N5—C17—C18—C10177.2 (3)N2—N1—C6—C1177.1 (3)
C13—C17—C18—C103.4 (5)Zn1—N1—C6—C117.1 (5)
C17—N5—C16—C151.8 (6)C2—C1—C6—N1177.8 (4)
Zn1—N5—C16—C15175.0 (3)S1—C1—C6—N11.6 (5)
C13—C14—C15—C161.2 (7)C2—C1—C6—C51.0 (5)
N5—C16—C15—C143.5 (7)S1—C1—C6—C5175.3 (3)
C8—C7—N4—C180.2 (6)N2—N3—C5—C60.7 (4)
C8—C7—N4—Zn1175.8 (3)Zn1ii—N3—C5—C6178.7 (2)
C10—C18—N4—C71.0 (5)N2—N3—C5—C4178.1 (4)
C17—C18—N4—C7177.2 (3)Zn1ii—N3—C5—C41.3 (6)
C10—C18—N4—Zn1175.3 (3)N1—C6—C5—N30.5 (4)
C17—C18—N4—Zn16.6 (4)C1—C6—C5—N3177.1 (3)
N3i—Zn1—N4—C775.0 (3)N1—C6—C5—C4178.2 (3)
O1—Zn1—N4—C733.1 (3)C1—C6—C5—C40.6 (5)
N5—Zn1—N4—C7179.2 (4)C2—C3—C4—C51.6 (6)
N1—Zn1—N4—C790.6 (4)N3—C5—C4—C3177.7 (4)
N3i—Zn1—N4—C18109.2 (3)C6—C5—C4—C30.7 (6)
O1—Zn1—N4—C18142.6 (3)C14—C13—C12—C11177.5 (4)
N5—Zn1—N4—C185.0 (2)C17—C13—C12—C111.8 (6)
N1—Zn1—N4—C1885.2 (4)C13—C12—C11—C101.5 (7)
N3i—Zn1—N1—N239.2 (3)C9—C10—C11—C12173.7 (5)
O1—Zn1—N1—N2148.4 (3)C18—C10—C11—C122.3 (6)
N5—Zn1—N1—N269.1 (3)C10—C9—C8—C70.0 (7)
N4—Zn1—N1—N2154.7 (3)N4—C7—C8—C90.7 (7)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2iii0.932.493.351 (5)154
C12—H12···O2iv0.932.553.369 (5)148
Symmetry codes: (iii) x+2, y+1, z; (iv) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H3N3O3S)(C12H8N2)]
Mr442.75
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)293
a, b, c (Å)14.5562 (19), 25.903 (3), 8.9239 (12)
V3)3364.8 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.738, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
19596, 3819, 2895
Rint0.092
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.147, 1.10
No. of reflections3819
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.70

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.493.351 (5)154
C12—H12···O2ii0.932.553.369 (5)148
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y, z1/2.
 

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741–3744.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds