organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(7aR*,12bS*)-8,12b-Di­hydro-7aH-indeno­[1′,2′:5,6][1,4]selenazino[2,3,4-ij]quinolin-13-ium hydrogen sulfate

aBaku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan, bR.E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod, 603950 Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-0334 Moscow, 119991 Russian Federation
*Correspondence e-mail: gunka479@mail.ru

(Received 31 October 2011; accepted 8 November 2011; online 12 November 2011)

In the title compound, C18H14NSe+·HSO4, the cyclo­pentene ring in the cation has an envelope conformation while the central six-membered 1,4-selenazine ring adopts a sofa conformation. The dihedral angle between the planes of the terminal benzene rings is 68.08 (11)°. In the crystal, the anions form chains along the c axis through O—H⋯O hydrogen bonds. Weak C—H⋯O and C—H⋯π hydrogen bonds, as well as attractive Se⋯Se [3.5608 (8) Å] inter­actions, further consolidate the crystal structure.

Related literature

For the synthesis and biological properties of selenium- and nitro­gen-containing heterocycles, see: Mugesh et al. (2001[Mugesh, G., du Mont, W.-W. & Sies, H. (2001). Chem. Rev. 101, 2125-2179.]); Koketsu & Ishihara (2003[Koketsu, M. & Ishihara, H. (2003). Curr. Org. Chem. 7, 175-185.]); Nogueira et al. (2004[Nogueira, C. W., Zeni, G. & Rocha, J. B. T. (2004). Chem. Rev. 104, 6255-6285.]); Bhabak & Mugesh (2007[Bhabak, K. P. & Mugesh, G. (2007). Chem. Eur. J. 13, 4594-4601.]); Mlochowski & Giurg (2009[Mlochowski, J. & Giurg, M. (2009). Topics in Heterocyclic Chemistry, Vol. 19, edited by R. R. Gupta, pp. 287-340. Berlin, Heidelberg: Springer-Verlag.]); Back (2009[Back, T. G. (2009). Can. J. Chem. 87, 1657-1674.]); Mukherjee et al. (2010[Mukherjee, A. J., Zade, S. S., Singh, H. B. & Sunoj, R. B. (2010). Chem. Rev. 110, 4357-4416.]). For related compounds, see: Wright (2001[Wright, S. W. (2001). J. Heterocycl. Chem. 38, 723-726.]); Garud et al. (2007[Garud, D. R., Koketsu, M. & Ishihara, H. (2007). Molecules, 12, 504-535.]); Sommen et al. (2007[Sommen, G. L., Linden, A. & Heimgartner, H. (2007). Helv. Chim. Acta, 90, 472-487.]); Borisov et al. (2011[Borisov, A. V., Matsulevich, Zh. V., Osmanov, V. K. & Borisova, G. N. (2011). Chem. Heterocycl. Compd Engl. Ed. 47, 654-655.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14NSe+·HSO4

  • Mr = 420.34

  • Monoclinic, P 21 /c

  • a = 11.1355 (11) Å

  • b = 19.5653 (19) Å

  • c = 7.9609 (8) Å

  • β = 107.005 (2)°

  • V = 1658.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 120 K

  • 0.20 × 0.02 × 0.02 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.644, Tmax = 0.953

  • 14396 measured reflections

  • 4007 independent reflections

  • 2902 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.00

  • 4007 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C3A/C4–C6/C6A/C13A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O3i 0.96 1.59 2.548 (3) 171
C1—H1⋯O1 0.95 2.19 3.114 (4) 165
C3—H3⋯O2ii 0.95 2.28 3.154 (4) 153
C4—H4⋯O2ii 0.95 2.49 3.308 (4) 144
C5—H5⋯O4iii 0.95 2.55 3.367 (4) 145
C7A—H7A⋯O2iv 1.00 2.49 3.367 (4) 146
C12B—H12B⋯O1i 1.00 2.42 3.244 (4) 139
C12B—H12B⋯O3i 1.00 2.57 3.355 (4) 135
C11—H11⋯Cgv 0.95 2.78 3.679 (4) 159
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) x, y, z-1; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last years, the selenium- and nitrogen-containing heterocycles have attracted considerable attention owing to the variety of their pharmacological properties (Mugesh et al., 2001; Wright, 2001; Koketsu & Ishihara, 2003; Nogueira et al., 2004; Bhabak & Mugesh, 2007; Garud et al., 2007; Sommen et al., 2007; Back, 2009; Mlochowski & Giurg, 2009; Mukherjee et al., 2010). This article describes the structure of 8,12b-dihydro-7aH-indeno[1',2':5,6][1,4]selenazino[2,3,4- ij]quinolin-13-ium hydrosulfate, which was obtained by a reaction of 8,12b-dihydro-7aH-indeno[1',2':5,6][1,4]selenazino[2,3,4- ij]quinolin-13-ium chloride (Borisov et al., 2011) with potassium hydrosulfate (Fig. 1).

The title compound of I, [C18H14NSe][HSO4], is a salt consisting of indeno[1',2':5,6][1,4]selenazino[2,3,4-ij]quinolin-13-ium cation and hydrosulfate anion. The cation of I comprises a fused pentacyclic system containing one five-membered ring (cyclopentene) and four six-membered rings (two benzene, 3,6-dihydro-1,4-selenazine and pyridine) (Fig. 2). The cyclopentene ring has the usual envelope conformation (the C7A carbon atom is out of the plane through the other atoms of the ring by 0.549 (5)Å)), and the central six-membered 1,4-selenazine ring adopts a sofa conformation (the C7A carbon atom is out of the plane through the other atoms of the ring by 0.677 (4)Å). The dihedral angle between the planes of the terminal benzene rings is 68.08 (11)°.

In the crystal, anions of I form chains along the c axis through the intermolecular O4—H4O···O3i hydrogen bonding interactions (Table 1, Fig. 3). Weak intermolecular C—H···O (Table 1) and C11—H11···π (C3Av–C4v) (the H11···C3Av and H11···C4v distances are 2.79Å and 2.86Å, respectively) hydrogen bonds as well as attractive Se···Sevi (3.5608 (8)Å) interactions consolidate further the three-dimensional crystal packing (Fig. 3). Symmetry codes: (i) x, -y+3/2, z-1/2; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1.

The cation of I possesses two asymmetric centers at the C7A and C12B carbon atoms and can have potentially four diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-7aR*,12bS*.

Related literature top

For the synthesis and biological properties of selenium- and nitrogen-containing heterocycles, see: Mugesh et al. (2001); Koketsu & Ishihara (2003); Nogueira et al. (2004); Bhabak & Mugesh (2007); Mlochowski & Giurg (2009); Back (2009); Mukherjee et al. (2010). For related compounds, see: Wright (2001); Garud et al. (2007); Sommen et al. (2007); Borisov et al. (2011).

Experimental top

A mixture of 8,12b-dihydro-7aH-indeno[1',2':5,6][1,4]selenazino[2,3,4- ij]quinolin-13-ium chloride (0.147 g, 0.4 mmol) with KHSO4 (0.057 g, 0.42 mmol) in CH3OH (20 ml) was refluxed for 0.5 h to dissolve the starting materials. After that the reaction mixture was concentrated in vacuo. Then CH2Cl2 (20 ml) was added to the solid to give precipitate of KCl which was separated by filtration. The filtrate was concentrated in vacuo. The solid was recrystallized from CH2Cl2 to give I as orange needles. Yield is 89%. M.p. = 502–503 K. IR (KBr), ν (cm-1): 3481, 2987, 1608, 1552, 1485, 1440, 1294, 1172, 1134, 796, 721, 468, 419. 1H NMR (DMSO-d6, 300 MHz, 302 K): δ = 9.72 (dd, 1H, H1, J = 6.0, J = 1.3), 9.45 (dd, 1H, H3, J = 8.4, J = 1.4), 8.37 (dd, 1H, H2, J = 8.3, J = 5.8), 8.28 (dd, 1H, H4, J = 8.1, J = 1.3), 8.23 (dd, 1H, H6, J = 7.5, J = 1.3), 7.83 (t, 1H, H5, J = 7.8), 7.52 (d, 1H, H9, J = 7.5), 7.31 (t, 1H, H10, J = 7.5), 7.14 (t, 1H, H11, J = 7.5), 6.89 (d, 1H, H12b, J = 4.7), 6.60 (d, 1H, H12, J = 7.6), 4.87 (t, 1H, H7a, J = 4.7), 3.59 (dd, 1H, H8, J = 16.8, J = 4.7), 3.25 (d, H8, J = 16.8). Anal. Calcd. for C18H15NO4SSe: C, 51.43; H, 3.59; N, 3.33. Found: C, 51.34; H, 3.52; N, 3.29.

Refinement top

The hydroxyl hydrogen atom was localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Structure description top

In the last years, the selenium- and nitrogen-containing heterocycles have attracted considerable attention owing to the variety of their pharmacological properties (Mugesh et al., 2001; Wright, 2001; Koketsu & Ishihara, 2003; Nogueira et al., 2004; Bhabak & Mugesh, 2007; Garud et al., 2007; Sommen et al., 2007; Back, 2009; Mlochowski & Giurg, 2009; Mukherjee et al., 2010). This article describes the structure of 8,12b-dihydro-7aH-indeno[1',2':5,6][1,4]selenazino[2,3,4- ij]quinolin-13-ium hydrosulfate, which was obtained by a reaction of 8,12b-dihydro-7aH-indeno[1',2':5,6][1,4]selenazino[2,3,4- ij]quinolin-13-ium chloride (Borisov et al., 2011) with potassium hydrosulfate (Fig. 1).

The title compound of I, [C18H14NSe][HSO4], is a salt consisting of indeno[1',2':5,6][1,4]selenazino[2,3,4-ij]quinolin-13-ium cation and hydrosulfate anion. The cation of I comprises a fused pentacyclic system containing one five-membered ring (cyclopentene) and four six-membered rings (two benzene, 3,6-dihydro-1,4-selenazine and pyridine) (Fig. 2). The cyclopentene ring has the usual envelope conformation (the C7A carbon atom is out of the plane through the other atoms of the ring by 0.549 (5)Å)), and the central six-membered 1,4-selenazine ring adopts a sofa conformation (the C7A carbon atom is out of the plane through the other atoms of the ring by 0.677 (4)Å). The dihedral angle between the planes of the terminal benzene rings is 68.08 (11)°.

In the crystal, anions of I form chains along the c axis through the intermolecular O4—H4O···O3i hydrogen bonding interactions (Table 1, Fig. 3). Weak intermolecular C—H···O (Table 1) and C11—H11···π (C3Av–C4v) (the H11···C3Av and H11···C4v distances are 2.79Å and 2.86Å, respectively) hydrogen bonds as well as attractive Se···Sevi (3.5608 (8)Å) interactions consolidate further the three-dimensional crystal packing (Fig. 3). Symmetry codes: (i) x, -y+3/2, z-1/2; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1.

The cation of I possesses two asymmetric centers at the C7A and C12B carbon atoms and can have potentially four diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-7aR*,12bS*.

For the synthesis and biological properties of selenium- and nitrogen-containing heterocycles, see: Mugesh et al. (2001); Koketsu & Ishihara (2003); Nogueira et al. (2004); Bhabak & Mugesh (2007); Mlochowski & Giurg (2009); Back (2009); Mukherjee et al. (2010). For related compounds, see: Wright (2001); Garud et al. (2007); Sommen et al. (2007); Borisov et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of 8,12b-dihydro-7aH-indeno[1',2':5,6][1,4]selenazino[2,3,4- ij]quinolin-13-ium chloride with potassium hydrosulfate.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level.
[Figure 3] Fig. 3. Crystal packing of I demonstrating the anionic chains along the c axis. Dashed lines indicate the intermolecular hydrogen bonding and attractive Se···Se interactions.
(7aR*,12bS*)-8,12b-Dihydro-7aH- indeno[1',2':5,6][1,4]selenazino[2,3,4-ij]quinolin-13-ium hydrogen sulfate top
Crystal data top
C18H14NSe+·HSO4F(000) = 848
Mr = 420.34Dx = 1.683 Mg m3
Monoclinic, P21/cMelting point = 502–503 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.1355 (11) ÅCell parameters from 2341 reflections
b = 19.5653 (19) Åθ = 2.2–24.8°
c = 7.9609 (8) ŵ = 2.41 mm1
β = 107.005 (2)°T = 120 K
V = 1658.6 (3) Å3Needle, orange
Z = 40.20 × 0.02 × 0.02 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
4007 independent reflections
Radiation source: fine-focus sealed tube2902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1414
Tmin = 0.644, Tmax = 0.953k = 2425
14396 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.114H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.054P)2 + 2.36P]
where P = (Fo2 + 2Fc2)/3
4007 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C18H14NSe+·HSO4V = 1658.6 (3) Å3
Mr = 420.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1355 (11) ŵ = 2.41 mm1
b = 19.5653 (19) ÅT = 120 K
c = 7.9609 (8) Å0.20 × 0.02 × 0.02 mm
β = 107.005 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
4007 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2902 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.953Rint = 0.054
14396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 1.00 e Å3
4007 reflectionsΔρmin = 0.51 e Å3
226 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1870 (3)0.58708 (18)0.3376 (5)0.0216 (7)
H10.20130.62770.40590.026*
C20.1119 (3)0.53643 (18)0.3759 (5)0.0242 (8)
H20.07720.54200.47080.029*
C30.0884 (3)0.47893 (19)0.2765 (5)0.0236 (7)
H30.03650.44410.30100.028*
C3A0.1413 (3)0.47090 (17)0.1365 (4)0.0183 (7)
C40.1189 (3)0.40994 (19)0.0350 (5)0.0227 (7)
H40.06480.37560.05640.027*
C50.1763 (3)0.40145 (19)0.0938 (5)0.0246 (8)
H50.16220.36080.16210.030*
C60.2556 (3)0.45222 (19)0.1259 (4)0.0224 (7)
H60.29380.44520.21670.027*
C6A0.2801 (3)0.51193 (17)0.0303 (4)0.0192 (7)
Se70.40049 (3)0.571862 (19)0.07394 (4)0.02345 (12)
C7A0.3453 (3)0.65434 (18)0.0190 (4)0.0218 (7)
H7A0.27190.67630.06790.026*
C80.4599 (3)0.70229 (18)0.0743 (4)0.0242 (8)
H8A0.51250.69780.00610.029*
H8B0.43340.75050.07570.029*
C8A0.5298 (3)0.67800 (17)0.2574 (4)0.0208 (7)
C90.6519 (3)0.69027 (18)0.3579 (5)0.0237 (7)
H90.70650.71710.31290.028*
C100.6934 (3)0.6625 (2)0.5264 (5)0.0274 (8)
H100.77720.67040.59670.033*
C110.6130 (3)0.6235 (2)0.5921 (5)0.0274 (8)
H110.64260.60480.70700.033*
C120.4901 (3)0.61157 (18)0.4919 (4)0.0215 (7)
H120.43490.58510.53690.026*
C12A0.4499 (3)0.63916 (16)0.3249 (4)0.0164 (6)
C12B0.3200 (3)0.64029 (17)0.1943 (4)0.0182 (7)
H12B0.27700.68180.22210.022*
N130.2398 (2)0.58057 (13)0.2079 (3)0.0155 (5)
C13A0.2219 (3)0.52230 (17)0.1038 (4)0.0165 (6)
S10.07534 (8)0.71231 (4)0.61913 (10)0.01767 (18)
O10.1979 (2)0.70926 (12)0.5924 (3)0.0217 (5)
O20.0535 (2)0.66144 (13)0.7377 (3)0.0268 (6)
O30.0469 (2)0.78149 (12)0.6674 (3)0.0232 (5)
O40.0231 (2)0.69555 (14)0.4394 (3)0.0290 (6)
H4O0.01040.70650.34400.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (17)0.0187 (18)0.0244 (17)0.0016 (14)0.0093 (14)0.0044 (13)
C20.0268 (18)0.025 (2)0.0273 (18)0.0002 (15)0.0177 (15)0.0031 (14)
C30.0234 (17)0.0207 (18)0.0289 (18)0.0007 (14)0.0111 (15)0.0006 (14)
C3A0.0149 (15)0.0174 (17)0.0213 (16)0.0016 (13)0.0034 (13)0.0001 (13)
C40.0169 (16)0.0240 (19)0.0252 (17)0.0037 (14)0.0028 (14)0.0028 (14)
C50.0223 (18)0.0213 (18)0.0274 (18)0.0050 (14)0.0028 (15)0.0100 (14)
C60.0197 (17)0.0265 (19)0.0206 (16)0.0021 (15)0.0052 (14)0.0053 (14)
C6A0.0184 (16)0.0206 (18)0.0184 (15)0.0026 (13)0.0049 (13)0.0009 (13)
Se70.0276 (2)0.0244 (2)0.02247 (19)0.00505 (15)0.01375 (14)0.00375 (14)
C7A0.0265 (18)0.0193 (18)0.0191 (16)0.0015 (14)0.0059 (14)0.0041 (13)
C80.032 (2)0.0197 (18)0.0226 (17)0.0019 (15)0.0101 (15)0.0031 (14)
C8A0.0270 (18)0.0117 (16)0.0262 (17)0.0012 (14)0.0119 (15)0.0013 (13)
C90.0201 (17)0.0204 (18)0.0335 (19)0.0041 (14)0.0122 (15)0.0062 (15)
C100.0180 (17)0.034 (2)0.0269 (18)0.0022 (15)0.0015 (14)0.0095 (16)
C110.0248 (19)0.029 (2)0.0254 (18)0.0051 (16)0.0026 (15)0.0003 (15)
C120.0204 (17)0.0222 (18)0.0214 (16)0.0024 (14)0.0055 (13)0.0022 (14)
C12A0.0169 (15)0.0141 (16)0.0179 (15)0.0012 (13)0.0046 (12)0.0031 (12)
C12B0.0186 (16)0.0150 (16)0.0195 (16)0.0001 (13)0.0034 (13)0.0009 (13)
N130.0144 (13)0.0135 (14)0.0190 (13)0.0012 (10)0.0056 (10)0.0001 (10)
C13A0.0126 (14)0.0155 (16)0.0188 (15)0.0018 (12)0.0007 (12)0.0017 (12)
S10.0187 (4)0.0188 (4)0.0159 (4)0.0036 (3)0.0057 (3)0.0017 (3)
O10.0203 (12)0.0209 (13)0.0244 (12)0.0030 (10)0.0074 (10)0.0040 (10)
O20.0313 (14)0.0236 (14)0.0261 (13)0.0067 (11)0.0095 (11)0.0032 (10)
O30.0317 (14)0.0212 (13)0.0189 (11)0.0032 (11)0.0107 (10)0.0012 (10)
O40.0227 (13)0.0483 (17)0.0163 (12)0.0130 (12)0.0064 (10)0.0072 (11)
Geometric parameters (Å, º) top
C1—N131.336 (4)C8—H8A0.9900
C1—C21.386 (5)C8—H8B0.9900
C1—H10.9500C8A—C91.382 (5)
C2—C31.356 (5)C8A—C12A1.391 (4)
C2—H20.9500C9—C101.395 (5)
C3—C3A1.414 (5)C9—H90.9500
C3—H30.9500C10—C111.390 (5)
C3A—C41.421 (5)C10—H100.9500
C3A—C13A1.422 (5)C11—C121.388 (5)
C4—C51.368 (5)C11—H110.9500
C4—H40.9500C12—C12A1.383 (5)
C5—C61.401 (5)C12—H120.9500
C5—H50.9500C12A—C12B1.515 (4)
C6—C6A1.377 (5)C12B—N131.494 (4)
C6—H60.9500C12B—H12B1.0000
C6A—C13A1.416 (4)N13—C13A1.389 (4)
C6A—Se71.888 (3)S1—O21.441 (2)
Se7—C7A1.948 (3)S1—O11.443 (2)
C7A—C12B1.527 (4)S1—O31.467 (2)
C7A—C81.541 (5)S1—O41.562 (2)
C7A—H7A1.0000O4—H4O0.9632
C8—C8A1.514 (5)
N13—C1—C2122.1 (3)C9—C8A—C12A120.2 (3)
N13—C1—H1118.9C9—C8A—C8130.1 (3)
C2—C1—H1118.9C12A—C8A—C8109.7 (3)
C3—C2—C1119.4 (3)C8A—C9—C10118.8 (3)
C3—C2—H2120.3C8A—C9—H9120.6
C1—C2—H2120.3C10—C9—H9120.6
C2—C3—C3A119.9 (3)C11—C10—C9120.5 (3)
C2—C3—H3120.1C11—C10—H10119.8
C3A—C3—H3120.1C9—C10—H10119.8
C3—C3A—C4119.8 (3)C12—C11—C10120.8 (3)
C3—C3A—C13A119.8 (3)C12—C11—H11119.6
C4—C3A—C13A120.3 (3)C10—C11—H11119.6
C5—C4—C3A119.0 (3)C12A—C12—C11118.3 (3)
C5—C4—H4120.5C12A—C12—H12120.8
C3A—C4—H4120.5C11—C12—H12120.8
C4—C5—C6120.5 (3)C12—C12A—C8A121.4 (3)
C4—C5—H5119.7C12—C12A—C12B129.9 (3)
C6—C5—H5119.7C8A—C12A—C12B108.5 (3)
C6A—C6—C5122.3 (3)N13—C12B—C12A114.2 (3)
C6A—C6—H6118.8N13—C12B—C7A118.7 (3)
C5—C6—H6118.8C12A—C12B—C7A103.6 (3)
C6—C6A—C13A118.5 (3)N13—C12B—H12B106.5
C6—C6A—Se7117.5 (3)C12A—C12B—H12B106.5
C13A—C6A—Se7123.8 (2)C7A—C12B—H12B106.5
C6A—Se7—C7A97.16 (15)C1—N13—C13A121.4 (3)
C12B—C7A—C8102.0 (3)C1—N13—C12B112.9 (3)
C12B—C7A—Se7111.2 (2)C13A—N13—C12B125.7 (3)
C8—C7A—Se7106.6 (2)N13—C13A—C6A123.4 (3)
C12B—C7A—H7A112.2N13—C13A—C3A117.3 (3)
C8—C7A—H7A112.2C6A—C13A—C3A119.3 (3)
Se7—C7A—H7A112.2O2—S1—O1114.60 (15)
C8A—C8—C7A103.5 (3)O2—S1—O3112.03 (15)
C8A—C8—H8A111.1O1—S1—O3111.29 (15)
C7A—C8—H8A111.1O2—S1—O4104.34 (15)
C8A—C8—H8B111.1O1—S1—O4107.28 (14)
C7A—C8—H8B111.1O3—S1—O4106.62 (15)
H8A—C8—H8B109.0S1—O4—H4O110.2
N13—C1—C2—C31.6 (5)C8—C8A—C12A—C12B4.2 (4)
C1—C2—C3—C3A0.6 (5)C12—C12A—C12B—N1330.0 (5)
C2—C3—C3A—C4178.6 (3)C8A—C12A—C12B—N13155.7 (3)
C2—C3—C3A—C13A1.9 (5)C12—C12A—C12B—C7A160.7 (3)
C3—C3A—C4—C5176.5 (3)C8A—C12A—C12B—C7A25.1 (3)
C13A—C3A—C4—C50.2 (5)C8—C7A—C12B—N13162.7 (3)
C3A—C4—C5—C60.3 (5)Se7—C7A—C12B—N1349.4 (4)
C4—C5—C6—C6A0.4 (5)C8—C7A—C12B—C12A34.8 (3)
C5—C6—C6A—C13A0.5 (5)Se7—C7A—C12B—C12A78.5 (3)
C5—C6—C6A—Se7174.4 (3)C2—C1—N13—C13A0.1 (5)
C6—C6A—Se7—C7A159.0 (3)C2—C1—N13—C12B178.1 (3)
C13A—C6A—Se7—C7A26.4 (3)C12A—C12B—N13—C180.4 (3)
C6A—Se7—C7A—C12B44.9 (3)C7A—C12B—N13—C1156.9 (3)
C6A—Se7—C7A—C8155.2 (2)C12A—C12B—N13—C13A97.7 (4)
C12B—C7A—C8—C8A32.3 (3)C7A—C12B—N13—C13A25.0 (4)
Se7—C7A—C8—C8A84.4 (3)C1—N13—C13A—C6A177.3 (3)
C7A—C8—C8A—C9163.5 (3)C12B—N13—C13A—C6A0.6 (5)
C7A—C8—C8A—C12A18.1 (4)C1—N13—C13A—C3A2.3 (4)
C12A—C8A—C9—C100.6 (5)C12B—N13—C13A—C3A179.7 (3)
C8—C8A—C9—C10178.8 (3)C6—C6A—C13A—N13179.9 (3)
C8A—C9—C10—C110.3 (5)Se7—C6A—C13A—N135.5 (5)
C9—C10—C11—C120.2 (6)C6—C6A—C13A—C3A0.5 (5)
C10—C11—C12—C12A0.3 (5)Se7—C6A—C13A—C3A174.2 (2)
C11—C12—C12A—C8A0.0 (5)C3—C3A—C13A—N133.3 (5)
C11—C12—C12A—C12B173.6 (3)C4—C3A—C13A—N13179.9 (3)
C9—C8A—C12A—C120.5 (5)C3—C3A—C13A—C6A176.4 (3)
C8—C8A—C12A—C12179.0 (3)C4—C3A—C13A—C6A0.3 (5)
C9—C8A—C12A—C12B174.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3A/C4–C6/C6A/C13A ring.
D—H···AD—HH···AD···AD—H···A
O4—H4O···O3i0.961.592.548 (3)171
C1—H1···O10.952.193.114 (4)165
C3—H3···O2ii0.952.283.154 (4)153
C4—H4···O2ii0.952.493.308 (4)144
C5—H5···O4iii0.952.553.367 (4)145
C7A—H7A···O2iv1.002.493.367 (4)146
C12B—H12B···O1i1.002.423.244 (4)139
C12B—H12B···O3i1.002.573.355 (4)135
C11—H11···Cgv0.952.783.679 (4)159
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H14NSe+·HSO4
Mr420.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.1355 (11), 19.5653 (19), 7.9609 (8)
β (°) 107.005 (2)
V3)1658.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.41
Crystal size (mm)0.20 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.644, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
14396, 4007, 2902
Rint0.054
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.00
No. of reflections4007
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3A/C4–C6/C6A/C13A ring.
D—H···AD—HH···AD···AD—H···A
O4—H4O···O3i0.961.592.548 (3)171
C1—H1···O10.952.193.114 (4)165
C3—H3···O2ii0.952.283.154 (4)153
C4—H4···O2ii0.952.493.308 (4)144
C5—H5···O4iii0.952.553.367 (4)145
C7A—H7A···O2iv1.002.493.367 (4)146
C12B—H12B···O1i1.002.423.244 (4)139
C12B—H12B···O3i1.002.573.355 (4)135
C11—H11···Cgv0.952.783.679 (4)159
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z1; (v) x+1, y+1, z+1.
 

Acknowledgements

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

References

First citationBack, T. G. (2009). Can. J. Chem. 87, 1657–1674.  Web of Science CrossRef CAS Google Scholar
First citationBhabak, K. P. & Mugesh, G. (2007). Chem. Eur. J. 13, 4594–4601.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBorisov, A. V., Matsulevich, Zh. V., Osmanov, V. K. & Borisova, G. N. (2011). Chem. Heterocycl. Compd Engl. Ed. 47, 654–655.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarud, D. R., Koketsu, M. & Ishihara, H. (2007). Molecules, 12, 504–535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoketsu, M. & Ishihara, H. (2003). Curr. Org. Chem. 7, 175–185.  Web of Science CrossRef CAS Google Scholar
First citationMlochowski, J. & Giurg, M. (2009). Topics in Heterocyclic Chemistry, Vol. 19, edited by R. R. Gupta, pp. 287–340. Berlin, Heidelberg: Springer–Verlag.  Google Scholar
First citationMugesh, G., du Mont, W.-W. & Sies, H. (2001). Chem. Rev. 101, 2125–2179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMukherjee, A. J., Zade, S. S., Singh, H. B. & Sunoj, R. B. (2010). Chem. Rev. 110, 4357–4416.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNogueira, C. W., Zeni, G. & Rocha, J. B. T. (2004). Chem. Rev. 104, 6255–6285.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSommen, G. L., Linden, A. & Heimgartner, H. (2007). Helv. Chim. Acta, 90, 472–487.  Web of Science CSD CrossRef CAS Google Scholar
First citationWright, S. W. (2001). J. Heterocycl. Chem. 38, 723–726.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds