organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-5-({[5-(4-meth­­oxy­phen­yl)-1,3,4-oxa­diazol-2-yl]­sulfanyl}­meth­yl)pyridine

aDepartment of Bioengineering, College of Medicine, Southeast University, Nanjing 210009, People's Republic of China, and Jiangsu Tiansheng Pharmaceutical, Company Limited Jurong City 212415, Jiangsu Province, People's Republic of China
*Correspondence e-mail: xuxd5555@163.com

(Received 12 November 2011; accepted 24 November 2011; online 30 November 2011)

In the title compound, C15H12ClN3O2S, the central oxadiazole ring forms dihedral angles of 7.72 (14) and 69.86 (12)° with the benzene and pyridine rings, respectively. The crystal packing is governed only by van der Waals inter­actions.

Related literature

For background to the biological activity of heterocyclic compounds, see: Mamolo et al. (2001[Mamolo, M. G., Falagiani, V., Zampieri, D., Vio, L. & Banfi, E. (2001). Farmaco, 56, 587-592.]); Liu et al. (2001[Liu, F., Luo, X. Q., Song, B. A., Bhadury, P. S., Yang, S., Jin, L. H., Xue, W. & Hu, D. Y. (2001). Bioorg. Med. Chem. 16, 3632-3640.]); Demirbas et al. (2004[Demirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793-804.]). For the synthesis, see: Zareef et al. (2008[Zareef, M., Iqbal, R., Mirza, B., Khan, K. M., Manan, A., Asim, F. & Khan, S. W. (2008). ARKIVOC, ii, 141-152.]); Wu et al. (2011[Wu, X. L., Zhu, C. F., Lü, Z. D., Wei, C. S. & Liao, X. C. (2011). Chin. J. Org. Chem. 31, 824-831.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClN3O2S

  • Mr = 333.80

  • Orthorhombic, P b c a

  • a = 12.311 (2) Å

  • b = 8.1229 (15) Å

  • c = 29.956 (6) Å

  • V = 2995.6 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.886, Tmax = 0.980

  • 5300 measured reflections

  • 2730 independent reflections

  • 1514 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.147

  • S = 0.97

  • 2730 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heterocyclic compounds have been of great interest since many years, in particular due to the important role these compouns play in the development of medicinal chemistry (Mamolo et al., 2001; Liu et al., 2001; Demirbas et al., 2004). As a contribution to the structural characterization of new heterocyclic compounds, we report here the structure of the title compound.

In the title compound (Fig. 1) all bond lengths are within normal ranges (Allen et al., 1987). The dihedral angle between the central oxadiazole ring (N1/N2/O2/C8/C9) and the benzene (C2–C7) and pyridine (N3/C11–C15) rings are of 7.72 (14) and 69.86 (12)°, respectively. In the crystal structure, no hydrogen bonds, π···π interactions or C—H···π short contacts are observed, the structure being stabilized only by van der Waals interactions.

Related literature top

For background to the biological activity of heterocyclic compounds, see: Mamolo et al. (2001); Liu et al. (2001); Demirbas et al. (2004). For the synthesis, see: Zareef et al. (2008); Wu et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to the previously reported literature methods (Zareef et al., 2008; Wu et al., 2011). Single crystals suitable for X-ray diffraction analysis were obtained by evaporation of an ethanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

Heterocyclic compounds have been of great interest since many years, in particular due to the important role these compouns play in the development of medicinal chemistry (Mamolo et al., 2001; Liu et al., 2001; Demirbas et al., 2004). As a contribution to the structural characterization of new heterocyclic compounds, we report here the structure of the title compound.

In the title compound (Fig. 1) all bond lengths are within normal ranges (Allen et al., 1987). The dihedral angle between the central oxadiazole ring (N1/N2/O2/C8/C9) and the benzene (C2–C7) and pyridine (N3/C11–C15) rings are of 7.72 (14) and 69.86 (12)°, respectively. In the crystal structure, no hydrogen bonds, π···π interactions or C—H···π short contacts are observed, the structure being stabilized only by van der Waals interactions.

For background to the biological activity of heterocyclic compounds, see: Mamolo et al. (2001); Liu et al. (2001); Demirbas et al. (2004). For the synthesis, see: Zareef et al. (2008); Wu et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
2-Chloro-5-({[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}methyl)pyridine top
Crystal data top
C15H12ClN3O2SF(000) = 1376
Mr = 333.80Dx = 1.480 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2256 reflections
a = 12.311 (2) Åθ = 4.2–26°
b = 8.1229 (15) ŵ = 0.40 mm1
c = 29.956 (6) ÅT = 298 K
V = 2995.6 (10) Å3Needle, yellow
Z = 80.30 × 0.20 × 0.05 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
2730 independent reflections
Radiation source: fine-focus sealed tube1514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 25.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.886, Tmax = 0.980k = 90
5300 measured reflectionsl = 035
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0512P)2]
where P = (Fo2 + 2Fc2)/3
2730 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H12ClN3O2SV = 2995.6 (10) Å3
Mr = 333.80Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.311 (2) ŵ = 0.40 mm1
b = 8.1229 (15) ÅT = 298 K
c = 29.956 (6) Å0.30 × 0.20 × 0.05 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1514 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.980Rint = 0.089
5300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 0.97Δρmax = 0.24 e Å3
2730 reflectionsΔρmin = 0.23 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5087 (4)0.2986 (7)0.24553 (18)0.0714 (16)
H1A0.53380.18670.24610.107*
H1B0.51020.33870.21540.107*
H1C0.55520.36540.26380.107*
C20.3779 (4)0.2211 (6)0.29959 (14)0.0472 (11)
C30.4536 (3)0.1655 (5)0.33013 (14)0.0455 (11)
H30.52710.18610.32560.055*
C40.4201 (3)0.0794 (5)0.36728 (13)0.0420 (11)
H40.47150.04140.38760.050*
C50.3108 (3)0.0486 (5)0.37482 (13)0.0371 (10)
C60.2359 (3)0.1103 (6)0.34482 (14)0.0507 (12)
H60.16210.09360.34980.061*
C70.2693 (4)0.1962 (6)0.30773 (15)0.0600 (14)
H70.21790.23790.28800.072*
C80.2797 (3)0.0489 (5)0.41334 (13)0.0364 (10)
C90.1752 (3)0.1674 (5)0.46014 (14)0.0396 (11)
C100.1054 (4)0.3455 (5)0.52966 (12)0.0442 (11)
H10A0.16580.41130.51900.053*
H10B0.04930.42060.53970.053*
C110.1431 (3)0.2446 (5)0.56864 (13)0.0384 (10)
C120.2518 (3)0.2350 (6)0.57983 (14)0.0473 (11)
H120.30180.28690.56130.057*
C130.2170 (4)0.0810 (6)0.64102 (14)0.0454 (12)
C140.1079 (4)0.0776 (6)0.63222 (15)0.0518 (12)
H140.06040.02060.65070.062*
C150.0706 (3)0.1604 (6)0.59533 (14)0.0481 (12)
H150.00300.15970.58840.058*
N10.3412 (3)0.1276 (4)0.44087 (11)0.0436 (9)
N20.2721 (3)0.2060 (5)0.47184 (11)0.0447 (9)
N30.2897 (3)0.1545 (5)0.61608 (12)0.0501 (10)
O10.4021 (3)0.3058 (5)0.26198 (11)0.0770 (12)
O20.1718 (2)0.0681 (3)0.42357 (9)0.0415 (7)
S0.05258 (9)0.22470 (15)0.48350 (4)0.0480 (3)
Cl10.26557 (11)0.01868 (18)0.68838 (4)0.0683 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (3)0.076 (4)0.072 (4)0.002 (3)0.013 (3)0.028 (3)
C20.049 (3)0.043 (3)0.049 (3)0.003 (2)0.002 (2)0.007 (2)
C30.040 (2)0.046 (3)0.050 (3)0.002 (2)0.003 (2)0.000 (2)
C40.043 (3)0.041 (3)0.041 (3)0.003 (2)0.008 (2)0.002 (2)
C50.037 (2)0.036 (2)0.038 (2)0.004 (2)0.0005 (18)0.008 (2)
C60.033 (2)0.058 (3)0.061 (3)0.000 (2)0.003 (2)0.007 (3)
C70.044 (3)0.068 (4)0.068 (3)0.007 (3)0.005 (2)0.021 (3)
C80.037 (2)0.030 (2)0.043 (2)0.000 (2)0.0009 (19)0.003 (2)
C90.044 (3)0.032 (2)0.043 (3)0.001 (2)0.001 (2)0.004 (2)
C100.051 (3)0.036 (2)0.045 (3)0.009 (2)0.010 (2)0.001 (2)
C110.043 (2)0.029 (2)0.044 (2)0.004 (2)0.005 (2)0.001 (2)
C120.046 (2)0.046 (3)0.049 (3)0.008 (2)0.008 (2)0.001 (2)
C130.053 (3)0.036 (3)0.048 (3)0.005 (2)0.012 (2)0.000 (2)
C140.045 (3)0.047 (3)0.063 (3)0.009 (2)0.005 (2)0.020 (3)
C150.032 (2)0.050 (3)0.062 (3)0.002 (2)0.001 (2)0.013 (2)
N10.039 (2)0.043 (2)0.049 (2)0.0011 (19)0.0011 (17)0.0014 (19)
N20.036 (2)0.049 (2)0.049 (2)0.0006 (18)0.0023 (16)0.0050 (19)
N30.042 (2)0.054 (3)0.054 (2)0.000 (2)0.0002 (19)0.001 (2)
O10.061 (2)0.098 (3)0.072 (2)0.015 (2)0.0116 (19)0.045 (2)
O20.0362 (16)0.0386 (17)0.0497 (19)0.0011 (14)0.0003 (13)0.0021 (15)
S0.0375 (6)0.0510 (7)0.0556 (7)0.0047 (6)0.0017 (5)0.0007 (7)
Cl10.0728 (9)0.0660 (9)0.0661 (8)0.0008 (7)0.0169 (7)0.0169 (7)
Geometric parameters (Å, º) top
C1—O11.404 (6)C9—N21.282 (5)
C1—H1A0.9600C9—O21.361 (5)
C1—H1B0.9600C9—S1.728 (4)
C1—H1C0.9600C10—C111.500 (5)
C2—O11.353 (5)C10—S1.816 (4)
C2—C31.381 (6)C10—H10A0.9700
C2—C71.375 (6)C10—H10B0.9700
C3—C41.378 (5)C11—C151.379 (5)
C3—H30.9300C11—C121.383 (6)
C4—C51.387 (5)C12—N31.350 (5)
C4—H40.9300C12—H120.9300
C5—C61.382 (5)C13—N31.310 (5)
C5—C81.451 (5)C13—C141.368 (6)
C6—C71.375 (6)C13—Cl11.740 (4)
C6—H60.9300C14—C151.373 (6)
C7—H70.9300C14—H140.9300
C8—N11.289 (5)C15—H150.9300
C8—O21.372 (4)N1—N21.411 (4)
O1—C1—H1A109.5O2—C9—S117.3 (3)
O1—C1—H1B109.5C11—C10—S114.1 (3)
H1A—C1—H1B109.5C11—C10—H10A108.7
O1—C1—H1C109.5S—C10—H10A108.7
H1A—C1—H1C109.5C11—C10—H10B108.7
H1B—C1—H1C109.5S—C10—H10B108.7
O1—C2—C3124.7 (4)H10A—C10—H10B107.6
O1—C2—C7115.9 (4)C15—C11—C12117.2 (4)
C3—C2—C7119.4 (4)C15—C11—C10121.5 (4)
C4—C3—C2120.0 (4)C12—C11—C10121.3 (4)
C4—C3—H3120.0N3—C12—C11123.9 (4)
C2—C3—H3120.0N3—C12—H12118.1
C3—C4—C5120.9 (4)C11—C12—H12118.1
C3—C4—H4119.6N3—C13—C14124.7 (4)
C5—C4—H4119.6N3—C13—Cl1116.2 (3)
C6—C5—C4118.4 (4)C14—C13—Cl1119.0 (4)
C6—C5—C8122.6 (4)C13—C14—C15118.2 (4)
C4—C5—C8119.0 (4)C13—C14—H14120.9
C7—C6—C5120.7 (4)C15—C14—H14120.9
C7—C6—H6119.7C14—C15—C11119.6 (4)
C5—C6—H6119.7C14—C15—H15120.2
C6—C7—C2120.6 (4)C11—C15—H15120.2
C6—C7—H7119.7C8—N1—N2106.8 (3)
C2—C7—H7119.7C9—N2—N1105.7 (3)
N1—C8—O2111.7 (4)C13—N3—C12116.3 (4)
N1—C8—C5128.6 (4)C2—O1—C1118.4 (4)
O2—C8—C5119.7 (4)C9—O2—C8102.5 (3)
N2—C9—O2113.2 (4)C9—S—C1098.1 (2)
N2—C9—S129.5 (4)
O1—C2—C3—C4179.6 (4)C13—C14—C15—C110.4 (7)
C7—C2—C3—C43.0 (7)C12—C11—C15—C142.6 (7)
C2—C3—C4—C50.6 (7)C10—C11—C15—C14176.1 (4)
C3—C4—C5—C61.8 (6)O2—C8—N1—N20.1 (5)
C3—C4—C5—C8177.3 (4)C5—C8—N1—N2178.7 (4)
C4—C5—C6—C71.8 (7)O2—C9—N2—N10.2 (5)
C8—C5—C6—C7177.2 (4)S—C9—N2—N1179.1 (3)
C5—C6—C7—C20.6 (7)C8—N1—N2—C90.0 (4)
O1—C2—C7—C6179.4 (4)C14—C13—N3—C121.6 (7)
C3—C2—C7—C63.0 (8)Cl1—C13—N3—C12178.6 (3)
C6—C5—C8—N1171.9 (4)C11—C12—N3—C130.9 (7)
C4—C5—C8—N17.2 (6)C3—C2—O1—C119.0 (7)
C6—C5—C8—O26.8 (6)C7—C2—O1—C1163.5 (5)
C4—C5—C8—O2174.1 (4)N2—C9—O2—C80.2 (4)
S—C10—C11—C1569.6 (5)S—C9—O2—C8179.1 (3)
S—C10—C11—C12111.7 (4)N1—C8—O2—C90.2 (4)
C15—C11—C12—N33.0 (7)C5—C8—O2—C9178.7 (3)
C10—C11—C12—N3175.8 (4)N2—C9—S—C102.2 (5)
N3—C13—C14—C151.8 (8)O2—C9—S—C10178.6 (3)
Cl1—C13—C14—C15178.4 (4)C11—C10—S—C979.9 (3)

Experimental details

Crystal data
Chemical formulaC15H12ClN3O2S
Mr333.80
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.311 (2), 8.1229 (15), 29.956 (6)
V3)2995.6 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.886, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5300, 2730, 1514
Rint0.089
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.147, 0.97
No. of reflections2730
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL.

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.  Google Scholar
First citationDemirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, F., Luo, X. Q., Song, B. A., Bhadury, P. S., Yang, S., Jin, L. H., Xue, W. & Hu, D. Y. (2001). Bioorg. Med. Chem. 16, 3632–3640.  Web of Science CrossRef Google Scholar
First citationMamolo, M. G., Falagiani, V., Zampieri, D., Vio, L. & Banfi, E. (2001). Farmaco, 56, 587–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X. L., Zhu, C. F., Lü, Z. D., Wei, C. S. & Liao, X. C. (2011). Chin. J. Org. Chem. 31, 824–831.  CAS Google Scholar
First citationZareef, M., Iqbal, R., Mirza, B., Khan, K. M., Manan, A., Asim, F. & Khan, S. W. (2008). ARKIVOC, ii, 141–152.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds