organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­allyl-2,2′,5,5′-tetra­chloro-N,N′-[1,3-phenyl­enebis(methyl­ene)]di­benzene­sulfonamide

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 28 October 2011; accepted 29 October 2011; online 12 November 2011)

In the title compound, C26H24Cl4N2O4S2, the dihedral angles between the central benzene ring and the pendant rings are 70.07 (12) and 59.07 (12)°. The equivalent angle between the pendant rings is 79.24 (12)°. Both sulfonamide groups lie to the same side of the central ring but the pendant chains have very different conformations, as indicated by their C—S—N—C torsion angles [104.66 (17) and −76.35 (19)°] and S—N—C—C torsion angles [129.61 (17) and 147.10 (17)°]. Both N atoms are close to planar (bond angle sums = 359.0 and 354.8°). In the crystal, inversion dimers are formed via a pair of weak C—H⋯O inter­actions which generate R22(22) loops.

Related literature

For related structures, see: Ejaz et al. (2011a[Ejaz, Khan, I. U., Ahmad, H. & Harrison, W. T. A. (2011a). Acta Cryst. E67, o3037.],b[Ejaz, Khan, I. U., Ahmad, H., Harrison, W. T. A. & Sheikh, T. A. (2011b). Acta Cryst. E67, o3038.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24Cl4N2O4S2

  • Mr = 634.39

  • Triclinic, [P \overline 1]

  • a = 8.2744 (2) Å

  • b = 11.3398 (2) Å

  • c = 15.6481 (4) Å

  • α = 87.777 (1)°

  • β = 84.443 (1)°

  • γ = 84.257 (1)°

  • V = 1453.40 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.40 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 21435 measured reflections

  • 7190 independent reflections

  • 5200 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.05

  • 7190 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.97 2.59 3.422 (3) 144
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing structural studies of symmetrical aryl sulfonamides (Ejaz et al., 2011a,b), the synthesis and structure of the title compound, (I), (Fig. 1), are now described.

The dihedral angles between the central (C1-C6) benzene ring and the pendant (C11-C16) and (C2-C26)1 rings are 70.07 (12) and 59.07 (12)°, respectively. The equivalent angle between the pendant rings is 79.24 (12)°. Both sulfonamide groups lie to the same side of the central ring but the pendant chains have very different conformations, as indicated by their C11—S1—N1—C7 and C21—S2—N2—C17 torsion angles [104.66 (17) and -76.35 (19)°, respectively] and their S1—N1—C7—C2 and S2—N2—C17—C6 torsion angles [129.61 (17) and 147.10 (17)°, respectively]. The N atoms are close to planar (bond angle sums = 359.0 and 354.8°).

In the crystal, inversion dimers are formed, by a pair of weak C—H···O interactions which generate R22(22) loops (Fig. 2). There are no significant aromatic π-π stacking interactions in the crystal.

Related literature top

For related structures, see: Ejaz et al. (2011a,b).

Experimental top

A mixture of N,N'-(benzene-1,3-diyldimethanediyl)bis(2,5-dichlorobenzenesulfonamide) (0.32 g; 0.5 mmol), sodium hydride (0.25 g; 0.9 mmol) and N,N-dimethylformamide (10.0 ml) was stirred in a 100-ml round bottom flask at room temperature for half an hour, followed by the addition of allyl bromide (0.1 ml, 1.0 mmol). The reaction mixture was further stirred for five hours, and its completion was monitored by TLC. After completion, the contents were poured over crushed ice. The precipitated product was isolated, washed and recrystallized from methanol to yield colourless block-like crystals of the title compound.

Refinement top

The hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Structure description top

As part of our ongoing structural studies of symmetrical aryl sulfonamides (Ejaz et al., 2011a,b), the synthesis and structure of the title compound, (I), (Fig. 1), are now described.

The dihedral angles between the central (C1-C6) benzene ring and the pendant (C11-C16) and (C2-C26)1 rings are 70.07 (12) and 59.07 (12)°, respectively. The equivalent angle between the pendant rings is 79.24 (12)°. Both sulfonamide groups lie to the same side of the central ring but the pendant chains have very different conformations, as indicated by their C11—S1—N1—C7 and C21—S2—N2—C17 torsion angles [104.66 (17) and -76.35 (19)°, respectively] and their S1—N1—C7—C2 and S2—N2—C17—C6 torsion angles [129.61 (17) and 147.10 (17)°, respectively]. The N atoms are close to planar (bond angle sums = 359.0 and 354.8°).

In the crystal, inversion dimers are formed, by a pair of weak C—H···O interactions which generate R22(22) loops (Fig. 2). There are no significant aromatic π-π stacking interactions in the crystal.

For related structures, see: Ejaz et al. (2011a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 50% displacement ellipsoids and the atom numbeirng scheme
[Figure 2] Fig. 2. A view of the C—H···O hydrogen-bond (double-dashed line) inversion dimer in the crystal of the title compound [C atoms are shown as spheres; H atoms, except those attached to C8, have been omitted for clarity; symmetry code: (i) –x+1, –y, –z].
N,N'-Diallyl-2,2',5,5'-tetrachloro-N,N'- [1,3-phenylenebis(methylene)]dibenzenesulfonamide top
Crystal data top
C26H24Cl4N2O4S2Z = 2
Mr = 634.39F(000) = 652
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2744 (2) ÅCell parameters from 7190 reflections
b = 11.3398 (2) Åθ = 2.2–26.4°
c = 15.6481 (4) ŵ = 0.59 mm1
α = 87.777 (1)°T = 296 K
β = 84.443 (1)°Block, colourless
γ = 84.257 (1)°0.40 × 0.15 × 0.15 mm
V = 1453.40 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5200 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.4°, θmin = 2.9°
ω scansh = 1111
21435 measured reflectionsk = 1515
7190 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.5046P]
where P = (Fo2 + 2Fc2)/3
7190 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C26H24Cl4N2O4S2γ = 84.257 (1)°
Mr = 634.39V = 1453.40 (6) Å3
Triclinic, P1Z = 2
a = 8.2744 (2) ÅMo Kα radiation
b = 11.3398 (2) ŵ = 0.59 mm1
c = 15.6481 (4) ÅT = 296 K
α = 87.777 (1)°0.40 × 0.15 × 0.15 mm
β = 84.443 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5200 reflections with I > 2σ(I)
21435 measured reflectionsRint = 0.025
7190 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.65 e Å3
7190 reflectionsΔρmin = 0.59 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3523 (3)0.37348 (17)0.05525 (13)0.0427 (5)
H10.46340.38010.05530.051*
C20.2551 (3)0.36986 (17)0.13297 (13)0.0436 (5)
C30.0903 (3)0.3619 (2)0.13202 (16)0.0567 (6)
H30.02380.36080.18340.068*
C40.0236 (3)0.3556 (3)0.05513 (19)0.0681 (7)
H40.08780.35000.05490.082*
C50.1202 (3)0.3573 (2)0.02092 (17)0.0630 (7)
H50.07420.35180.07240.076*
C60.2857 (3)0.36727 (18)0.02203 (13)0.0475 (5)
C70.3328 (3)0.36645 (18)0.21600 (13)0.0452 (5)
H7A0.39170.43580.21880.054*
H7B0.24920.36730.26400.054*
C80.3762 (3)0.14402 (19)0.22185 (16)0.0560 (6)
H8A0.46360.08010.21930.067*
H8B0.31800.14080.17120.067*
C90.2634 (4)0.1266 (2)0.2993 (2)0.0722 (8)
H90.30450.13030.35220.087*
C100.1167 (5)0.1073 (4)0.2996 (3)0.1118 (13)
H10A0.07080.10300.24800.134*
H10B0.05380.09740.35150.134*
C110.6357 (2)0.20232 (19)0.35234 (12)0.0414 (4)
C120.5655 (3)0.2651 (2)0.42343 (13)0.0469 (5)
C130.5809 (3)0.2177 (2)0.50477 (14)0.0616 (6)
H130.53600.26100.55200.074*
C140.6615 (4)0.1076 (3)0.51736 (16)0.0670 (7)
H140.67210.07660.57260.080*
C150.7263 (3)0.0438 (2)0.44686 (15)0.0550 (6)
C160.7139 (3)0.0899 (2)0.36483 (14)0.0474 (5)
H160.75790.04570.31780.057*
C170.3948 (3)0.36633 (19)0.10491 (13)0.0529 (6)
H17A0.35500.42970.14320.064*
H17B0.50440.37990.09340.064*
C180.4535 (3)0.14377 (19)0.09764 (15)0.0547 (6)
H18A0.42320.07500.12500.066*
H18B0.39770.14640.04020.066*
C190.6323 (4)0.1299 (3)0.09123 (19)0.0726 (8)
H190.69980.12010.14200.087*
C200.7008 (5)0.1304 (3)0.0213 (3)0.1042 (12)
H20A0.63750.14000.03080.125*
H20B0.81400.12120.02260.125*
C210.2219 (3)0.30691 (18)0.27923 (13)0.0428 (5)
C220.0825 (3)0.2487 (2)0.25724 (16)0.0539 (6)
C230.0632 (3)0.2931 (3)0.2852 (2)0.0703 (8)
H230.15530.25300.27100.084*
C240.0753 (3)0.3962 (3)0.3342 (2)0.0723 (8)
H240.17480.42570.35330.087*
C250.0607 (3)0.4551 (2)0.35453 (17)0.0591 (6)
C260.2105 (3)0.41098 (19)0.32823 (14)0.0468 (5)
H260.30240.45090.34330.056*
S10.63115 (7)0.25666 (5)0.24397 (3)0.04469 (14)
S20.41781 (6)0.25211 (5)0.25007 (3)0.04245 (14)
N10.4463 (2)0.25790 (15)0.22148 (11)0.0450 (4)
N20.3983 (2)0.25128 (15)0.14661 (11)0.0485 (4)
O10.7286 (2)0.16884 (15)0.19430 (10)0.0610 (4)
O20.6734 (2)0.37546 (14)0.23770 (10)0.0586 (4)
O30.4524 (2)0.13258 (14)0.27629 (10)0.0560 (4)
Cl10.45440 (9)0.40108 (6)0.41341 (4)0.06439 (18)
Cl20.82694 (11)0.09625 (7)0.45968 (5)0.0831 (2)
Cl30.08862 (9)0.12043 (6)0.19397 (5)0.0722 (2)
Cl40.04722 (11)0.58805 (7)0.41244 (6)0.0902 (3)
O40.52548 (18)0.33697 (15)0.28380 (10)0.0525 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0560 (13)0.0353 (10)0.0367 (10)0.0047 (9)0.0038 (9)0.0011 (8)
C20.0565 (13)0.0350 (10)0.0379 (11)0.0030 (9)0.0044 (9)0.0015 (8)
C30.0557 (14)0.0599 (14)0.0517 (14)0.0045 (11)0.0003 (11)0.0044 (11)
C40.0500 (14)0.0834 (19)0.0707 (18)0.0048 (13)0.0112 (13)0.0129 (14)
C50.0723 (17)0.0652 (16)0.0524 (14)0.0078 (13)0.0229 (13)0.0080 (12)
C60.0699 (15)0.0351 (10)0.0371 (11)0.0007 (10)0.0072 (10)0.0013 (8)
C70.0587 (13)0.0416 (11)0.0335 (10)0.0001 (9)0.0011 (9)0.0039 (8)
C80.0685 (15)0.0386 (11)0.0630 (15)0.0089 (10)0.0144 (12)0.0006 (10)
C90.0738 (19)0.0669 (17)0.080 (2)0.0249 (14)0.0178 (15)0.0206 (14)
C100.083 (2)0.132 (3)0.127 (3)0.044 (2)0.020 (2)0.029 (3)
C110.0436 (11)0.0504 (12)0.0306 (10)0.0091 (9)0.0017 (8)0.0018 (8)
C120.0524 (12)0.0527 (12)0.0363 (11)0.0080 (10)0.0027 (9)0.0050 (9)
C130.0766 (17)0.0754 (17)0.0310 (11)0.0037 (14)0.0019 (11)0.0058 (11)
C140.0852 (19)0.0777 (18)0.0365 (12)0.0043 (15)0.0051 (12)0.0085 (12)
C150.0603 (14)0.0558 (14)0.0485 (13)0.0063 (11)0.0069 (11)0.0089 (10)
C160.0489 (12)0.0559 (13)0.0379 (11)0.0069 (10)0.0035 (9)0.0033 (9)
C170.0875 (18)0.0387 (11)0.0334 (11)0.0118 (11)0.0048 (11)0.0005 (8)
C180.0774 (17)0.0414 (12)0.0432 (12)0.0038 (11)0.0008 (11)0.0045 (9)
C190.081 (2)0.0750 (18)0.0587 (16)0.0039 (15)0.0086 (14)0.0118 (14)
C200.105 (3)0.114 (3)0.096 (3)0.001 (2)0.032 (2)0.004 (2)
C210.0441 (11)0.0470 (11)0.0377 (11)0.0051 (9)0.0011 (9)0.0109 (9)
C220.0494 (13)0.0528 (13)0.0593 (14)0.0087 (10)0.0041 (11)0.0141 (11)
C230.0453 (14)0.0733 (18)0.093 (2)0.0101 (12)0.0023 (13)0.0180 (16)
C240.0486 (14)0.0769 (19)0.093 (2)0.0034 (13)0.0200 (14)0.0187 (16)
C250.0648 (16)0.0526 (14)0.0609 (15)0.0052 (12)0.0172 (12)0.0116 (11)
C260.0500 (12)0.0480 (12)0.0436 (12)0.0043 (9)0.0085 (9)0.0083 (9)
S10.0529 (3)0.0501 (3)0.0300 (2)0.0060 (2)0.0017 (2)0.0006 (2)
S20.0450 (3)0.0478 (3)0.0337 (3)0.0032 (2)0.0003 (2)0.0033 (2)
N10.0604 (11)0.0355 (9)0.0401 (9)0.0053 (8)0.0098 (8)0.0001 (7)
N20.0749 (13)0.0377 (9)0.0324 (9)0.0040 (8)0.0041 (8)0.0002 (7)
O10.0690 (11)0.0715 (11)0.0369 (8)0.0091 (9)0.0071 (7)0.0046 (7)
O20.0689 (11)0.0584 (10)0.0504 (9)0.0231 (8)0.0005 (8)0.0057 (7)
O30.0645 (10)0.0540 (9)0.0468 (9)0.0077 (8)0.0003 (7)0.0138 (7)
Cl10.0808 (4)0.0610 (4)0.0484 (3)0.0087 (3)0.0027 (3)0.0135 (3)
Cl20.1044 (6)0.0696 (4)0.0707 (5)0.0120 (4)0.0131 (4)0.0149 (4)
Cl30.0726 (4)0.0601 (4)0.0836 (5)0.0233 (3)0.0114 (4)0.0002 (3)
Cl40.1033 (6)0.0672 (4)0.1033 (6)0.0049 (4)0.0444 (5)0.0105 (4)
O40.0452 (8)0.0693 (10)0.0431 (8)0.0114 (7)0.0023 (7)0.0070 (7)
Geometric parameters (Å, º) top
C1—C61.384 (3)C15—C161.376 (3)
C1—C21.393 (3)C15—Cl21.732 (3)
C1—H10.9300C16—H160.9300
C2—C31.378 (3)C17—N21.478 (3)
C2—C71.502 (3)C17—H17A0.9700
C3—C41.379 (4)C17—H17B0.9700
C3—H30.9300C18—N21.472 (3)
C4—C51.369 (4)C18—C191.484 (4)
C4—H40.9300C18—H18A0.9700
C5—C61.383 (4)C18—H18B0.9700
C5—H50.9300C19—C201.281 (4)
C6—C171.507 (3)C19—H190.9300
C7—N11.476 (3)C20—H20A0.9300
C7—H7A0.9700C20—H20B0.9300
C7—H7B0.9700C21—C261.382 (3)
C8—N11.467 (3)C21—C221.393 (3)
C8—C91.475 (4)C21—S21.773 (2)
C8—H8A0.9700C22—C231.365 (4)
C8—H8B0.9700C22—Cl31.727 (3)
C9—C101.254 (4)C23—C241.373 (4)
C9—H90.9300C23—H230.9300
C10—H10A0.9300C24—C251.371 (4)
C10—H10B0.9300C24—H240.9300
C11—C161.386 (3)C25—C261.384 (3)
C11—C121.391 (3)C25—Cl41.728 (3)
C11—S11.784 (2)C26—H260.9300
C12—C131.375 (3)S1—O21.4226 (16)
C12—Cl11.724 (2)S1—O11.4227 (16)
C13—C141.372 (4)S1—N11.6011 (19)
C13—H130.9300S2—O31.4249 (16)
C14—C151.378 (4)S2—O41.4281 (16)
C14—H140.9300S2—N21.6112 (18)
C6—C1—C2120.9 (2)N2—C17—C6110.33 (18)
C6—C1—H1119.6N2—C17—H17A109.6
C2—C1—H1119.6C6—C17—H17A109.6
C3—C2—C1119.0 (2)N2—C17—H17B109.6
C3—C2—C7121.2 (2)C6—C17—H17B109.6
C1—C2—C7119.7 (2)H17A—C17—H17B108.1
C2—C3—C4120.2 (2)N2—C18—C19113.2 (2)
C2—C3—H3119.9N2—C18—H18A108.9
C4—C3—H3119.9C19—C18—H18A108.9
C5—C4—C3120.4 (3)N2—C18—H18B108.9
C5—C4—H4119.8C19—C18—H18B108.9
C3—C4—H4119.8H18A—C18—H18B107.7
C4—C5—C6120.7 (2)C20—C19—C18125.2 (3)
C4—C5—H5119.7C20—C19—H19117.4
C6—C5—H5119.7C18—C19—H19117.4
C5—C6—C1118.8 (2)C19—C20—H20A120.0
C5—C6—C17121.4 (2)C19—C20—H20B120.0
C1—C6—C17119.7 (2)H20A—C20—H20B120.0
N1—C7—C2109.52 (16)C26—C21—C22119.4 (2)
N1—C7—H7A109.8C26—C21—S2117.30 (16)
C2—C7—H7A109.8C22—C21—S2123.27 (18)
N1—C7—H7B109.8C23—C22—C21120.2 (2)
C2—C7—H7B109.8C23—C22—Cl3118.4 (2)
H7A—C7—H7B108.2C21—C22—Cl3121.38 (19)
N1—C8—C9111.8 (2)C22—C23—C24120.7 (3)
N1—C8—H8A109.2C22—C23—H23119.6
C9—C8—H8A109.2C24—C23—H23119.6
N1—C8—H8B109.2C25—C24—C23119.4 (3)
C9—C8—H8B109.2C25—C24—H24120.3
H8A—C8—H8B107.9C23—C24—H24120.3
C10—C9—C8125.5 (3)C24—C25—C26121.1 (2)
C10—C9—H9117.3C24—C25—Cl4120.3 (2)
C8—C9—H9117.3C26—C25—Cl4118.6 (2)
C9—C10—H10A120.0C21—C26—C25119.2 (2)
C9—C10—H10B120.0C21—C26—H26120.4
H10A—C10—H10B120.0C25—C26—H26120.4
C16—C11—C12119.06 (19)O2—S1—O1118.98 (11)
C16—C11—S1116.79 (15)O2—S1—N1107.96 (10)
C12—C11—S1124.15 (17)O1—S1—N1108.42 (10)
C13—C12—C11119.9 (2)O2—S1—C11109.61 (10)
C13—C12—Cl1117.98 (18)O1—S1—C11104.72 (10)
C11—C12—Cl1122.09 (17)N1—S1—C11106.50 (9)
C14—C13—C12121.1 (2)O3—S2—O4118.28 (10)
C14—C13—H13119.5O3—S2—N2108.01 (9)
C12—C13—H13119.5O4—S2—N2110.76 (10)
C13—C14—C15119.0 (2)O3—S2—C21108.82 (10)
C13—C14—H14120.5O4—S2—C21105.88 (10)
C15—C14—H14120.5N2—S2—C21104.16 (10)
C16—C15—C14121.0 (2)C8—N1—C7117.11 (18)
C16—C15—Cl2118.46 (19)C8—N1—S1117.93 (15)
C14—C15—Cl2120.56 (19)C7—N1—S1123.99 (14)
C15—C16—C11119.9 (2)C18—N2—C17117.55 (18)
C15—C16—H16120.0C18—N2—S2119.85 (15)
C11—C16—H16120.0C17—N2—S2117.37 (14)
C6—C1—C2—C31.0 (3)C23—C24—C25—Cl4177.5 (2)
C6—C1—C2—C7174.88 (18)C22—C21—C26—C250.1 (3)
C1—C2—C3—C41.1 (3)S2—C21—C26—C25178.15 (17)
C7—C2—C3—C4174.8 (2)C24—C25—C26—C211.3 (4)
C2—C3—C4—C50.1 (4)Cl4—C25—C26—C21177.70 (16)
C3—C4—C5—C60.9 (4)C16—C11—S1—O2134.09 (17)
C4—C5—C6—C11.0 (4)C12—C11—S1—O246.3 (2)
C4—C5—C6—C17178.5 (2)C16—C11—S1—O15.38 (19)
C2—C1—C6—C50.0 (3)C12—C11—S1—O1175.01 (19)
C2—C1—C6—C17177.50 (18)C16—C11—S1—N1109.37 (17)
C3—C2—C7—N1114.2 (2)C12—C11—S1—N170.3 (2)
C1—C2—C7—N161.7 (2)C26—C21—S2—O3125.84 (16)
N1—C8—C9—C10123.0 (4)C22—C21—S2—O352.3 (2)
C16—C11—C12—C133.0 (3)C26—C21—S2—O42.29 (18)
S1—C11—C12—C13177.43 (19)C22—C21—S2—O4179.54 (18)
C16—C11—C12—Cl1175.59 (17)C26—C21—S2—N2119.15 (16)
S1—C11—C12—Cl14.0 (3)C22—C21—S2—N262.7 (2)
C11—C12—C13—C141.5 (4)C9—C8—N1—C765.1 (3)
Cl1—C12—C13—C14177.1 (2)C9—C8—N1—S1104.1 (2)
C12—C13—C14—C150.6 (4)C2—C7—N1—C861.9 (2)
C13—C14—C15—C161.2 (4)C2—C7—N1—S1129.61 (17)
C13—C14—C15—Cl2179.3 (2)O2—S1—N1—C8178.66 (16)
C14—C15—C16—C110.2 (4)O1—S1—N1—C848.51 (19)
Cl2—C15—C16—C11179.29 (17)C11—S1—N1—C863.70 (18)
C12—C11—C16—C152.3 (3)O2—S1—N1—C712.98 (19)
S1—C11—C16—C15178.04 (18)O1—S1—N1—C7143.13 (16)
C5—C6—C17—N263.4 (3)C11—S1—N1—C7104.66 (17)
C1—C6—C17—N2114.1 (2)C19—C18—N2—C1773.6 (3)
N2—C18—C19—C20116.5 (3)C19—C18—N2—S280.2 (2)
C26—C21—C22—C231.2 (3)C6—C17—N2—C1858.5 (3)
S2—C21—C22—C23176.92 (19)C6—C17—N2—S2147.10 (17)
C26—C21—C22—Cl3178.38 (16)O3—S2—N2—C1814.2 (2)
S2—C21—C22—Cl33.5 (3)O4—S2—N2—C18116.77 (18)
C21—C22—C23—C241.0 (4)C21—S2—N2—C18129.81 (18)
Cl3—C22—C23—C24178.6 (2)O3—S2—N2—C17168.06 (17)
C22—C23—C24—C250.3 (4)O4—S2—N2—C1737.1 (2)
C23—C24—C25—C261.5 (4)C21—S2—N2—C1776.35 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.972.593.422 (3)144
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H24Cl4N2O4S2
Mr634.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2744 (2), 11.3398 (2), 15.6481 (4)
α, β, γ (°)87.777 (1), 84.443 (1), 84.257 (1)
V3)1453.40 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.40 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21435, 7190, 5200
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.05
No. of reflections7190
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.972.593.422 (3)144
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjaz, Khan, I. U., Ahmad, H. & Harrison, W. T. A. (2011a). Acta Cryst. E67, o3037.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjaz, Khan, I. U., Ahmad, H., Harrison, W. T. A. & Sheikh, T. A. (2011b). Acta Cryst. E67, o3038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds