organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­bromo-4-(2-hy­dr­oxy­eth­yl)phenol

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wangzhe_guilai@126.com

(Received 1 November 2011; accepted 4 November 2011; online 12 November 2011)

The title compound, C8H8Br2O2, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. They differ in the conformation of the 2-hy­droxy­ethyl chain with the C—C—C—O torsion angle being −68.0 (12)° in mol­ecule A and 172.2 (9)° in mol­ecule B. In the crystal, the A mol­ecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers, while the B mol­ecules are linked via an O—H⋯O hydrogen bond, forming a polymeric chain propagating in [010]. In addition, there are O—H⋯O and O—H⋯Br hydrogen bonds, and Br⋯Br [3.599 (2) Å] and ππ inter­actions [centroid–centroid distances = 3.581 (6) and 3.931 (6) Å], leading to the formation of a two-dimensional network parallel to (001).

Related literature

For background and further synthetic details, see: Guerard et al. (2009[Guerard, K. C., Sabot, C., Racicot, L. & Canesi, S. (2009). J. Org. Chem. 74, 2039-2045.]); Bovicelli et al. (2007[Bovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245-4252.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Zhu et al. (2011[Zhu, J., Yang, W., Wang, L., Wang, K. & Hu, Y. (2011). Acta Cryst. E67, o1109.])

[Scheme 1]

Experimental

Crystal data
  • C8H8Br2O2

  • Mr = 295.94

  • Triclinic, [P \overline 1]

  • a = 8.5740 (17) Å

  • b = 9.845 (2) Å

  • c = 11.392 (2) Å

  • α = 86.08 (3)°

  • β = 75.79 (3)°

  • γ = 87.39 (3)°

  • V = 929.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.68 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.276, Tmax = 0.478

  • 3664 measured reflections

  • 3416 independent reflections

  • 1874 reflections with I > 2σ(I)

  • Rint = 0.087

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.161

  • S = 1.00

  • 3416 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.82 1.93 2.665 (11) 149
O4—H4O⋯O3ii 0.85 2.09 2.837 (9) 146
O2—H2O⋯O4iii 0.82 2.09 2.896 (10) 168
O3—H3O⋯Br2iv 0.85 2.55 3.291 (7) 147
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y-1, z-1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is used as a key intermediate in drug synthesis, and has been synthesized following a procedure described previously by (Bovicelli et al., 2007). We report herein on its synthesis and crystal structure.

The title compound crystallized with two independent molecules (A & B) in the asymmetric unit (Fig. 1). They differ significantly in conformation, as may be seen from the torsion angles in the 2-hydroxyethyl chain. For molecule A the torsion angles C1—C6—C7—C8 and C6—C7—C8—O2 are -56.6 (14) and -68.0 (13)°, respectively, while the corresponding torsion angles C13—C14—C15—C16 and C14—C15—C16—O4 in molecule B are -82.6 (12) and 172.2 (9)°, respectively. The bond lengths (Allen et al., 1987) and bond angles are otherwise within normal ranges.

In the crystal, the A molecules are linked via O—H···O hydrogen bonds to form inversion dimers, while the B molecules are linked via an O—H···O hydrogen bond to form a polymer chain propagating in [010], see Fig. 2. In the crystal, there are other O—H···O and O—H···Br hydrogen bonds (Table 1), and weak π···π stacking interactions involving the aromatic rings with their inversion related rings. The centroid-centroid distances are 3.931 (6) Å for Cg1···Cg1i [Cg1 is the centroid of ring (C1—C6); symmetry code (i) -x + 1, -y + 1, -z + 2] and 3.581 (6) Å for Cg2···Cg2ii [Cg2 is the centroid of ring (C9—C14); symmetry code (ii) -x + 2, -y, -z + 1]. There is also a short Br1···Br4iii interaction present [3.599 (2) Å; symmetry code: (iii) -x + 1, -y, -z + 2]. These interactions result in the formation of two-dimensional networks lieing parallel to the ab plane (Fig. 3).

Related literature top

For background and further synthetic details, see: Guerard et al. (2009); Bovicelli et al. (2007). For standard bond-length data, see: Allen et al. (1987). For a related structure, see: Zhu et al. (2011)

Experimental top

The title compound was synthesized using a slightly modified version of the procedure reported on by (Bovicelli et al., 2007), using twice the quantity of NaBr. To a solution of 4-hydroxyphenethyl alcohol (217.4 mmol, 30 g) and NaBr (434.8 mmol, 44.34 g) in acetone (600 ml), a solution of oxone (200 g) in water (1 L) was added dropwise at 263 K within 3 h. The progress of the reaction was monitored by thin-layer chromatography (TLC, hexane/ethyl acetate 3:2), and when the reaction was over (complete consumption of the substrate), AcOEt (500 ml) was added to the mixture. The organic layer was separated, and the aqueous phase was extracted with two 300 mL portions of AcOEt (300 ml). The combined organic solutions were washed with water (300 ml), dried over anhydrous Na2SO4(white power,100 g), and evaporated. The product obtained in almost quantitative yield (59.7 g), appeared to be spectroscopically pure: white solid. Crystals of the title compound, suitable for X-ray diffraction analysis, were obtained by slow evaporation of an acetone solution at room temperature.

Refinement top

H atoms were positioned geometrically and constrained to ride on their parent atoms: O—H = 0.82 or 0.85 Å, C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms, and k = 1.2 for all other H atoms.

Structure description top

The title compound is used as a key intermediate in drug synthesis, and has been synthesized following a procedure described previously by (Bovicelli et al., 2007). We report herein on its synthesis and crystal structure.

The title compound crystallized with two independent molecules (A & B) in the asymmetric unit (Fig. 1). They differ significantly in conformation, as may be seen from the torsion angles in the 2-hydroxyethyl chain. For molecule A the torsion angles C1—C6—C7—C8 and C6—C7—C8—O2 are -56.6 (14) and -68.0 (13)°, respectively, while the corresponding torsion angles C13—C14—C15—C16 and C14—C15—C16—O4 in molecule B are -82.6 (12) and 172.2 (9)°, respectively. The bond lengths (Allen et al., 1987) and bond angles are otherwise within normal ranges.

In the crystal, the A molecules are linked via O—H···O hydrogen bonds to form inversion dimers, while the B molecules are linked via an O—H···O hydrogen bond to form a polymer chain propagating in [010], see Fig. 2. In the crystal, there are other O—H···O and O—H···Br hydrogen bonds (Table 1), and weak π···π stacking interactions involving the aromatic rings with their inversion related rings. The centroid-centroid distances are 3.931 (6) Å for Cg1···Cg1i [Cg1 is the centroid of ring (C1—C6); symmetry code (i) -x + 1, -y + 1, -z + 2] and 3.581 (6) Å for Cg2···Cg2ii [Cg2 is the centroid of ring (C9—C14); symmetry code (ii) -x + 2, -y, -z + 1]. There is also a short Br1···Br4iii interaction present [3.599 (2) Å; symmetry code: (iii) -x + 1, -y, -z + 2]. These interactions result in the formation of two-dimensional networks lieing parallel to the ab plane (Fig. 3).

For background and further synthetic details, see: Guerard et al. (2009); Bovicelli et al. (2007). For standard bond-length data, see: Allen et al. (1987). For a related structure, see: Zhu et al. (2011)

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two indpendent molecules (A and B) of the title compound, with the atom numbering scheme and displacement ellipsoids drawn at 30% probability levels.
[Figure 2] Fig. 2. A view along the a axis of the hydrogen bonded inversion dimers of A molecules and the polymer chain of B molecules of the title compound [hydrogen bonds are shown as dashed cyan lines; see Table 1 for details; symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y + 1, z; (iii) x, y - 1, z].
[Figure 3] Fig. 3. A perspective view along the b axis of the crystal packing of the title compound, showing the O—H···O and O—H···Br hydrogen bonds as dashed lines (see Table 1 for details).
2,6-Dibromo-4-(2-hydroxyethyl)phenol top
Crystal data top
C8H8Br2O2Z = 4
Mr = 295.94F(000) = 568
Triclinic, P1Dx = 2.115 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5740 (17) ÅCell parameters from 25 reflections
b = 9.845 (2) Åθ = 10–13°
c = 11.392 (2) ŵ = 8.68 mm1
α = 86.08 (3)°T = 293 K
β = 75.79 (3)°Block, colourless
γ = 87.39 (3)°0.20 × 0.10 × 0.10 mm
V = 929.6 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1874 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.087
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.276, Tmax = 0.478l = 1313
3664 measured reflections3 standard reflections every 200 reflections
3416 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.63 e Å3
1 restraintΔρmin = 0.72 e Å3
Crystal data top
C8H8Br2O2γ = 87.39 (3)°
Mr = 295.94V = 929.6 (3) Å3
Triclinic, P1Z = 4
a = 8.5740 (17) ÅMo Kα radiation
b = 9.845 (2) ŵ = 8.68 mm1
c = 11.392 (2) ÅT = 293 K
α = 86.08 (3)°0.20 × 0.10 × 0.10 mm
β = 75.79 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1874 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.087
Tmin = 0.276, Tmax = 0.4783 standard reflections every 200 reflections
3664 measured reflections intensity decay: 1%
3416 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.161H-atom parameters constrained
S = 1.00Δρmax = 0.63 e Å3
3416 reflectionsΔρmin = 0.72 e Å3
217 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68665 (14)0.22580 (14)1.16796 (12)0.0661 (5)
Br20.15646 (15)0.59523 (13)1.18207 (12)0.0703 (5)
O10.4403 (9)0.4472 (8)1.2658 (7)0.070 (3)
O20.4818 (9)0.3052 (8)0.6910 (7)0.066 (3)
C10.4707 (12)0.2251 (11)1.0171 (9)0.050 (4)
C20.5035 (11)0.2892 (9)1.1125 (9)0.043 (3)
C30.4101 (13)0.3990 (10)1.1676 (9)0.049 (4)
C40.2875 (12)0.4483 (10)1.1133 (9)0.050 (3)
C50.2490 (12)0.3861 (10)1.0200 (9)0.050 (4)
C60.3404 (13)0.2735 (11)0.9689 (10)0.053 (4)
C70.2967 (12)0.1977 (12)0.8703 (9)0.056 (4)
C80.4333 (12)0.1821 (9)0.7602 (9)0.049 (3)
Br31.12544 (15)0.02904 (13)0.15184 (12)0.0742 (5)
Br40.64211 (13)0.12778 (11)0.58132 (10)0.0558 (4)
O30.8985 (8)0.1939 (6)0.3477 (6)0.049 (2)
O40.7207 (8)0.5766 (7)0.4611 (6)0.056 (3)
C90.9903 (11)0.1713 (10)0.3173 (9)0.046 (4)
C100.9906 (11)0.0338 (10)0.2919 (9)0.045 (3)
C110.8926 (11)0.0623 (9)0.3728 (9)0.039 (3)
C120.7878 (10)0.0124 (9)0.4787 (9)0.036 (3)
C130.7884 (11)0.1234 (10)0.5006 (10)0.048 (3)
C140.8884 (11)0.2154 (10)0.4232 (10)0.047 (3)
C150.8832 (12)0.3638 (11)0.4564 (10)0.052 (4)
C160.7456 (13)0.4450 (10)0.4198 (11)0.059 (4)
H10.534000.150800.985100.0600*
H1O0.463400.527601.251900.1050*
H2O0.416300.328500.651200.0990*
H50.161600.419000.990500.0600*
H7A0.260600.107900.903400.0670*
H7B0.207600.246000.845800.0670*
H8A0.525200.140800.786000.0580*
H8B0.402000.119900.708200.0580*
H3O0.962500.219400.282900.0590*
H4O0.805200.621100.430800.0840*
H91.057300.231900.264100.0560*
H130.718800.154700.570200.0580*
H15A0.870400.366600.543200.0620*
H15B0.984400.405300.416000.0620*
H16A0.647300.395300.450800.0710*
H16C0.766700.451200.332000.0710*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0559 (7)0.0740 (9)0.0707 (8)0.0040 (6)0.0190 (6)0.0112 (6)
Br20.0754 (9)0.0556 (8)0.0731 (9)0.0157 (6)0.0043 (6)0.0185 (6)
O10.079 (6)0.067 (6)0.062 (5)0.009 (4)0.010 (4)0.010 (4)
O20.074 (5)0.066 (5)0.056 (5)0.011 (4)0.010 (4)0.015 (4)
C10.043 (6)0.055 (7)0.041 (6)0.001 (5)0.013 (5)0.012 (5)
C20.045 (6)0.034 (5)0.050 (6)0.003 (4)0.009 (5)0.016 (4)
C30.062 (7)0.038 (6)0.047 (6)0.007 (5)0.007 (5)0.016 (5)
C40.049 (6)0.045 (6)0.046 (6)0.006 (5)0.003 (5)0.011 (5)
C50.042 (6)0.051 (7)0.052 (7)0.008 (5)0.003 (5)0.010 (5)
C60.049 (6)0.054 (7)0.057 (7)0.003 (5)0.010 (5)0.018 (5)
C70.052 (6)0.065 (8)0.049 (7)0.004 (6)0.003 (5)0.023 (5)
C80.062 (7)0.032 (5)0.051 (6)0.002 (5)0.009 (5)0.012 (4)
Br30.0710 (8)0.0624 (8)0.0702 (9)0.0004 (6)0.0217 (6)0.0141 (6)
Br40.0524 (7)0.0416 (6)0.0638 (7)0.0090 (5)0.0075 (5)0.0094 (5)
O30.055 (4)0.037 (4)0.046 (4)0.004 (3)0.008 (3)0.016 (3)
O40.056 (5)0.044 (4)0.065 (5)0.000 (4)0.004 (4)0.017 (4)
C90.040 (6)0.035 (6)0.056 (7)0.000 (5)0.000 (5)0.011 (5)
C100.038 (5)0.048 (6)0.046 (6)0.007 (5)0.001 (4)0.012 (5)
C110.043 (5)0.024 (5)0.051 (6)0.002 (4)0.013 (4)0.017 (4)
C120.033 (5)0.024 (5)0.051 (6)0.001 (4)0.007 (4)0.010 (4)
C130.030 (5)0.045 (6)0.063 (7)0.010 (5)0.002 (5)0.012 (5)
C140.039 (5)0.045 (5)0.061 (7)0.003 (5)0.016 (5)0.015 (5)
C150.043 (6)0.052 (6)0.062 (7)0.005 (5)0.012 (5)0.015 (5)
C160.061 (7)0.038 (6)0.071 (8)0.007 (5)0.002 (6)0.016 (5)
Geometric parameters (Å, º) top
Br1—C21.897 (10)C1—H10.9300
Br2—C41.882 (10)C5—H50.9300
Br3—C101.852 (10)C7—H7B0.9700
Br4—C121.857 (9)C7—H7A0.9700
O1—C31.330 (13)C8—H8B0.9700
O2—C81.420 (12)C8—H8A0.9700
O1—H1O0.8200C9—C101.403 (14)
O2—H2O0.8200C9—C141.388 (15)
O3—C111.342 (11)C10—C111.423 (14)
O4—C161.398 (12)C11—C121.419 (14)
O3—H3O0.8500C12—C131.377 (13)
O4—H4O0.8500C13—C141.387 (15)
C1—C21.385 (14)C14—C151.530 (15)
C1—C61.412 (15)C15—C161.522 (16)
C2—C31.404 (14)C9—H90.9300
C3—C41.398 (15)C13—H130.9300
C4—C51.376 (14)C15—H15A0.9700
C5—C61.403 (15)C15—H15B0.9700
C6—C71.518 (15)C16—H16A0.9700
C7—C81.502 (14)C16—H16C0.9700
C3—O1—H1O109.00C7—C8—H8B109.00
C8—O2—H2O109.00O2—C8—H8A109.00
C11—O3—H3O119.00C10—C9—C14118.9 (9)
C16—O4—H4O108.00C9—C10—C11122.0 (9)
C2—C1—C6119.4 (10)Br3—C10—C11117.8 (7)
C1—C2—C3123.3 (9)Br3—C10—C9120.2 (7)
Br1—C2—C1117.5 (7)O3—C11—C12122.1 (8)
Br1—C2—C3119.2 (7)O3—C11—C10120.7 (9)
O1—C3—C2119.7 (10)C10—C11—C12117.2 (8)
C2—C3—C4115.5 (9)Br4—C12—C13120.5 (8)
O1—C3—C4124.8 (9)Br4—C12—C11119.9 (7)
Br2—C4—C3118.1 (7)C11—C12—C13119.6 (9)
Br2—C4—C5118.8 (8)C12—C13—C14122.8 (10)
C3—C4—C5122.9 (9)C9—C14—C15121.4 (9)
C4—C5—C6120.6 (10)C9—C14—C13119.5 (9)
C1—C6—C5118.1 (10)C13—C14—C15119.1 (9)
C5—C6—C7122.1 (10)C14—C15—C16111.6 (9)
C1—C6—C7119.6 (10)O4—C16—C15114.7 (9)
C6—C7—C8113.7 (9)C10—C9—H9121.00
O2—C8—C7115.0 (8)C14—C9—H9121.00
C2—C1—H1120.00C12—C13—H13119.00
C6—C1—H1120.00C14—C13—H13119.00
C6—C5—H5120.00C14—C15—H15A109.00
C4—C5—H5120.00C14—C15—H15B109.00
C6—C7—H7A109.00C16—C15—H15A109.00
C8—C7—H7B109.00C16—C15—H15B109.00
C6—C7—H7B109.00H15A—C15—H15B108.00
C8—C7—H7A109.00O4—C16—H16A109.00
H7A—C7—H7B108.00O4—C16—H16C109.00
O2—C8—H8B109.00C15—C16—H16A109.00
C7—C8—H8A109.00C15—C16—H16C109.00
H8A—C8—H8B108.00H16A—C16—H16C108.00
C6—C1—C2—Br1176.8 (8)C14—C9—C10—Br3179.8 (8)
C6—C1—C2—C32.0 (16)C14—C9—C10—C111.6 (15)
C2—C1—C6—C50.2 (15)C10—C9—C14—C130.7 (15)
C2—C1—C6—C7175.8 (9)C10—C9—C14—C15179.6 (9)
Br1—C2—C3—O17.3 (13)Br3—C10—C11—O30.0 (13)
Br1—C2—C3—C4173.7 (7)Br3—C10—C11—C12178.9 (7)
C1—C2—C3—O1173.9 (10)C9—C10—C11—O3178.2 (9)
C1—C2—C3—C45.1 (15)C9—C10—C11—C122.9 (14)
O1—C3—C4—Br20.9 (14)O3—C11—C12—Br44.8 (13)
O1—C3—C4—C5172.6 (10)O3—C11—C12—C13179.2 (9)
C2—C3—C4—Br2179.8 (7)C10—C11—C12—Br4174.2 (7)
C2—C3—C4—C56.3 (15)C10—C11—C12—C131.9 (14)
Br2—C4—C5—C6177.9 (8)Br4—C12—C13—C14176.3 (8)
C3—C4—C5—C64.5 (16)C11—C12—C13—C140.2 (15)
C4—C5—C6—C10.9 (16)C12—C13—C14—C91.6 (16)
C4—C5—C6—C7176.8 (10)C12—C13—C14—C15178.7 (9)
C1—C6—C7—C856.6 (13)C9—C14—C15—C1697.1 (12)
C5—C6—C7—C8127.6 (11)C13—C14—C15—C1682.6 (12)
C6—C7—C8—O268.0 (12)C14—C15—C16—O4172.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.821.932.665 (11)149
O4—H4O···O3ii0.852.092.837 (9)146
O2—H2O···O4iii0.822.092.896 (10)168
O3—H3O···Br2iv0.852.553.291 (7)147
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y1, z1.

Experimental details

Crystal data
Chemical formulaC8H8Br2O2
Mr295.94
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5740 (17), 9.845 (2), 11.392 (2)
α, β, γ (°)86.08 (3), 75.79 (3), 87.39 (3)
V3)929.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)8.68
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.276, 0.478
No. of measured, independent and
observed [I > 2σ(I)] reflections
3664, 3416, 1874
Rint0.087
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.161, 1.00
No. of reflections3416
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.72

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.821.932.665 (11)149
O4—H4O···O3ii0.852.092.837 (9)146
O2—H2O···O4iii0.822.092.896 (10)168
O3—H3O···Br2iv0.852.553.291 (7)147
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y1, z1.
 

Acknowledgements

This research work was supported financially by the Department of Science and Technology of Jiangsu Province (BE200830457) and the `863' project (2007 A A02Z211) from the Ministry of Science and Technology, China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245–4252.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGuerard, K. C., Sabot, C., Racicot, L. & Canesi, S. (2009). J. Org. Chem. 74, 2039–2045.  Web of Science PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, J., Yang, W., Wang, L., Wang, K. & Hu, Y. (2011). Acta Cryst. E67, o1109.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds