organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-N,N′-Di­methyl-N,N′-(1,1′-bi­naphthyl-2,2′-di­yl)diformamide

aCollege of Chemistry, Xinjiang Normal University, Urumqi 830054, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 2 November 2011; accepted 3 November 2011; online 9 November 2011)

The mol­ecule of the title compound, C24H20N2O2, lies on a twofold rotation axis that relates one 2-(N-methyl­formamido)­naphthyl unit to the other. The N-methyl­formamido substituent is twisted by 54.9 (1)° with respect to the naphthalene fused-ring system; the two fused-ring systems are themselves twisted by 70.3 (1)°.

Related literature

For the synthesis of 2,2′-bis­(methyl­amino)-1,1′-binaphthyl, see: Miyano et al. (1984[Miyano, S., Nawa, M., Mori, A. & Hashimoto, H. (1984). Bull. Chem. Soc. Jpn, 57, 2171-2176.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2O2

  • Mr = 368.42

  • Tetragonal, I 41

  • a = 11.6548 (12) Å

  • c = 13.9171 (15) Å

  • V = 1890.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.34 × 0.20 × 0.16 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.972, Tmax = 0.987

  • 11169 measured reflections

  • 1091 independent reflections

  • 1051 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.07

  • 1091 reflections

  • 129 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We report here the methylation of commercially available racemic 2,2'-diamino-1,1'-binaphthyl to yield 2,2'-bis(methylamino)-1,1'-binaphthyl. The compound should react with triethyl orthoformate to yield an imidzolium salt. The reaction with ethyl formate, an unintended similar-sounding reagent, gave 2,2'-bis(N-methyformido)-1,1'-binaphthyl (Scheme I) instead.

The C24H20N2O2 molecules lies on a twofold rotation axis that relates one N-methylformamido)-1-naphthyl moiety to the other (Fig. 1). The N-methylformamido substituent is twisted by 54.9 (1) ° with respect to the naphathalene fused-ring; the two fused-rings are themselves twisted by 70.3 (1) °.

Related literature top

For the synthesis of 2,2'-bis(methylamino)-1,1'-binaphthyl, see: Miyano et al. (1984).

Experimental top

2,2'-Bis(methylamino)-1,1'-binaphthyl was prepared by treatment of racemic 2,2'-diamino-1,1'-binaphthyl (purchased from Aldrich Chemical Company) with ethyl chloroformate in benzene in the presence of pyridine, followed by reduction with lithium aluminium hydride in tetrahydrofuran (Miyano et al., 1984). An ethyl formate solution (10 ml) of 2,2'-bis(methylamino)-1,1'-binaphthyl (156 mg, 0.50 mmol) was heated at 327 K for 10 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent: ethyl acetate/petroleum ether 10/1) to give the title compound (158 mg, 86%) as a white solid. Crystals were obtained upon recrystallized from a dichloromethane-hexane mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). In the absence of heavy atoms, 1000 Friedel pairs were merged.

Structure description top

We report here the methylation of commercially available racemic 2,2'-diamino-1,1'-binaphthyl to yield 2,2'-bis(methylamino)-1,1'-binaphthyl. The compound should react with triethyl orthoformate to yield an imidzolium salt. The reaction with ethyl formate, an unintended similar-sounding reagent, gave 2,2'-bis(N-methyformido)-1,1'-binaphthyl (Scheme I) instead.

The C24H20N2O2 molecules lies on a twofold rotation axis that relates one N-methylformamido)-1-naphthyl moiety to the other (Fig. 1). The N-methylformamido substituent is twisted by 54.9 (1) ° with respect to the naphathalene fused-ring; the two fused-rings are themselves twisted by 70.3 (1) °.

For the synthesis of 2,2'-bis(methylamino)-1,1'-binaphthyl, see: Miyano et al. (1984).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C24H20N2O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The unlabeled atoms are related to the labeled one by 2 - x, -y, z.
rac-N,N'-Dimethyl-N,N'-(1,1'-binaphthyl- 2,2'-diyl)diformamide top
Crystal data top
C24H20N2O2Dx = 1.294 Mg m3
Mr = 368.42Mo Kα radiation, λ = 0.71070 Å
Tetragonal, I41Cell parameters from 2958 reflections
Hall symbol: I 4bwθ = 2.3–27.1°
a = 11.6548 (12) ŵ = 0.08 mm1
c = 13.9171 (15) ÅT = 113 K
V = 1890.4 (3) Å3Prism, colorless
Z = 40.34 × 0.20 × 0.16 mm
F(000) = 776
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1091 independent reflections
Radiation source: rotating anode1051 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.044
Detector resolution: 7.31 pixels mm-1θmax = 27.1°, θmin = 2.3°
ω and φ scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1414
Tmin = 0.972, Tmax = 0.987l = 1717
11169 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.3273P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1091 reflectionsΔρmax = 0.20 e Å3
129 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C24H20N2O2Z = 4
Mr = 368.42Mo Kα radiation
Tetragonal, I41µ = 0.08 mm1
a = 11.6548 (12) ÅT = 113 K
c = 13.9171 (15) Å0.34 × 0.20 × 0.16 mm
V = 1890.4 (3) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1091 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1051 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.987Rint = 0.044
11169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
1091 reflectionsΔρmin = 0.14 e Å3
129 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8311 (3)0.0321 (2)0.33342 (16)0.0772 (9)
N10.85923 (17)0.00005 (15)0.17381 (13)0.0284 (5)
C10.96952 (16)0.05699 (16)0.03106 (14)0.0187 (4)
C20.89065 (18)0.08195 (17)0.10211 (15)0.0215 (4)
C30.83669 (17)0.19135 (17)0.10642 (15)0.0220 (4)
H30.78160.20670.15510.026*
C40.86360 (17)0.27432 (16)0.04105 (15)0.0199 (4)
H40.82860.34770.04590.024*
C50.94283 (16)0.25287 (15)0.03388 (14)0.0176 (4)
C60.99650 (16)0.14242 (15)0.03944 (14)0.0172 (4)
C71.07543 (16)0.12335 (17)0.11571 (15)0.0204 (4)
H71.11380.05160.12020.024*
C81.09713 (17)0.20650 (18)0.18289 (15)0.0229 (4)
H81.14900.19110.23390.028*
C91.04310 (17)0.31514 (18)0.17716 (16)0.0241 (5)
H91.05910.37240.22390.029*
C100.96813 (17)0.33714 (17)0.10433 (16)0.0222 (4)
H100.93220.41020.10070.027*
C110.8095 (2)0.11084 (19)0.1472 (2)0.0391 (6)
H11A0.86190.17260.16630.059*
H11B0.79760.11340.07750.059*
H11C0.73580.12080.18000.059*
C120.8630 (3)0.0295 (2)0.26773 (19)0.0475 (8)
H120.89260.10300.28360.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.149 (3)0.0543 (14)0.0279 (12)0.0017 (15)0.0288 (14)0.0093 (10)
N10.0414 (11)0.0224 (9)0.0214 (10)0.0013 (8)0.0095 (8)0.0025 (7)
C10.0213 (9)0.0166 (9)0.0182 (9)0.0009 (7)0.0013 (7)0.0022 (7)
C20.0268 (10)0.0200 (9)0.0179 (9)0.0023 (8)0.0009 (8)0.0008 (8)
C30.0232 (10)0.0226 (10)0.0203 (9)0.0009 (7)0.0022 (8)0.0053 (8)
C40.0229 (9)0.0173 (9)0.0196 (10)0.0014 (7)0.0029 (8)0.0049 (7)
C50.0174 (9)0.0166 (9)0.0190 (9)0.0011 (7)0.0042 (7)0.0016 (8)
C60.0172 (9)0.0163 (9)0.0179 (9)0.0010 (7)0.0035 (7)0.0020 (7)
C70.0197 (9)0.0195 (9)0.0220 (10)0.0011 (7)0.0021 (8)0.0013 (8)
C80.0219 (9)0.0255 (10)0.0215 (10)0.0019 (8)0.0035 (8)0.0003 (8)
C90.0253 (10)0.0211 (10)0.0259 (11)0.0051 (8)0.0012 (8)0.0058 (8)
C100.0231 (10)0.0188 (10)0.0246 (10)0.0011 (7)0.0052 (8)0.0012 (8)
C110.0523 (15)0.0288 (12)0.0361 (13)0.0120 (10)0.0130 (12)0.0041 (10)
C120.084 (2)0.0345 (14)0.0237 (12)0.0020 (13)0.0099 (13)0.0022 (10)
Geometric parameters (Å, º) top
O1—C121.220 (4)C5—C61.433 (2)
N1—C121.352 (3)C6—C71.422 (3)
N1—C21.429 (3)C7—C81.370 (3)
N1—C111.464 (3)C7—H70.9500
C1—C21.381 (3)C8—C91.416 (3)
C1—C61.433 (3)C8—H80.9500
C1—C1i1.507 (4)C9—C101.363 (3)
C2—C31.423 (3)C9—H90.9500
C3—C41.364 (3)C10—H100.9500
C3—H30.9500C11—H11A0.9800
C4—C51.415 (3)C11—H11B0.9800
C4—H40.9500C11—H11C0.9800
C5—C101.419 (3)C12—H120.9500
C12—N1—C2119.83 (19)C8—C7—C6121.21 (18)
C12—N1—C11118.8 (2)C8—C7—H7119.4
C2—N1—C11120.98 (19)C6—C7—H7119.4
C2—C1—C6119.34 (16)C7—C8—C9120.79 (19)
C2—C1—C1i119.98 (15)C7—C8—H8119.6
C6—C1—C1i120.61 (15)C9—C8—H8119.6
C1—C2—C3120.87 (18)C10—C9—C8119.68 (19)
C1—C2—N1122.00 (17)C10—C9—H9120.2
C3—C2—N1117.12 (18)C8—C9—H9120.2
C4—C3—C2120.35 (18)C9—C10—C5121.14 (18)
C4—C3—H3119.8C9—C10—H10119.4
C2—C3—H3119.8C5—C10—H10119.4
C3—C4—C5121.08 (17)N1—C11—H11A109.5
C3—C4—H4119.5N1—C11—H11B109.5
C5—C4—H4119.5H11A—C11—H11B109.5
C4—C5—C10121.50 (16)N1—C11—H11C109.5
C4—C5—C6118.90 (17)H11A—C11—H11C109.5
C10—C5—C6119.59 (18)H11B—C11—H11C109.5
C7—C6—C5117.58 (17)O1—C12—N1124.4 (3)
C7—C6—C1122.99 (16)O1—C12—H12117.8
C5—C6—C1119.42 (17)N1—C12—H12117.8
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC24H20N2O2
Mr368.42
Crystal system, space groupTetragonal, I41
Temperature (K)113
a, c (Å)11.6548 (12), 13.9171 (15)
V3)1890.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.20 × 0.16
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.972, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11169, 1091, 1051
Rint0.044
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.07
No. of reflections1091
No. of parameters129
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Xinjiang Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationMiyano, S., Nawa, M., Mori, A. & Hashimoto, H. (1984). Bull. Chem. Soc. Jpn, 57, 2171–2176.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds