metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­(μ3-naphthalene-1,6-di­sulfonato-κ4O1:O6,O6′:O6′′)strontium(II)] monohydrate]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 November 2011; accepted 9 November 2011; online 16 November 2011)

In the crystal structure of the polymeric title compound, {[Sr(C10H6O6S2)(H2O)4]·H2O}n, the naphthalene-1,6-disulfonate dianion uses one –SO3 unit to O,O′-chelate to an SrII cation and its third O atom to bind to another SrII cation. The other –SO3 unit binds to yet another SrII atom. The four coordinated water mol­ecules are monodentate but one is disordered over two positions in a 1:1 ratio. The μ3-bonding mode of the dianion generates a polymeric three-dimensional network; the network is consolidated by O—H⋯O hydrogen bonds. The SrII cation exists in an undefined eight-coordinate environment.

Related literature

For a review of metal arene­sulfonates, see: Cai (2004[Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.]). For a related strontium naphthalene­disulfonate, see: Cai et al. (2001[Cai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. & Chen, X.-M. (2001). Acta Cryst. B57, 520-530.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C10H6O6S2)(H2O)4]·H2O

  • Mr = 463.97

  • Orthorhombic, P 21 21 21

  • a = 7.1067 (16) Å

  • b = 14.080 (4) Å

  • c = 16.745 (6) Å

  • V = 1675.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 293 K

  • 0.22 × 0.17 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.511, Tmax = 0.620

  • 16056 measured reflections

  • 3786 independent reflections

  • 3497 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.02

  • 3786 reflections

  • 220 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1584 Friedel pairs

  • Flack parameter: −0.017 (4)

Table 1
Selected bond lengths (Å)

Sr1—O1 2.737 (2)
Sr1—O2 2.721 (2)
Sr1—O3i 2.583 (2)
Sr1—O4ii 2.5352 (19)
Sr1—O1W 2.641 (2)
Sr1—O2W 2.562 (2)
Sr1—O3W 2.500 (2)
Sr1—O4W 2.585 (14)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H12⋯O2iii 0.84 2.25 2.809 (3) 124
O2w—H21⋯O5iv 0.84 2.03 2.793 (3) 151
O2w—H22⋯O5wv 0.84 1.95 2.763 (3) 164
O3w—H31⋯O6vi 0.84 2.09 2.829 (3) 147
O3w—H32⋯O5wv 0.84 1.99 2.754 (3) 151
O5w—H51⋯O6ii 0.84 2.06 2.874 (3) 163
O5w—H52⋯O1w 0.84 2.02 2.831 (3) 160
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iv) [-x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A review of metal arenesulfonates that are synthesized in aqueous medium explains the reasons for the ability of the ions to form stable metal-organic frameworks owing to multiple coordination modes of the sulfonate –SO3 groups (Cai, 2004). Among the divalent metal derivatives, the strontium system has been less studied (Cai et al., 2001). In the crystal structure of Sr(H2O)4(C10H6O6S2).H2O, the C10H6O6S22- dianion uses one –SO3 unit to O,O'-chelate to an SrII atom and its third O atom to bind to another SrII atom. The other –SO3 unit binds to yet another SrII atom (Scheme I, Fig. 1). T; the four coordinated water molecules are monodentate but one is disordered over two positions in a 1:1 ratio. The µ3 bonding mode of the dianon generates a polymeric three-dimensional network; the network is consolidated by O–H···O hydrogen bonds (Table 1). The Sr atom exists in an undefined eight-coordinate environment.

Related literature top

For a review of metal arenesulfonates, see: Cai (2004). For a related strontium naphthalenedisulfonate, see: Cai et al. (2001).

Experimental top

Strontium nitrate (1 mmol) and sodium naphthalene-1,6-disulfonate (1 mmol) were dissolved in water (10 ml). The solution was filtered and set aside; yellow crystals were isolated from the filtrate after several days.

Refinement top

Carbon-bound H-atoms were generated geometrically and were included in the riding model approximation [C—H 0.93 Å, U, 1.2Ueq(C)]. The water H-atoms were placed in calculated positions [O—H 0.84 Å, U 1.5Ueq(O)] on the basis of hydrogen bonding interactions; however, only some are involved and others are not.

One of the water molecules is disordered over two positions in a 1:1 ratio.

Structure description top

A review of metal arenesulfonates that are synthesized in aqueous medium explains the reasons for the ability of the ions to form stable metal-organic frameworks owing to multiple coordination modes of the sulfonate –SO3 groups (Cai, 2004). Among the divalent metal derivatives, the strontium system has been less studied (Cai et al., 2001). In the crystal structure of Sr(H2O)4(C10H6O6S2).H2O, the C10H6O6S22- dianion uses one –SO3 unit to O,O'-chelate to an SrII atom and its third O atom to bind to another SrII atom. The other –SO3 unit binds to yet another SrII atom (Scheme I, Fig. 1). T; the four coordinated water molecules are monodentate but one is disordered over two positions in a 1:1 ratio. The µ3 bonding mode of the dianon generates a polymeric three-dimensional network; the network is consolidated by O–H···O hydrogen bonds (Table 1). The Sr atom exists in an undefined eight-coordinate environment.

For a review of metal arenesulfonates, see: Cai (2004). For a related strontium naphthalenedisulfonate, see: Cai et al. (2001).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a fragment of polymeric Sr(H2O)4(C10H6O6S2).H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Poly[[tetraaqua(µ3-naphthalene-1,6-disulfonato- κ4O1:O6,O6':O6'')strontium] monohydrate] top
Crystal data top
[Sr(C10H6O6S2)(H2O)4]·H2OF(000) = 936
Mr = 463.97Dx = 1.839 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 14836 reflections
a = 7.1067 (16) Åθ = 3.1–27.1°
b = 14.080 (4) ŵ = 3.52 mm1
c = 16.745 (6) ÅT = 293 K
V = 1675.6 (9) Å3Prism, yellow
Z = 40.22 × 0.17 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3786 independent reflections
Radiation source: fine-focus sealed tube3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scanθmax = 27.1°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.511, Tmax = 0.620k = 1618
16056 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3786 reflectionsΔρmax = 0.36 e Å3
220 parametersΔρmin = 0.29 e Å3
15 restraintsAbsolute structure: Flack (1983), 1584 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (4)
Crystal data top
[Sr(C10H6O6S2)(H2O)4]·H2OV = 1675.6 (9) Å3
Mr = 463.97Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1067 (16) ŵ = 3.52 mm1
b = 14.080 (4) ÅT = 293 K
c = 16.745 (6) Å0.22 × 0.17 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3786 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3497 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.620Rint = 0.030
16056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.36 e Å3
S = 1.02Δρmin = 0.29 e Å3
3786 reflectionsAbsolute structure: Flack (1983), 1584 Friedel pairs
220 parametersAbsolute structure parameter: 0.017 (4)
15 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.17295 (3)0.709854 (16)0.858456 (15)0.02516 (7)
S10.05018 (9)0.60924 (5)1.00949 (4)0.03027 (15)
S20.03060 (8)0.15903 (4)1.19980 (4)0.02706 (14)
O10.1183 (2)0.61336 (14)0.92809 (12)0.0384 (5)
O20.1341 (3)0.65457 (14)1.01330 (13)0.0419 (5)
O30.1813 (3)0.64691 (14)1.06765 (13)0.0512 (6)
O40.1872 (3)0.20770 (14)1.23766 (11)0.0367 (4)
O50.1493 (3)0.18114 (15)1.23623 (12)0.0435 (5)
O60.0641 (3)0.05717 (13)1.19636 (13)0.0355 (4)
O1W0.0894 (3)0.84232 (15)0.86687 (16)0.0516 (6)
H110.06280.88060.90360.077*
H120.19390.81690.87640.077*
O2W0.0715 (3)0.68007 (15)0.74884 (13)0.0430 (5)
H210.17010.71060.75920.065*
H220.09640.62180.74670.065*
O3W0.2189 (3)0.54239 (15)0.81275 (15)0.0550 (6)
H310.33230.53400.80040.082*
H320.15060.53200.77280.082*
O4W0.518 (2)0.6538 (11)0.8714 (6)0.069 (2)0.50
H410.58450.69770.89020.103*0.50
H420.52360.60710.90260.103*0.50
O4W'0.506 (2)0.6686 (11)0.9022 (6)0.069 (2)0.50
H430.52830.61150.89120.103*0.50
H440.51600.67700.95170.103*0.50
O5W0.0879 (3)0.98623 (17)0.77588 (17)0.0621 (7)
H510.18810.96250.75770.093*
H520.04790.95020.81230.093*
C10.0216 (3)0.48828 (18)1.03469 (16)0.0273 (6)
C20.0014 (4)0.4641 (2)1.11612 (16)0.0311 (6)
H20.00270.51161.15470.037*
C30.0120 (3)0.37121 (17)1.13822 (17)0.0307 (5)
H30.02400.35611.19210.037*
C40.0081 (3)0.29677 (19)1.08087 (14)0.0242 (5)
C50.0181 (3)0.19898 (19)1.09993 (15)0.0257 (5)
C60.0120 (3)0.1312 (2)1.04032 (17)0.0328 (6)
H60.01710.06711.05360.039*
C70.0016 (4)0.1581 (2)0.96025 (18)0.0371 (7)
H70.00330.11180.92060.045*
C80.0124 (4)0.2518 (2)0.93974 (17)0.0346 (6)
H80.02360.26880.88630.042*
C90.0066 (3)0.32300 (18)0.99881 (15)0.0260 (5)
C100.0232 (3)0.42029 (19)0.97758 (16)0.0290 (6)
H100.03530.43740.92420.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.02683 (11)0.02339 (11)0.02527 (12)0.00045 (10)0.00087 (10)0.00222 (10)
S10.0361 (3)0.0258 (3)0.0289 (4)0.0041 (3)0.0054 (3)0.0052 (3)
S20.0299 (3)0.0254 (3)0.0259 (3)0.0017 (3)0.0003 (3)0.0027 (3)
O10.0372 (10)0.0418 (11)0.0361 (12)0.0039 (8)0.0012 (8)0.0105 (10)
O20.0464 (12)0.0381 (11)0.0412 (13)0.0101 (9)0.0084 (9)0.0077 (10)
O30.0737 (13)0.0331 (11)0.0468 (14)0.0164 (11)0.0289 (13)0.0041 (10)
O40.0434 (9)0.0365 (10)0.0302 (10)0.0086 (11)0.0086 (8)0.0029 (9)
O50.0395 (11)0.0529 (13)0.0381 (12)0.0061 (9)0.0154 (9)0.0089 (10)
O60.0417 (10)0.0255 (10)0.0392 (12)0.0007 (8)0.0055 (9)0.0042 (9)
O1W0.0457 (11)0.0422 (12)0.0667 (16)0.0074 (9)0.0137 (11)0.0032 (12)
O2W0.0438 (10)0.0432 (13)0.0420 (13)0.0003 (9)0.0116 (9)0.0002 (10)
O3W0.0486 (12)0.0399 (12)0.0765 (19)0.0157 (10)0.0014 (11)0.0116 (12)
O4W0.036 (2)0.094 (4)0.075 (6)0.011 (2)0.010 (5)0.009 (5)
O4W'0.036 (2)0.094 (4)0.075 (6)0.011 (2)0.010 (5)0.009 (5)
O5W0.0504 (12)0.0479 (14)0.088 (2)0.0178 (11)0.0124 (12)0.0176 (14)
C10.0272 (12)0.0259 (13)0.0287 (15)0.0009 (10)0.0038 (10)0.0067 (11)
C20.0434 (15)0.0261 (13)0.0237 (15)0.0025 (11)0.0002 (11)0.0010 (10)
C30.0439 (14)0.0294 (13)0.0187 (13)0.0003 (11)0.0009 (12)0.0045 (12)
C40.0233 (10)0.0288 (13)0.0207 (12)0.0010 (10)0.0003 (9)0.0016 (12)
C50.0251 (11)0.0284 (13)0.0238 (13)0.0010 (11)0.0001 (9)0.0009 (11)
C60.0339 (14)0.0284 (14)0.0361 (17)0.0007 (11)0.0043 (12)0.0028 (12)
C70.0439 (16)0.0365 (17)0.0309 (16)0.0010 (14)0.0008 (13)0.0134 (13)
C80.0399 (14)0.0418 (16)0.0222 (15)0.0024 (12)0.0030 (11)0.0032 (12)
C90.0228 (11)0.0304 (14)0.0248 (14)0.0027 (10)0.0019 (10)0.0005 (11)
C100.0335 (13)0.0333 (14)0.0202 (14)0.0016 (11)0.0016 (10)0.0036 (11)
Geometric parameters (Å, º) top
Sr1—O12.737 (2)O3W—H320.8400
Sr1—O22.721 (2)O4W—H410.8400
Sr1—O3i2.583 (2)O4W—H420.8400
Sr1—O4ii2.5352 (19)O4W'—H430.8400
Sr1—O1W2.641 (2)O4W'—H440.8401
Sr1—O2W2.562 (2)O5W—H510.8430
Sr1—O3W2.500 (2)O5W—H520.8433
Sr1—O4W2.585 (14)C1—C101.353 (4)
Sr1—O4W'2.542 (15)C1—C21.413 (4)
S1—O11.448 (2)C2—C31.363 (4)
S1—O31.448 (2)C2—H20.9300
S1—O21.458 (2)C3—C41.422 (4)
S1—C11.766 (3)C3—H30.9300
S2—O51.450 (2)C4—C51.415 (4)
S2—O41.4526 (19)C4—C91.427 (3)
S2—O61.4550 (19)C5—C61.382 (4)
S2—C51.767 (3)C6—C71.397 (4)
O3—Sr1iii2.583 (2)C6—H60.9300
O4—Sr1iv2.5352 (19)C7—C81.366 (4)
O1W—H110.8401C7—H70.9300
O1W—H120.8399C8—C91.409 (4)
O2W—H210.8399C8—H80.9300
O2W—H220.8399C9—C101.420 (4)
O3W—H310.8401C10—H100.9300
O3W—Sr1—O4ii97.84 (7)S1—O3—Sr1iii150.00 (13)
O3W—Sr1—O4W'75.6 (3)S2—O4—Sr1iv149.83 (12)
O4ii—Sr1—O4W'88.3 (3)Sr1—O1W—H11109.5
O3W—Sr1—O2W73.44 (7)Sr1—O1W—H12109.5
O4ii—Sr1—O2W76.65 (7)H11—O1W—H12109.5
O4W'—Sr1—O2W143.1 (2)Sr1—O2W—H21109.5
O3W—Sr1—O3i146.15 (7)Sr1—O2W—H22109.5
O4ii—Sr1—O3i82.38 (7)H21—O2W—H22109.5
O4W'—Sr1—O3i70.6 (3)Sr1—O3W—H31109.5
O2W—Sr1—O3i137.99 (7)Sr1—O3W—H32109.5
O3W—Sr1—O4W67.3 (3)H31—O3W—H32109.5
O4ii—Sr1—O4W80.5 (3)Sr1—O4W—H41109.9
O4W'—Sr1—O4W12.6 (3)Sr1—O4W—H42109.6
O2W—Sr1—O4W130.8 (2)H41—O4W—H42108.4
O3i—Sr1—O4W79.5 (3)Sr1—O4W—H43114.0
O3W—Sr1—O1W140.76 (7)Sr1—O4W'—H43109.6
O4ii—Sr1—O1W89.77 (7)H41—O4W'—H43109.5
O4W'—Sr1—O1W143.4 (3)Sr1—O4W'—H44109.5
O2W—Sr1—O1W71.03 (7)H43—O4W'—H44109.5
O3i—Sr1—O1W72.92 (8)H51—O5W—H52107.9
O4W—Sr1—O1W151.7 (3)C10—C1—C2120.8 (2)
O3W—Sr1—O292.01 (8)C10—C1—S1120.8 (2)
O4ii—Sr1—O2158.59 (6)C2—C1—S1118.3 (2)
O4W'—Sr1—O275.8 (3)C3—C2—C1120.0 (3)
O2W—Sr1—O2124.55 (7)C3—C2—H2120.0
O3i—Sr1—O278.91 (7)C1—C2—H2120.0
O4W—Sr1—O285.9 (3)C2—C3—C4121.5 (3)
O1W—Sr1—O294.57 (7)C2—C3—H3119.2
O3W—Sr1—O176.18 (7)C4—C3—H3119.2
O4ii—Sr1—O1149.74 (6)C5—C4—C3124.3 (2)
O4W'—Sr1—O1117.8 (4)C5—C4—C9118.2 (2)
O2W—Sr1—O173.20 (7)C3—C4—C9117.5 (2)
O3i—Sr1—O1119.14 (8)C6—C5—C4120.5 (2)
O4W—Sr1—O1122.0 (4)C6—C5—S2117.7 (2)
O1W—Sr1—O178.10 (6)C4—C5—S2121.72 (19)
O2—Sr1—O151.35 (6)C5—C6—C7120.6 (3)
O1—S1—O3113.78 (13)C5—C6—H6119.7
O1—S1—O2108.91 (12)C7—C6—H6119.7
O3—S1—O2112.83 (14)C8—C7—C6120.5 (3)
O1—S1—C1107.58 (13)C8—C7—H7119.8
O3—S1—C1105.46 (12)C6—C7—H7119.8
O2—S1—C1107.94 (12)C7—C8—C9120.6 (3)
O5—S2—O4112.99 (12)C7—C8—H8119.7
O5—S2—O6111.86 (12)C9—C8—H8119.7
O4—S2—O6110.92 (11)C8—C9—C10120.5 (3)
O5—S2—C5106.59 (12)C8—C9—C4119.6 (2)
O4—S2—C5107.54 (11)C10—C9—C4119.8 (2)
O6—S2—C5106.53 (13)C1—C10—C9120.3 (2)
S1—O1—Sr199.67 (9)C1—C10—H10119.8
S1—O2—Sr1100.05 (10)C9—C10—H10119.8
O3—S1—O1—Sr1125.47 (11)O3—S1—C1—C242.8 (2)
O2—S1—O1—Sr11.34 (13)O2—S1—C1—C278.0 (2)
C1—S1—O1—Sr1118.10 (10)C10—C1—C2—C31.6 (4)
O3W—Sr1—O1—S1104.94 (11)S1—C1—C2—C3176.90 (19)
O4ii—Sr1—O1—S1173.28 (9)C1—C2—C3—C40.6 (4)
O4W'—Sr1—O1—S139.8 (3)C2—C3—C4—C5178.8 (2)
O2W—Sr1—O1—S1178.50 (12)C2—C3—C4—C91.2 (4)
O3i—Sr1—O1—S142.42 (12)C3—C4—C5—C6179.6 (2)
O4W—Sr1—O1—S153.5 (3)C9—C4—C5—C60.5 (3)
O1W—Sr1—O1—S1104.96 (11)C3—C4—C5—S21.7 (3)
O2—Sr1—O1—S10.87 (8)C9—C4—C5—S2178.37 (17)
O1—S1—O2—Sr11.35 (13)O5—S2—C5—C6110.1 (2)
O3—S1—O2—Sr1126.00 (12)O4—S2—C5—C6128.4 (2)
C1—S1—O2—Sr1117.88 (11)O6—S2—C5—C69.5 (2)
O3W—Sr1—O2—S171.35 (11)O5—S2—C5—C467.8 (2)
O4ii—Sr1—O2—S1171.05 (13)O4—S2—C5—C453.7 (2)
O4W'—Sr1—O2—S1145.9 (3)O6—S2—C5—C4172.64 (19)
O2W—Sr1—O2—S10.13 (14)C4—C5—C6—C70.8 (4)
O3i—Sr1—O2—S1141.52 (12)S2—C5—C6—C7178.7 (2)
O4W—Sr1—O2—S1138.4 (3)C5—C6—C7—C81.1 (4)
O1W—Sr1—O2—S169.94 (11)C6—C7—C8—C91.1 (4)
O1—Sr1—O2—S10.87 (8)C7—C8—C9—C10178.2 (2)
O1—S1—O3—Sr1iii82.0 (3)C7—C8—C9—C40.8 (4)
O2—S1—O3—Sr1iii42.7 (3)C5—C4—C9—C80.5 (4)
C1—S1—O3—Sr1iii160.3 (3)C3—C4—C9—C8179.6 (2)
O5—S2—O4—Sr1iv23.0 (3)C5—C4—C9—C10177.9 (2)
O6—S2—O4—Sr1iv103.6 (2)C3—C4—C9—C102.2 (3)
C5—S2—O4—Sr1iv140.3 (2)C2—C1—C10—C90.6 (4)
O1—S1—C1—C1013.9 (2)S1—C1—C10—C9177.81 (19)
O3—S1—C1—C10135.7 (2)C8—C9—C10—C1178.6 (2)
O2—S1—C1—C10103.5 (2)C4—C9—C10—C11.3 (4)
O1—S1—C1—C2164.6 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y+3/2, z+2; (iv) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H12···O2iii0.842.252.809 (3)124
O2w—H21···O5v0.842.032.793 (3)151
O2w—H22···O5wvi0.841.952.763 (3)164
O3w—H31···O6vii0.842.092.829 (3)147
O3w—H32···O5wvi0.841.992.754 (3)151
O5w—H51···O6ii0.842.062.874 (3)163
O5w—H52···O1w0.842.022.831 (3)160
Symmetry codes: (ii) x+1/2, y+1, z1/2; (iii) x1/2, y+3/2, z+2; (v) x1/2, y+1, z1/2; (vi) x, y1/2, z+3/2; (vii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Sr(C10H6O6S2)(H2O)4]·H2O
Mr463.97
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.1067 (16), 14.080 (4), 16.745 (6)
V3)1675.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.52
Crystal size (mm)0.22 × 0.17 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.511, 0.620
No. of measured, independent and
observed [I > 2σ(I)] reflections
16056, 3786, 3497
Rint0.030
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.02
No. of reflections3786
No. of parameters220
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.29
Absolute structureFlack (1983), 1584 Friedel pairs
Absolute structure parameter0.017 (4)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sr1—O12.737 (2)Sr1—O1W2.641 (2)
Sr1—O22.721 (2)Sr1—O2W2.562 (2)
Sr1—O3i2.583 (2)Sr1—O3W2.500 (2)
Sr1—O4ii2.5352 (19)Sr1—O4W2.585 (14)
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H12···O2iii0.842.252.809 (3)124
O2w—H21···O5iv0.842.032.793 (3)151
O2w—H22···O5wv0.841.952.763 (3)164
O3w—H31···O6vi0.842.092.829 (3)147
O3w—H32···O5wv0.841.992.754 (3)151
O5w—H51···O6ii0.842.062.874 (3)163
O5w—H52···O1w0.842.022.831 (3)160
Symmetry codes: (ii) x+1/2, y+1, z1/2; (iii) x1/2, y+3/2, z+2; (iv) x1/2, y+1, z1/2; (v) x, y1/2, z+3/2; (vi) x+1/2, y+1/2, z+2.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCai, J. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. & Chen, X.-M. (2001). Acta Cryst. B57, 520–530.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds