organic compounds
Guanidinium 2-(myristoylsulfanyl)ethanesulfonate
aDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
*Correspondence e-mail: gpyap@udel.edu
In the title compound, CH6N3+·C16H31O4S2− [systematic name: guanidinium 2-(tetradecanoylsulfanyl)ethanesulfonate], each 2-(myristoylthio)ethanesulfonate ion displays hydrogen bonding to three guanidinium counter-ions, which themselves display hydrogen bonding to two symmetry-related 2-(myristoylthio)ethanesulfonate ions. Thus each cation forms six N—H⋯O bonds to neighboring anions, thereby self-assembling an extended ladder-type network. The average hydrogen-bond donor–acceptor distance is 2.931 (5) Å. The alkyl chains form the rungs of a ladder with hydrogen-bonding interactions forming the side rails.
Related literature
The synthesis of the title compound was adapted from Schramm et al. (1954) and Dalton et al. (1981). For extended networks via hydrogen-bonding in guanidinium organosulfonates, see: Horner et al. (2001, 2007); Russell & Ward (1996). For typical donor-acceptor distances in these compounds, see: Adams (1978); Ashiq et al. (2010). For studies of these structural motifs for use as electronic materials, see: Russell et al. (1994).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536811046472/zj2033sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046472/zj2033Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811046472/zj2033Isup3.cml
The compound synthesis was adapted from Schramm et al. (1954) and Dalton et al. (1981). Guanidinium 2-mercaptoethansulfonate, 1.0 g (5 mmol), and guanidinium carbonate, 0.9 g (9.9 mmol), were added to 20 mL 1:1 acetonitrile/water. The mixture was stirred and purged with dry nitrogen gas. When the guanidinium carbonate completely dissolved, 1.36 mL (5.01 mmol) of myristoyl chloride was added and the reaction was stirred under 1 atmosphere of nitrogen. After one hour, 4 mL 1:1 acetonitrile/water were added to the mixture. The mixture was stirred for an additional hour after which time the guanidinium 2-(myristoylthio)ethanesulfonate precipitate was filtered and collected yielding 1.09 g (2.65 mmol, 53% yield) of product. Crystals suitable for X-ray diffraction were obtained from slow evaporation of a
of the compound from a 9:1 acetonitrile/water mixed solvent.All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms on the guanidium ion were located and refined with 1.2 Ueq of the attached N atom. All other H-atoms were were placed in calculated positions Chemically identical atoms in the disordered portions of the anion constrained to similar 1,2 and 1,3 atom-atom separations, equal atomic displacement parameters, rigid bond restraints and refined to roughly 50/50 site occupancy ratio. Although several C level alerts occur in the checkCIF report, trial refinements with global rigid bond constraints did not significantly improve the structure.
The title compound was prepared as a reagent in attempts to synthesized a myristoylate protein derivative in vitro. The synthesis was adapted from Schramm et al. (1954) and Dalton et al. (1981). During characterization by X-ray diffraction it was observed to display an interesting ladder-type lattice network. It has been previously reported that guanidinium organosulfonates are capable of extended networks via hydrogen-bonding (Russell & Ward 1996, Horner et al. 2001, 2007). As shown in Figure 2 the guanidinium counterions form near planar end caps, the side rails, with the inward facing myristoyl groups interlocking causing a bilayer stacking or the rungs of the extended ladder-type network. The average hydrogen bond donor-acceptor distance is 2.931 (5) Å which is in the typical range observed for these type of compounds (Adams 1978, Ashiq et al. 2010). These structural motifs have previously been studied for use as electronic materials (Russell et al. 1994).
The synthesis of the title compound was adapted from Schramm et al. (1954) and Dalton et al. (1981). For extended networks via hydrogen-bonding in guanidinium organosulfonates, see: Horner et al. (2001, 2007); Russell & Ward (1996). For typical donor-acceptor distances in these compounds, see: Adams (1978); Ashiq et al. (2010). For studies of these structural motifs for use as electronic materials, see: Russell et al. (1994).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular diagram of the structure in the asymmetric unit omitting H-atoms and one of two disordered contributions for clarity. Thermal ellipsoids depicted at 50% probability. | |
Fig. 2. Packing diagram displaying extended ladder network. |
CH6N3+·C16H31O4S2− | F(000) = 896 |
Mr = 411.62 | Dx = 1.189 Mg m−3 |
Monoclinic, P21/c | Melting point: 326 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 25.185 (13) Å | Cell parameters from 4043 reflections |
b = 7.370 (4) Å | θ = 1.7–25.0° |
c = 12.663 (7) Å | µ = 0.26 mm−1 |
β = 101.851 (10)° | T = 200 K |
V = 2300 (2) Å3 | Block, colourless |
Z = 4 | 0.25 × 0.18 × 0.01 mm |
Bruker APEX diffractometer | 5688 independent reflections |
Radiation source: fine-focus sealed tube | 2763 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.085 |
Detector resolution: 836.6 pixels mm-1 | θmax = 28.4°, θmin = 1.7° |
ω scans | h = −33→31 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −9→9 |
Tmin = 0.938, Tmax = 0.997 | l = −16→16 |
18707 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.082 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.247 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.1P)2 + 2.2088P] where P = (Fo2 + 2Fc2)/3 |
5688 reflections | (Δ/σ)max < 0.001 |
292 parameters | Δρmax = 0.45 e Å−3 |
83 restraints | Δρmin = −0.39 e Å−3 |
CH6N3+·C16H31O4S2− | V = 2300 (2) Å3 |
Mr = 411.62 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 25.185 (13) Å | µ = 0.26 mm−1 |
b = 7.370 (4) Å | T = 200 K |
c = 12.663 (7) Å | 0.25 × 0.18 × 0.01 mm |
β = 101.851 (10)° |
Bruker APEX diffractometer | 5688 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2763 reflections with I > 2σ(I) |
Tmin = 0.938, Tmax = 0.997 | Rint = 0.085 |
18707 measured reflections |
R[F2 > 2σ(F2)] = 0.082 | 83 restraints |
wR(F2) = 0.247 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.45 e Å−3 |
5688 reflections | Δρmin = −0.39 e Å−3 |
292 parameters |
Experimental. Data collection is performed with four batch runs at φ = 0.00 ° (600 frames), at φ = 90.00 ° (600 frames), at φ = 180 ° (600 frames) and at φ = 270 ° (600 frames). Frame width = 0.30 \& in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.08990 (4) | 0.52011 (11) | 0.43991 (7) | 0.0377 (3) | |
N1 | 0.05207 (15) | −0.1418 (4) | 0.2036 (3) | 0.0416 (8) | |
H1 | 0.0523 (16) | −0.240 (6) | 0.242 (3) | 0.050* | |
H2 | 0.0514 (17) | −0.145 (6) | 0.140 (3) | 0.050* | |
N2 | 0.05787 (14) | 0.1693 (4) | 0.2060 (3) | 0.0391 (8) | |
H3 | 0.0609 (16) | 0.173 (5) | 0.141 (3) | 0.047* | |
H4 | 0.0627 (16) | 0.264 (6) | 0.243 (3) | 0.047* | |
N3 | 0.05382 (19) | 0.0153 (5) | 0.3608 (3) | 0.0571 (11) | |
H5 | 0.0607 (19) | 0.111 (7) | 0.395 (4) | 0.069* | |
H6 | 0.0504 (19) | −0.080 (7) | 0.392 (4) | 0.069* | |
O1 | 0.08125 (13) | 0.5176 (3) | 0.3228 (2) | 0.0514 (8) | |
O2 | 0.07864 (11) | 0.3453 (3) | 0.48467 (19) | 0.0428 (7) | |
O3 | 0.06170 (10) | 0.6702 (3) | 0.47983 (19) | 0.0399 (7) | |
C1 | 0.05490 (16) | 0.0131 (5) | 0.2569 (3) | 0.0362 (8) | |
C2 | 0.15997 (19) | 0.5593 (6) | 0.4892 (5) | 0.0568 (12) | |
H2A | 0.1790 (17) | 0.452 (6) | 0.460 (3) | 0.056 (12)* | |
H2B | 0.163 (2) | 0.543 (6) | 0.561 (4) | 0.071 (16)* | |
C4 | 0.2617 (4) | 0.7903 (14) | 0.3451 (6) | 0.0384 (15) | 0.4984 (16) |
C5 | 0.3212 (4) | 0.8295 (14) | 0.3533 (7) | 0.0417 (17) | 0.4984 (16) |
H5A | 0.3416 | 0.7860 | 0.4241 | 0.050* | 0.4984 (16) |
H5B | 0.3264 | 0.9625 | 0.3507 | 0.050* | 0.4984 (16) |
C6 | 0.3447 (4) | 0.7415 (18) | 0.2645 (7) | 0.0376 (18) | 0.4984 (16) |
H6A | 0.3218 | 0.7726 | 0.1935 | 0.045* | 0.4984 (16) |
H6B | 0.3442 | 0.6080 | 0.2727 | 0.045* | 0.4984 (16) |
C7 | 0.4024 (4) | 0.804 (2) | 0.2678 (8) | 0.043 (2) | 0.4984 (16) |
H7A | 0.4009 | 0.9353 | 0.2512 | 0.052* | 0.4984 (16) |
H7B | 0.4226 | 0.7906 | 0.3432 | 0.052* | 0.4984 (16) |
C24 | 0.2725 (4) | 0.7552 (13) | 0.3933 (6) | 0.0384 (15) | 0.5016 (16) |
C25 | 0.3012 (4) | 0.8162 (14) | 0.3060 (7) | 0.0417 (17) | 0.5016 (16) |
H25A | 0.3063 | 0.9493 | 0.3117 | 0.050* | 0.5016 (16) |
H25B | 0.2775 | 0.7904 | 0.2350 | 0.050* | 0.5016 (16) |
C26 | 0.3560 (4) | 0.7276 (17) | 0.3097 (7) | 0.0376 (18) | 0.5016 (16) |
H26A | 0.3509 | 0.5950 | 0.2998 | 0.045* | 0.5016 (16) |
H26B | 0.3794 | 0.7484 | 0.3816 | 0.045* | 0.5016 (16) |
C27 | 0.3847 (5) | 0.801 (2) | 0.2231 (7) | 0.043 (2) | 0.5016 (16) |
H27A | 0.3576 | 0.7993 | 0.1543 | 0.052* | 0.5016 (16) |
H27B | 0.3930 | 0.9299 | 0.2408 | 0.052* | 0.5016 (16) |
C8 | 0.4335 (2) | 0.7213 (6) | 0.2010 (5) | 0.0800 (17) | |
H8A | 0.4066 | 0.6723 | 0.1395 | 0.096* | |
H8B | 0.4501 | 0.6143 | 0.2423 | 0.096* | |
C9 | 0.4748 (2) | 0.7936 (6) | 0.1544 (5) | 0.0821 (18) | |
H9A | 0.4554 | 0.8766 | 0.0980 | 0.098* | |
H9B | 0.4953 | 0.8733 | 0.2115 | 0.098* | |
C10 | 0.5146 (2) | 0.7172 (7) | 0.1078 (5) | 0.088 (2) | |
H10A | 0.4942 | 0.6379 | 0.0505 | 0.106* | |
H10B | 0.5340 | 0.6338 | 0.1640 | 0.106* | |
C11 | 0.5558 (2) | 0.7898 (6) | 0.0618 (5) | 0.0740 (16) | |
H11A | 0.5366 | 0.8746 | 0.0063 | 0.089* | |
H11B | 0.5767 | 0.8675 | 0.1195 | 0.089* | |
C12 | 0.5952 (2) | 0.7120 (7) | 0.0142 (6) | 0.098 (2) | |
H12A | 0.5741 | 0.6355 | −0.0439 | 0.117* | |
H12B | 0.6138 | 0.6258 | 0.0695 | 0.117* | |
C13 | 0.6371 (2) | 0.7811 (6) | −0.0313 (4) | 0.0693 (15) | |
H13A | 0.6507 | 0.8881 | 0.0134 | 0.083* | |
H13B | 0.6187 | 0.8300 | −0.1023 | 0.083* | |
C14 | 0.6846 (4) | 0.6936 (15) | −0.0512 (7) | 0.0436 (17) | 0.4984 (16) |
H14A | 0.6734 | 0.5684 | −0.0738 | 0.052* | 0.4984 (16) |
H14B | 0.7095 | 0.6830 | 0.0200 | 0.052* | 0.4984 (16) |
C34 | 0.6675 (3) | 0.6978 (15) | −0.1047 (7) | 0.0436 (17) | 0.5016 (16) |
H34A | 0.6730 | 0.5698 | −0.0812 | 0.052* | 0.5016 (16) |
H34B | 0.6424 | 0.6949 | −0.1760 | 0.052* | 0.5016 (16) |
C15 | 0.7177 (2) | 0.7554 (6) | −0.1253 (5) | 0.0736 (15) | |
H15A | 0.6916 | 0.8067 | −0.1873 | 0.088* | |
H15B | 0.7382 | 0.8603 | −0.0887 | 0.088* | |
C16 | 0.7555 (3) | 0.6604 (7) | −0.1720 (6) | 0.104 (2) | |
H16A | 0.7742 | 0.5806 | −0.1131 | 0.125* | |
H16B | 0.7327 | 0.5784 | −0.2245 | 0.125* | |
C17 | 0.7963 (3) | 0.7127 (8) | −0.2238 (6) | 0.111 (2) | |
H17A | 0.8139 | 0.6046 | −0.2462 | 0.166* | |
H17B | 0.8232 | 0.7851 | −0.1745 | 0.166* | |
H17C | 0.7809 | 0.7854 | −0.2875 | 0.166* | |
S2 | 0.24330 (9) | 0.7885 (4) | 0.47364 (18) | 0.0565 (5) | 0.4984 (16) |
O4 | 0.2287 (2) | 0.7707 (10) | 0.2631 (4) | 0.0637 (18) | 0.4984 (16) |
C3 | 0.1879 (3) | 0.7406 (17) | 0.4910 (9) | 0.0534 (19) | 0.4984 (16) |
H3A | 0.1865 | 0.7925 | 0.5625 | 0.064* | 0.4984 (16) |
H3B | 0.1628 | 0.8153 | 0.4378 | 0.064* | 0.4984 (16) |
S22 | 0.20209 (9) | 0.7959 (4) | 0.36378 (18) | 0.0565 (5) | 0.5016 (16) |
O24 | 0.2953 (2) | 0.6859 (9) | 0.4769 (4) | 0.0584 (16) | 0.5016 (16) |
C23 | 0.1698 (4) | 0.7495 (17) | 0.4390 (8) | 0.0534 (19) | 0.5016 (16) |
H23A | 0.1330 | 0.7943 | 0.4062 | 0.064* | 0.5016 (16) |
H23B | 0.1830 | 0.8289 | 0.5019 | 0.064* | 0.5016 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0548 (6) | 0.0278 (5) | 0.0337 (5) | −0.0039 (4) | 0.0167 (4) | −0.0003 (4) |
N1 | 0.066 (2) | 0.0291 (16) | 0.0317 (17) | −0.0027 (16) | 0.0143 (17) | −0.0002 (14) |
N2 | 0.056 (2) | 0.0286 (17) | 0.0352 (18) | −0.0036 (15) | 0.0150 (16) | −0.0022 (13) |
N3 | 0.114 (4) | 0.0287 (17) | 0.0329 (18) | −0.005 (2) | 0.024 (2) | −0.0012 (14) |
O1 | 0.095 (2) | 0.0311 (14) | 0.0330 (14) | −0.0013 (14) | 0.0238 (14) | 0.0015 (11) |
O2 | 0.0652 (18) | 0.0293 (13) | 0.0364 (14) | −0.0084 (13) | 0.0166 (13) | 0.0037 (10) |
O3 | 0.0531 (17) | 0.0329 (13) | 0.0379 (14) | 0.0008 (12) | 0.0188 (12) | −0.0006 (10) |
C1 | 0.046 (2) | 0.0285 (18) | 0.0342 (18) | −0.0014 (16) | 0.0083 (16) | 0.0005 (15) |
C2 | 0.052 (3) | 0.049 (3) | 0.077 (4) | 0.000 (2) | 0.030 (3) | −0.008 (2) |
C4 | 0.042 (4) | 0.035 (4) | 0.036 (4) | −0.003 (3) | 0.002 (3) | −0.004 (4) |
C5 | 0.051 (6) | 0.035 (3) | 0.040 (5) | −0.010 (4) | 0.010 (4) | −0.008 (4) |
C6 | 0.039 (4) | 0.036 (3) | 0.036 (6) | −0.002 (3) | 0.004 (4) | 0.002 (5) |
C7 | 0.054 (7) | 0.038 (2) | 0.039 (6) | −0.008 (5) | 0.011 (4) | −0.005 (6) |
C24 | 0.042 (4) | 0.035 (4) | 0.036 (4) | −0.003 (3) | 0.002 (3) | −0.004 (4) |
C25 | 0.051 (6) | 0.035 (3) | 0.040 (5) | −0.010 (4) | 0.010 (4) | −0.008 (4) |
C26 | 0.039 (4) | 0.036 (3) | 0.036 (6) | −0.002 (3) | 0.004 (4) | 0.002 (5) |
C27 | 0.054 (7) | 0.038 (2) | 0.039 (6) | −0.008 (5) | 0.011 (4) | −0.005 (6) |
C8 | 0.064 (3) | 0.040 (2) | 0.152 (5) | −0.001 (2) | 0.057 (4) | −0.006 (3) |
C9 | 0.106 (4) | 0.035 (2) | 0.129 (5) | −0.003 (3) | 0.081 (4) | 0.002 (3) |
C10 | 0.079 (4) | 0.041 (3) | 0.167 (6) | −0.003 (3) | 0.077 (4) | −0.011 (3) |
C11 | 0.091 (4) | 0.039 (2) | 0.111 (4) | 0.000 (2) | 0.065 (3) | 0.006 (3) |
C12 | 0.089 (4) | 0.039 (3) | 0.193 (7) | −0.004 (3) | 0.095 (5) | −0.008 (3) |
C13 | 0.091 (4) | 0.040 (2) | 0.093 (4) | −0.001 (2) | 0.055 (3) | 0.001 (2) |
C14 | 0.051 (5) | 0.036 (2) | 0.044 (5) | 0.003 (4) | 0.011 (4) | 0.002 (5) |
C34 | 0.051 (5) | 0.036 (2) | 0.044 (5) | 0.003 (4) | 0.011 (4) | 0.002 (5) |
C15 | 0.085 (4) | 0.046 (3) | 0.108 (4) | −0.005 (3) | 0.059 (3) | −0.005 (3) |
C16 | 0.101 (5) | 0.045 (3) | 0.195 (7) | −0.001 (3) | 0.100 (5) | −0.003 (4) |
C17 | 0.125 (6) | 0.074 (4) | 0.165 (7) | −0.012 (4) | 0.102 (5) | −0.019 (4) |
S2 | 0.0356 (8) | 0.0827 (12) | 0.0492 (9) | −0.0116 (8) | 0.0037 (7) | 0.0106 (8) |
O4 | 0.042 (3) | 0.103 (5) | 0.044 (3) | 0.001 (3) | 0.003 (3) | −0.017 (3) |
C3 | 0.024 (4) | 0.056 (3) | 0.075 (6) | −0.007 (4) | −0.003 (4) | −0.002 (5) |
S22 | 0.0356 (8) | 0.0827 (12) | 0.0492 (9) | −0.0116 (8) | 0.0037 (7) | 0.0106 (8) |
O24 | 0.053 (4) | 0.075 (4) | 0.043 (3) | 0.005 (3) | 0.001 (3) | 0.015 (3) |
C23 | 0.024 (4) | 0.056 (3) | 0.075 (6) | −0.007 (4) | −0.003 (4) | −0.002 (5) |
S1—O1 | 1.454 (3) | C8—C9 | 1.402 (6) |
S1—O2 | 1.459 (2) | C8—H8A | 0.9900 |
S1—O3 | 1.459 (3) | C8—H8B | 0.9900 |
S1—C2 | 1.771 (5) | C9—C10 | 1.382 (6) |
N1—C1 | 1.321 (5) | C9—H9A | 0.9900 |
N1—H1 | 0.87 (4) | C9—H9B | 0.9900 |
N1—H2 | 0.80 (4) | C10—C11 | 1.397 (6) |
N2—C1 | 1.329 (4) | C10—H10A | 0.9900 |
N2—H3 | 0.84 (4) | C10—H10B | 0.9900 |
N2—H4 | 0.84 (4) | C11—C12 | 1.385 (6) |
N3—C1 | 1.322 (5) | C11—H11A | 0.9900 |
N3—H5 | 0.83 (5) | C11—H11B | 0.9900 |
N3—H6 | 0.82 (5) | C12—C13 | 1.398 (6) |
C2—C3 | 1.507 (12) | C12—H12A | 0.9900 |
C2—C23 | 1.580 (12) | C12—H12B | 0.9900 |
C2—H2A | 1.03 (4) | C13—C14 | 1.426 (9) |
C2—H2B | 0.90 (5) | C13—C34 | 1.457 (9) |
C4—O4 | 1.199 (9) | C13—H13A | 0.9900 |
C4—C5 | 1.508 (11) | C13—H13B | 0.9900 |
C4—S2 | 1.781 (9) | C14—C15 | 1.452 (9) |
C5—C6 | 1.520 (10) | C14—H14A | 0.9900 |
C5—H5A | 0.9900 | C14—H14B | 0.9900 |
C5—H5B | 0.9900 | C34—C15 | 1.409 (9) |
C6—C7 | 1.516 (11) | C34—H34A | 0.9900 |
C6—H6A | 0.9900 | C34—H34B | 0.9900 |
C6—H6B | 0.9900 | C15—C16 | 1.405 (6) |
C7—C8 | 1.405 (14) | C15—H15A | 0.9900 |
C7—H7A | 0.9900 | C15—H15B | 0.9900 |
C7—H7B | 0.9900 | C16—C17 | 1.384 (7) |
C24—O24 | 1.209 (8) | C16—H16A | 0.9900 |
C24—C25 | 1.507 (10) | C16—H16B | 0.9900 |
C24—S22 | 1.762 (9) | C17—H17A | 0.9800 |
C25—C26 | 1.520 (11) | C17—H17B | 0.9800 |
C25—H25A | 0.9900 | C17—H17C | 0.9800 |
C25—H25B | 0.9900 | S2—C3 | 1.500 (9) |
C26—C27 | 1.529 (11) | C3—H3A | 0.9900 |
C26—H26A | 0.9900 | C3—H3B | 0.9900 |
C26—H26B | 0.9900 | S22—C23 | 1.415 (9) |
C27—C8 | 1.440 (14) | C23—H23A | 0.9900 |
C27—H27A | 0.9900 | C23—H23B | 0.9900 |
C27—H27B | 0.9900 | ||
O1—S1—O2 | 112.64 (15) | C10—C9—H9A | 103.8 |
O1—S1—O3 | 112.41 (16) | C8—C9—H9A | 103.8 |
O2—S1—O3 | 112.79 (15) | C10—C9—H9B | 103.8 |
O1—S1—C2 | 106.9 (2) | C8—C9—H9B | 103.8 |
O2—S1—C2 | 105.5 (2) | H9A—C9—H9B | 105.4 |
O3—S1—C2 | 106.0 (2) | C9—C10—C11 | 133.5 (5) |
C1—N1—H1 | 116 (3) | C9—C10—H10A | 103.8 |
C1—N1—H2 | 122 (3) | C11—C10—H10A | 103.8 |
H1—N1—H2 | 122 (4) | C9—C10—H10B | 103.8 |
C1—N2—H3 | 122 (3) | C11—C10—H10B | 103.8 |
C1—N2—H4 | 118 (3) | H10A—C10—H10B | 105.4 |
H3—N2—H4 | 120 (4) | C12—C11—C10 | 133.0 (5) |
C1—N3—H5 | 119 (3) | C12—C11—H11A | 104.0 |
C1—N3—H6 | 120 (3) | C10—C11—H11A | 104.0 |
H5—N3—H6 | 120 (5) | C12—C11—H11B | 104.0 |
N1—C1—N3 | 120.6 (3) | C10—C11—H11B | 104.0 |
N1—C1—N2 | 120.2 (3) | H11A—C11—H11B | 105.4 |
N3—C1—N2 | 119.1 (3) | C11—C12—C13 | 134.1 (5) |
C3—C2—S1 | 125.3 (5) | C11—C12—H12A | 103.7 |
C23—C2—S1 | 103.3 (4) | C13—C12—H12A | 103.7 |
C3—C2—H2A | 116 (2) | C11—C12—H12B | 103.7 |
C23—C2—H2A | 114 (2) | C13—C12—H12B | 103.7 |
S1—C2—H2A | 105 (2) | H12A—C12—H12B | 105.3 |
C3—C2—H2B | 99 (3) | C12—C13—C14 | 129.7 (6) |
C23—C2—H2B | 122 (3) | C12—C13—C34 | 130.6 (6) |
S1—C2—H2B | 102 (3) | C12—C13—H13A | 104.8 |
H2A—C2—H2B | 108 (4) | C14—C13—H13A | 104.8 |
O4—C4—C5 | 125.8 (8) | C34—C13—H13A | 122.3 |
O4—C4—S2 | 121.7 (7) | C12—C13—H13B | 104.8 |
C5—C4—S2 | 112.3 (6) | C14—C13—H13B | 104.8 |
C4—C5—C6 | 113.5 (8) | C34—C13—H13B | 77.4 |
C4—C5—H5A | 108.9 | H13A—C13—H13B | 105.8 |
C6—C5—H5A | 108.9 | C13—C14—C15 | 125.9 (8) |
C4—C5—H5B | 108.9 | C13—C14—H14A | 105.8 |
C6—C5—H5B | 108.9 | C15—C14—H14A | 105.8 |
H5A—C5—H5B | 107.7 | C13—C14—H14B | 105.8 |
C5—C6—C7 | 111.5 (9) | C15—C14—H14B | 105.8 |
C5—C6—H6A | 109.3 | H14A—C14—H14B | 106.2 |
C7—C6—H6A | 109.3 | C15—C34—C13 | 127.0 (8) |
C5—C6—H6B | 109.3 | C15—C34—H34A | 105.6 |
C7—C6—H6B | 109.3 | C13—C34—H34A | 105.6 |
H6A—C6—H6B | 108.0 | C15—C34—H34B | 105.6 |
C8—C7—C6 | 120.1 (9) | C13—C34—H34B | 105.6 |
C8—C7—H7A | 107.3 | H34A—C34—H34B | 106.1 |
C6—C7—H7A | 107.3 | C34—C15—C16 | 129.7 (6) |
C8—C7—H7B | 107.3 | C16—C15—C14 | 130.1 (6) |
C6—C7—H7B | 107.3 | C34—C15—H15A | 77.6 |
H7A—C7—H7B | 106.9 | C16—C15—H15A | 104.7 |
O24—C24—C25 | 123.7 (8) | C14—C15—H15A | 104.7 |
O24—C24—S22 | 122.3 (7) | C34—C15—H15B | 123.3 |
C25—C24—S22 | 114.0 (6) | C16—C15—H15B | 104.7 |
C24—C25—C26 | 114.8 (8) | C14—C15—H15B | 104.7 |
C24—C25—H25A | 108.6 | H15A—C15—H15B | 105.7 |
C26—C25—H25A | 108.6 | C17—C16—C15 | 133.9 (5) |
C24—C25—H25B | 108.6 | C17—C16—H16A | 103.7 |
C26—C25—H25B | 108.6 | C15—C16—H16A | 103.7 |
H25A—C25—H25B | 107.6 | C17—C16—H16B | 103.7 |
C25—C26—C27 | 112.8 (9) | C15—C16—H16B | 103.7 |
C25—C26—H26A | 109.0 | H16A—C16—H16B | 105.4 |
C27—C26—H26A | 109.0 | C16—C17—H17A | 109.5 |
C25—C26—H26B | 109.0 | C16—C17—H17B | 109.5 |
C27—C26—H26B | 109.0 | H17A—C17—H17B | 109.5 |
H26A—C26—H26B | 107.8 | C16—C17—H17C | 109.5 |
C8—C27—C26 | 122.9 (10) | H17A—C17—H17C | 109.5 |
C8—C27—H27A | 106.6 | H17B—C17—H17C | 109.5 |
C26—C27—H27A | 106.6 | C3—S2—C4 | 124.1 (5) |
C8—C27—H27B | 106.6 | C2—C3—S2 | 130.6 (8) |
C26—C27—H27B | 106.6 | C2—C3—H3A | 104.6 |
H27A—C27—H27B | 106.6 | S2—C3—H3A | 104.6 |
C7—C8—C9 | 130.0 (7) | C2—C3—H3B | 104.6 |
C7—C8—C27 | 26.2 (4) | S2—C3—H3B | 104.6 |
C9—C8—C27 | 131.6 (7) | H3A—C3—H3B | 105.7 |
C7—C8—H8A | 104.8 | C23—S22—C24 | 120.6 (5) |
C9—C8—H8A | 104.8 | S22—C23—C2 | 130.1 (9) |
C27—C8—H8A | 80.1 | S22—C23—H23A | 104.7 |
C7—C8—H8B | 104.8 | C2—C23—H23A | 104.7 |
C9—C8—H8B | 104.8 | S22—C23—H23B | 104.7 |
C27—C8—H8B | 120.4 | C2—C23—H23B | 104.7 |
H8A—C8—H8B | 105.8 | H23A—C23—H23B | 105.7 |
C10—C9—C8 | 133.7 (5) | ||
O1—S1—C2—C3 | 77.5 (7) | C11—C12—C13—C14 | 160.2 (8) |
O2—S1—C2—C3 | −162.4 (6) | C11—C12—C13—C34 | −161.4 (8) |
O3—S1—C2—C3 | −42.6 (7) | C12—C13—C14—C15 | 161.0 (8) |
O1—S1—C2—C23 | 60.2 (5) | C34—C13—C14—C15 | 56.8 (12) |
O2—S1—C2—C23 | −179.7 (5) | C12—C13—C34—C15 | −162.1 (8) |
O3—S1—C2—C23 | −59.9 (5) | C14—C13—C34—C15 | −61.0 (13) |
O4—C4—C5—C6 | −33.4 (15) | C13—C34—C15—C16 | 162.0 (8) |
S2—C4—C5—C6 | 150.1 (8) | C13—C34—C15—C14 | 58.6 (13) |
C4—C5—C6—C7 | 172.8 (9) | C13—C14—C15—C34 | −59.3 (13) |
C5—C6—C7—C8 | 172.1 (9) | C13—C14—C15—C16 | −161.1 (8) |
O24—C24—C25—C26 | 20.9 (14) | C34—C15—C16—C17 | 157.6 (9) |
S22—C24—C25—C26 | −159.7 (7) | C14—C15—C16—C17 | −163.9 (9) |
C24—C25—C26—C27 | −177.2 (9) | O4—C4—S2—C3 | 7.9 (12) |
C25—C26—C27—C8 | −171.4 (9) | C5—C4—S2—C3 | −175.6 (8) |
C6—C7—C8—C9 | 149.4 (9) | C23—C2—C3—S2 | −104.3 (19) |
C6—C7—C8—C27 | 44.5 (16) | S1—C2—C3—S2 | −144.0 (7) |
C26—C27—C8—C7 | −58.2 (18) | C4—S2—C3—C2 | 74.8 (11) |
C26—C27—C8—C9 | −156.3 (9) | O24—C24—S22—C23 | 0.7 (12) |
C7—C8—C9—C10 | 163.9 (9) | C25—C24—S22—C23 | −178.6 (8) |
C27—C8—C9—C10 | −161.3 (8) | C24—S22—C23—C2 | −59.9 (11) |
C8—C9—C10—C11 | −179.8 (7) | C3—C2—C23—S22 | 96.7 (16) |
C9—C10—C11—C12 | −179.1 (8) | S1—C2—C23—S22 | −115.7 (8) |
C10—C11—C12—C13 | −179.2 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.87 (4) | 2.12 (4) | 2.943 (4) | 159 (4) |
N1—H2···O3ii | 0.80 (4) | 2.11 (4) | 2.900 (4) | 171 (4) |
N1—H2···S1ii | 0.80 (4) | 3.04 (4) | 3.764 (4) | 152 (4) |
N2—H3···O2ii | 0.84 (4) | 2.12 (4) | 2.957 (4) | 171 (4) |
N2—H4···O1 | 0.84 (4) | 2.13 (4) | 2.960 (4) | 172 (4) |
N3—H5···O2 | 0.83 (5) | 2.06 (5) | 2.892 (4) | 178 (5) |
N3—H6···O3i | 0.82 (5) | 2.14 (5) | 2.942 (4) | 167 (5) |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | CH6N3+·C16H31O4S2− |
Mr | 411.62 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 25.185 (13), 7.370 (4), 12.663 (7) |
β (°) | 101.851 (10) |
V (Å3) | 2300 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.25 × 0.18 × 0.01 |
Data collection | |
Diffractometer | Bruker APEX |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.938, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18707, 5688, 2763 |
Rint | 0.085 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.082, 0.247, 1.01 |
No. of reflections | 5688 |
No. of parameters | 292 |
No. of restraints | 83 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.39 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.87 (4) | 2.12 (4) | 2.943 (4) | 159 (4) |
N1—H2···O3ii | 0.80 (4) | 2.11 (4) | 2.900 (4) | 171 (4) |
N1—H2···S1ii | 0.80 (4) | 3.04 (4) | 3.764 (4) | 152 (4) |
N2—H3···O2ii | 0.84 (4) | 2.12 (4) | 2.957 (4) | 171 (4) |
N2—H4···O1 | 0.84 (4) | 2.13 (4) | 2.960 (4) | 172 (4) |
N3—H5···O2 | 0.83 (5) | 2.06 (5) | 2.892 (4) | 178 (5) |
N3—H6···O3i | 0.82 (5) | 2.14 (5) | 2.942 (4) | 167 (5) |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
This work was supported by the National Science Foundation (grants CHE-0616375 and CHE-0911081) and the Department of Energy (grant DE—FG02–92ER14273).
References
Adams, J. M. (1978). Acta Cryst. B34, 1218–1220. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ashiq, M. I., Hussain, I., Dixon, S., Light, M. E. & Kilburn, J. D. (2010). Acta Cryst. C66, o455–o458. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dalton, J. R., Kirkpatrick, A. & Maclaren, J. A. (1981). Aust. J. Chem. 34, 759–763. CrossRef CAS Google Scholar
Horner, M. J., Holman, K. T. & Ward, M. D. (2001). Angew. Chem. Int. Ed. 40, 4045–4048. Web of Science CrossRef CAS Google Scholar
Horner, M. J., Holman, K. T. & Ward, M. D. (2007). J. Am. Chem. Soc. 129, 14640–14660. Web of Science CSD CrossRef PubMed CAS Google Scholar
Russell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941–1952. CSD CrossRef CAS Web of Science Google Scholar
Russell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654–1666. CrossRef CAS Web of Science Google Scholar
Schramm, C. H., Lemaire, H. & Karlson, R. H. (1954). J. Am. Chem. Soc. 77, 6231–6233. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Gottingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was prepared as a reagent in attempts to synthesized a myristoylate protein derivative in vitro. The synthesis was adapted from Schramm et al. (1954) and Dalton et al. (1981). During characterization by X-ray diffraction it was observed to display an interesting ladder-type lattice network. It has been previously reported that guanidinium organosulfonates are capable of extended networks via hydrogen-bonding (Russell & Ward 1996, Horner et al. 2001, 2007). As shown in Figure 2 the guanidinium counterions form near planar end caps, the side rails, with the inward facing myristoyl groups interlocking causing a bilayer stacking or the rungs of the extended ladder-type network. The average hydrogen bond donor-acceptor distance is 2.931 (5) Å which is in the typical range observed for these type of compounds (Adams 1978, Ashiq et al. 2010). These structural motifs have previously been studied for use as electronic materials (Russell et al. 1994).