organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,8-Di­bromo-15-cyano-2,11-di­thia­[3.3]para­cyclo­phane

aKey Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: zhhua2011@126.com

(Received 12 October 2011; accepted 15 November 2011; online 23 November 2011)

In the title compound [systematic name: 13,15-dibromo-3,10-dithia­tricyclo­[10.2.2.25,8]octa­deca-1(14),5,7,12,15,17-hexa­ene-6-carbonitrile], C17H13Br2NS2, the mean planes of the benzene rings are almost parallel, making a dihedral angle of 1.1 (2)°, and the distance between the ring centroids is 3.294 (3) Å, which is shorter than the normal packing distance of aromatic rings (about 3.4 Å), indicating a strong ππ inter­action. The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

Related literature

For the preparation of the title compound, see: Wang et al. (2006[Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277-7285.]). For related structures, see: Clément et al. (2009[Clément, S., Guyard, L., Knorr, M., Däschlein, C. & Strohmann, C. (2009). Acta Cryst. E65, o528.]); Jin & Lu (2010[Jin, G. & Lu, Y. (2010). Acta Cryst. E66, o2144.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13Br2NS2

  • Mr = 455.22

  • Triclinic, [P \overline 1]

  • a = 6.9433 (11) Å

  • b = 9.0591 (14) Å

  • c = 13.888 (2) Å

  • α = 79.825 (2)°

  • β = 85.047 (3)°

  • γ = 76.275 (2)°

  • V = 834.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.10 mm−1

  • T = 298 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 5570 measured reflections

  • 3395 independent reflections

  • 2589 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.152

  • S = 0.99

  • 3395 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The benzene dimer of [2,2]paracyclophane is know to play a significant role in chiral catalysis, molecular electronics, and organic solar cells. However, the [3,3]paracyclophane building blocks, which are synthetically more accessible, have received less attention (Clément et al., 2009; Jin & Lu, 2010). Here we report the crystal structure of the title compound, a novel dithia[3,3]paracyclophane bearing cyano and bromido groups.

In the structure of the title compound, C17H13Br2N1S2, the mean planes of the benzene rings are almost parallel with a dihedral angle of 1.1 (2)° and the distance between the centroids of the rings is 3.294 (3) Å, values obtained by the program PLATON (Spek, 2009), which is shorter than the normal packing distance of aromatic rings (about 3.4 Å), indicates a strong π-π interaction. The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

Related literature top

For the preparation of the title compound, see: Wang et al. (2006). For related structures, see: Clément et al. (2009); Jin & Lu (2010).

Experimental top

A solution with equimolar amounts of 2,5-dibromo-1,4-bis(mercaptomethyl)benzene (3.26 g, 10 mmol) and 1,4-dibromomethyl-2-cyanobenzene (2.89, 10 mmol) in degassed THF (500 mL) was added dropwise under N2 over 12 hours to a refluxing solution of potassium carbonate (6.9 g, 50 mmol) in EtOH (1.5L). After additional 2 hours at the reflux temperature (473 K), the mixture was cooled down and the solvent was removed. The resulting residue was treated with CH2Cl2 (500 mL) and water (500 mL). The organic phase was separated, and the aqueous phase extracted with CH2Cl2 (three times). The combined organic layers were dried over Na2SO4, then the solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2/petroleum ether (1:1, v/v) as eluent. The product was further purified by recrystallization from toluene (Wang et al., 2006).

Refinement top

All H atoms were positioned with idealized geometry using a riding model, with C—H = 0.93Å for aromatic H atoms, with C—H = 0.97 Å for methylene H atoms, and with Uiso(H) = 1.2Ueq(C). The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

Structure description top

The benzene dimer of [2,2]paracyclophane is know to play a significant role in chiral catalysis, molecular electronics, and organic solar cells. However, the [3,3]paracyclophane building blocks, which are synthetically more accessible, have received less attention (Clément et al., 2009; Jin & Lu, 2010). Here we report the crystal structure of the title compound, a novel dithia[3,3]paracyclophane bearing cyano and bromido groups.

In the structure of the title compound, C17H13Br2N1S2, the mean planes of the benzene rings are almost parallel with a dihedral angle of 1.1 (2)° and the distance between the centroids of the rings is 3.294 (3) Å, values obtained by the program PLATON (Spek, 2009), which is shorter than the normal packing distance of aromatic rings (about 3.4 Å), indicates a strong π-π interaction. The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

For the preparation of the title compound, see: Wang et al. (2006). For related structures, see: Clément et al. (2009); Jin & Lu (2010).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
13,15-dibromo-3,10-dithiatricyclo[10.2.2.25,8]octadeca- 1(14),5,7,12,15,17-hexaene-6-carbonitrile top
Crystal data top
C17H13Br2NS2Z = 2
Mr = 455.22F(000) = 448
Triclinic, P1Dx = 1.812 Mg m3
Dm = 1.812 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9433 (11) ÅCell parameters from 2268 reflections
b = 9.0591 (14) Åθ = 2.6–26.9°
c = 13.888 (2) ŵ = 5.10 mm1
α = 79.825 (2)°T = 298 K
β = 85.047 (3)°Block, colourless
γ = 76.275 (2)°0.2 × 0.2 × 0.2 mm
V = 834.4 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2589 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.098
Graphite monochromatorθmax = 26.5°, θmin = 2.6°
phi and ω scansh = 88
5570 measured reflectionsk = 811
3395 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0859P)2]
where P = (Fo2 + 2Fc2)/3
3395 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C17H13Br2NS2γ = 76.275 (2)°
Mr = 455.22V = 834.4 (2) Å3
Triclinic, P1Z = 2
a = 6.9433 (11) ÅMo Kα radiation
b = 9.0591 (14) ŵ = 5.10 mm1
c = 13.888 (2) ÅT = 298 K
α = 79.825 (2)°0.2 × 0.2 × 0.2 mm
β = 85.047 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2589 reflections with I > 2σ(I)
5570 measured reflectionsRint = 0.098
3395 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.99Δρmax = 1.39 e Å3
3395 reflectionsΔρmin = 0.79 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.19006 (10)0.46219 (7)0.63111 (4)0.0629 (2)
Br20.19842 (8)0.21517 (6)0.88825 (4)0.0464 (2)
C10.1424 (6)0.2546 (5)0.8092 (3)0.0361 (10)
C20.1398 (7)0.1089 (6)0.8587 (3)0.0356 (10)
H20.08890.09720.92300.043*
C30.2114 (7)0.0199 (5)0.8146 (3)0.0339 (10)
C40.2923 (7)0.0096 (6)0.7187 (3)0.0369 (11)
C50.2780 (7)0.1387 (6)0.6673 (4)0.0415 (11)
H50.32070.15110.60160.050*
C60.2027 (7)0.2682 (6)0.7104 (3)0.0368 (10)
C70.0888 (8)0.3899 (6)0.8638 (4)0.0453 (12)
H7A0.04090.39250.89650.054*
H7B0.07950.48410.81700.054*
C80.4903 (8)0.4041 (6)0.8808 (4)0.0415 (11)
H8A0.45780.49270.82960.050*
H8B0.58280.42510.92230.050*
C90.5938 (6)0.2654 (5)0.8335 (3)0.0348 (10)
C100.6660 (7)0.2871 (6)0.7371 (3)0.0379 (11)
H100.66460.38580.70370.045*
C110.7408 (7)0.1592 (6)0.6908 (3)0.0356 (10)
C120.7430 (7)0.0109 (6)0.7372 (3)0.0364 (10)
C130.6858 (7)0.0087 (6)0.8371 (3)0.0373 (10)
H130.69660.10740.87240.045*
C140.6140 (7)0.1168 (6)0.8829 (3)0.0364 (10)
H140.57770.10130.94930.044*
C150.8063 (8)0.1878 (7)0.5885 (4)0.0468 (12)
C160.7960 (8)0.1264 (6)0.6838 (4)0.0482 (13)
H16A0.92940.18360.69940.058*0.395 (4)
H16B0.79610.08950.61380.058*0.395 (4)
H16C0.81680.21920.73230.058*0.605 (4)
H16D0.92070.12520.64670.058*0.605 (4)
C170.3949 (8)0.1478 (7)0.6717 (4)0.0516 (14)
H17A0.41110.11280.60190.062*0.395 (4)
H17B0.30620.21780.67980.062*0.395 (4)
H17C0.30170.16860.63050.062*0.605 (4)
H17D0.42500.23590.72340.062*0.605 (4)
N10.8583 (9)0.2087 (7)0.5092 (4)0.0690 (15)
S10.26512 (19)0.38462 (15)0.95384 (9)0.0416 (3)
S20.6293 (3)0.2551 (2)0.71362 (17)0.0475 (7)0.605 (4)
S2'0.6129 (6)0.1365 (5)0.6023 (2)0.0512 (11)0.395 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0747 (5)0.0392 (4)0.0662 (4)0.0073 (3)0.0055 (3)0.0078 (3)
Br20.0501 (3)0.0295 (3)0.0566 (3)0.0066 (2)0.0044 (2)0.0060 (2)
C10.025 (2)0.026 (2)0.056 (3)0.0008 (18)0.0029 (19)0.012 (2)
C20.030 (2)0.035 (3)0.043 (2)0.006 (2)0.0038 (18)0.012 (2)
C30.030 (2)0.026 (2)0.044 (2)0.0042 (19)0.0019 (18)0.007 (2)
C40.028 (2)0.039 (3)0.046 (3)0.007 (2)0.0014 (19)0.016 (2)
C50.035 (3)0.048 (3)0.041 (3)0.007 (2)0.002 (2)0.006 (2)
C60.031 (2)0.030 (2)0.048 (3)0.0033 (19)0.0022 (19)0.006 (2)
C70.040 (3)0.033 (3)0.060 (3)0.001 (2)0.002 (2)0.016 (2)
C80.039 (3)0.029 (3)0.056 (3)0.005 (2)0.008 (2)0.016 (2)
C90.027 (2)0.031 (3)0.046 (3)0.0044 (19)0.0043 (18)0.012 (2)
C100.035 (2)0.031 (3)0.048 (3)0.008 (2)0.001 (2)0.007 (2)
C110.027 (2)0.039 (3)0.039 (2)0.006 (2)0.0017 (18)0.008 (2)
C120.026 (2)0.038 (3)0.044 (3)0.002 (2)0.0026 (18)0.012 (2)
C130.032 (2)0.031 (3)0.044 (3)0.000 (2)0.0033 (19)0.005 (2)
C140.032 (2)0.037 (3)0.038 (2)0.006 (2)0.0046 (18)0.006 (2)
C150.047 (3)0.047 (3)0.044 (3)0.005 (3)0.005 (2)0.012 (2)
C160.039 (3)0.040 (3)0.066 (3)0.005 (2)0.016 (2)0.023 (3)
C170.050 (3)0.043 (3)0.066 (3)0.009 (3)0.007 (3)0.027 (3)
N10.088 (4)0.063 (4)0.055 (3)0.021 (3)0.014 (3)0.009 (3)
S10.0478 (7)0.0338 (7)0.0433 (7)0.0065 (6)0.0111 (5)0.0165 (5)
S20.0434 (12)0.0253 (11)0.0718 (15)0.0028 (9)0.0121 (10)0.0163 (10)
S2'0.056 (2)0.058 (2)0.0412 (18)0.0094 (18)0.0122 (15)0.0259 (16)
Geometric parameters (Å, º) top
Br1—C61.889 (5)C11—C121.381 (7)
Br2—C31.899 (5)C11—C151.451 (7)
C1—C21.379 (6)C12—C131.401 (7)
C1—C61.393 (7)C12—C161.515 (7)
C1—C71.510 (7)C13—C141.370 (7)
C2—C31.381 (7)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.397 (6)C15—N11.126 (7)
C4—C51.391 (7)C16—S2'1.802 (7)
C4—C171.512 (7)C16—S21.805 (5)
C5—C61.383 (7)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C7—S11.811 (5)C16—H16C0.9700
C7—H7A0.9700C16—H16D0.9700
C7—H7B0.9700C17—S2'1.737 (6)
C8—C91.519 (7)C17—S21.774 (6)
C8—S11.816 (5)C17—H17A0.9700
C8—H8A0.9700C17—H17B0.9700
C8—H8B0.9700C17—H17C0.9700
C9—C141.380 (7)C17—H17D0.9700
C9—C101.385 (6)S2—H16C1.4691
C10—C111.396 (7)S2—H17D1.3851
C10—H100.9300
C2—C1—C6117.4 (4)C12—C16—S2'115.1 (4)
C2—C1—C7119.6 (4)C12—C16—S2113.9 (4)
C6—C1—C7123.0 (4)S2'—C16—S256.8 (2)
C1—C2—C3121.3 (4)C12—C16—H16A108.8
C1—C2—H2119.3S2'—C16—H16A135.9
C3—C2—H2119.3S2—C16—H16A108.8
C2—C3—C4121.9 (4)C12—C16—H16B108.8
C2—C3—Br2118.2 (3)S2'—C16—H16B54.2
C4—C3—Br2119.9 (4)S2—C16—H16B108.8
C5—C4—C3115.8 (4)H16A—C16—H16B107.7
C5—C4—C17120.5 (4)C12—C16—H16C108.1
C3—C4—C17123.7 (5)S2'—C16—H16C108.4
C6—C5—C4122.3 (4)S2—C16—H16C54.4
C6—C5—H5118.8H16A—C16—H16C59.6
C4—C5—H5118.8H16B—C16—H16C143.1
C5—C6—C1120.6 (4)C12—C16—H16D108.8
C5—C6—Br1117.6 (4)S2'—C16—H16D108.7
C1—C6—Br1121.7 (4)S2—C16—H16D137.0
C1—C7—S1113.7 (4)H16A—C16—H16D50.1
C1—C7—H7A108.8H16B—C16—H16D60.1
S1—C7—H7A108.8H16C—C16—H16D107.4
C1—C7—H7B108.8C4—C17—S2'117.2 (4)
S1—C7—H7B108.8C4—C17—S2118.4 (4)
H7A—C7—H7B107.7S2'—C17—S258.5 (2)
C9—C8—S1115.4 (3)C4—C17—H17A107.7
C9—C8—H8A108.4S2'—C17—H17A51.6
S1—C8—H8A108.4S2—C17—H17A107.7
C9—C8—H8B108.4C4—C17—H17B107.7
S1—C8—H8B108.4S2'—C17—H17B134.1
H8A—C8—H8B107.5S2—C17—H17B107.7
C14—C9—C10118.5 (4)H17A—C17—H17B107.1
C14—C9—C8121.9 (4)C4—C17—H17C108.2
C10—C9—C8119.6 (4)S2'—C17—H17C108.3
C9—C10—C11119.2 (4)S2—C17—H17C132.5
C9—C10—H10120.4H17A—C17—H17C63.7
C11—C10—H10120.4H17B—C17—H17C45.3
C12—C11—C10122.2 (4)C4—C17—H17D107.8
C12—C11—C15120.3 (5)S2'—C17—H17D107.7
C10—C11—C15117.3 (4)S2—C17—H17D50.9
C11—C12—C13117.2 (4)H17A—C17—H17D144.4
C11—C12—C16122.7 (4)H17B—C17—H17D64.1
C13—C12—C16120.1 (4)H17C—C17—H17D107.1
C14—C13—C12120.3 (4)C7—S1—C8103.7 (2)
C14—C13—H13119.8C17—S2—C16106.1 (3)
C12—C13—H13119.8C17—S2—H16C135.9
C13—C14—C9122.0 (4)C16—S2—H17D134.8
C13—C14—H14119.0H16C—S2—H17D152.9
C9—C14—H14119.0C17—S2'—C16107.8 (3)
N1—C15—C11179.4 (7)
C6—C1—C2—C35.8 (7)C10—C11—C12—C16171.0 (5)
C7—C1—C2—C3171.8 (4)C15—C11—C12—C165.2 (7)
C1—C2—C3—C40.9 (7)C11—C12—C13—C145.8 (7)
C1—C2—C3—Br2179.2 (3)C16—C12—C13—C14171.8 (5)
C2—C3—C4—C56.2 (7)C12—C13—C14—C90.5 (7)
Br2—C3—C4—C5174.0 (3)C10—C9—C14—C136.2 (7)
C2—C3—C4—C17172.2 (5)C8—C9—C14—C13172.1 (5)
Br2—C3—C4—C177.6 (6)C11—C12—C16—S2'71.3 (6)
C3—C4—C5—C64.9 (7)C13—C12—C16—S2'106.1 (5)
C17—C4—C5—C6173.7 (5)C11—C12—C16—S2134.3 (4)
C4—C5—C6—C11.8 (7)C13—C12—C16—S243.1 (6)
C4—C5—C6—Br1179.4 (3)C5—C4—C17—S2'41.4 (7)
C2—C1—C6—C57.2 (7)C3—C4—C17—S2'137.1 (5)
C7—C1—C6—C5170.4 (5)C5—C4—C17—S2108.4 (5)
C2—C1—C6—Br1174.1 (3)C3—C4—C17—S270.0 (6)
C7—C1—C6—Br18.4 (6)C1—C7—S1—C865.3 (4)
C2—C1—C7—S166.7 (5)C9—C8—S1—C770.7 (4)
C6—C1—C7—S1110.8 (5)C4—C17—S2—C1664.2 (5)
S1—C8—C9—C1441.7 (6)S2'—C17—S2—C1642.0 (3)
S1—C8—C9—C10136.6 (4)C12—C16—S2—C1764.3 (5)
C14—C9—C10—C115.4 (7)S2'—C16—S2—C1741.1 (3)
C8—C9—C10—C11172.9 (4)C4—C17—S2'—C1665.6 (5)
C9—C10—C11—C120.9 (7)S2—C17—S2'—C1642.6 (3)
C9—C10—C11—C15177.2 (4)C12—C16—S2'—C1760.5 (5)
C10—C11—C12—C136.5 (7)S2—C16—S2'—C1742.6 (3)
C15—C11—C12—C13177.3 (4)

Experimental details

Crystal data
Chemical formulaC17H13Br2NS2
Mr455.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.9433 (11), 9.0591 (14), 13.888 (2)
α, β, γ (°)79.825 (2), 85.047 (3), 76.275 (2)
V3)834.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.10
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5570, 3395, 2589
Rint0.098
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.152, 0.99
No. of reflections3395
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 0.79

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Xiang-Gao Meng for the data collection.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClément, S., Guyard, L., Knorr, M., Däschlein, C. & Strohmann, C. (2009). Acta Cryst. E65, o528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, G. & Lu, Y. (2010). Acta Cryst. E66, o2144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277–7285.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds