metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,5-Bis(4-fluoro­phen­yl)thio­carbazo­nato-κ2N5,S]phenyl­mercury(II) di­chloro­methane hemisolvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and bResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: veschwkg@ufs.ac.za, mullera@uj.ac.za

(Received 21 November 2011; accepted 23 November 2011; online 30 November 2011)

In the title compound, [Hg(C6H5)(C13H9F2N4S)]·0.5CH2Cl2, the Hg(C6H5) units are twisted out of the planes of the thio­carbazo­nate ligands by 61.49 (10) and 67.79 (11)° in the two complex mol­ecules comprising the asymmetric unit. Important geometrical parameters include Hg—C = 2.079 (4) and 2.087 (4) Å, Hg—S = 2.3869 (10) and 2.3889 (11) Å, and C—Hg—S = 166.42 (12) and 168.09 (13)°. Weak intramolecular Hg—N bonding inter­actions of 2.589 (4) and 2.626 (4) Å are observed. In the crystal, C—H⋯Cl, C—H⋯F, C—H⋯N, C—H⋯π and ππ [centroid–centroid distances = 3.648 (3) and 3.641 (3) Å] inter­actions, create parallel planes along [101].

Related literature

For general background to thio­carbodiazo­natomercury(II) complexes, see: Irving et al. (1949[Irving, H., Andrew, G. & Risdon, E. J. (1949). J. Chem. Soc. pp. 541-547.]); Webb et al. (1950[Webb, J. L. A., Bhatia, I. S., Corwin, A. H. & Sharp, A. G. (1950). J. Am. Chem. Soc. 72, 91-95.]); von Eschwege et al. (2011[Eschwege, K. G. von, Van As, L. & Swarts, J. C. (2011). Electrochim. Acta, 56, 10064-10068.]). For synthetic procedures relating to the title compound, see: Mirkhalaf et al. (1998[Mirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem. 452, 203-213.]); von Eschwege et al. (2008[Eschwege, K. G. von, Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. 112, 2211-2218.]). For details of the superimposed fitting of structures with Mercury, see: Weng et al. (2008a[Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348-362.],b[Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955-957.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C6H5)(C13H9F2N4S)]·0.5CH2Cl2

  • Mr = 611.46

  • Monoclinic, C 2/c

  • a = 31.996 (3) Å

  • b = 10.1889 (9) Å

  • c = 26.892 (2) Å

  • β = 116.818 (1)°

  • V = 7823.8 (12) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 8.14 mm−1

  • T = 100 K

  • 0.5 × 0.41 × 0.12 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.106, Tmax = 0.441

  • 94461 measured reflections

  • 9726 independent reflections

  • 8965 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.074

  • S = 1.21

  • 9726 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 3.10 e Å−3

  • Δρmin = −2.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯Cl1 0.95 2.77 3.598 (5) 146
C31—H31⋯F4i 0.95 2.53 3.413 (6) 155
C39—H39A⋯N2 0.99 2.62 3.558 (6) 158
C7—H7⋯Cg1ii 0.95 2.54 3.451 (5) 162
C12—H12⋯Cg2iii 0.95 2.70 3.516 (6) 144
C26—H26⋯Cg2ii 0.95 2.69 3.500 (5) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

With the aim of investigating the influence of electron withdrawing groups on the photochromic (Irving et al., 1949; Webb et al., 1950) and redox reactions (von Eschwege et al., 2011) of dithizonatophenylmercury(II) complexes, a series of halogenated dithizones were synthesized and for the first time complexed with mercury. Deep orange-red needle crystals of the para-fluoro derivative, suitable for X-ray crystallography, were isolated from a dichloromethane solution overlaid with ethanol.

The asymmetric unit of the title compound contains two crystallographically independent mercury(II) molecules and one solvent molecule of dichloromethane (Fig. 1). Geometrical parameters of the two dithizonato complexes are fairly similar with Hg—C = 2.079 (4) / 2.087 (4) Å; Hg—S = 2.3869 (10) / 2.3889 (11) Å; and C—Hg—S = 166.42 (12)/ 168.09 (13)° for Hg1 and Hg2, respectively. The mercury coordination environments differ slightly and can be seen most prominently from the dihedral angles between the metal coordination plane vs. the plane formed by the dithizonato ligands (19.03 (8)° vs. 23.45 (8)° for Hg1 and Hg2, respectively). Differences between the two units are illustrated in Fig. 2 with a superimposed fit using Mercury (Weng et al., 2008a; Weng et al., 2008b). The root mean square deviation (RMSD) was calculated as 0.151 Å, and the maximum distance between two atoms = 0.333 Å.

Several interactions C—H···X (X = Cl, F, N), C—H···Cg (Table 1) and Cg···Cg (Table 2) stabilizes the crystal packing, creating parallel planes along the [101] direction (Fig. 3).

Related literature top

For general background to thiocarbazonatomercury(II) complexes, see: Irving et al. (1949); Webb et al. (1950); von Eschwege et al. (2011). For synthetic procedures relating to the title compound, see: Mirkhalaf et al. (1998); von Eschwege et al. (2008). For details of the superimposed fitting of structures with Mercury, see: Weng et al. (2008a,b).

Experimental top

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. The para-fluoro derivative of dithizone, (p-FPhNHN)2CS), was prepared according to the procedure reported by Mirkhalaf et al. (1998). The synthesis and crystallization of the title compound was done according to a procedure earlier reported by von Eschwege et al. (2008).

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.95 Å (aromatic) or 0.88 Å (methylene) and N—H = 0.86 Å (imine). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C/N). The highest residual electron density of 3.10 e.Å-3 is 1.13 Å from Hg2 and the deepest hole of -2.47 e.Å-3 is 0.89 Å from Hg1. Both represent no physical meaning. Several discrepant reflections were omitted (see _iucr_refine_instructions_details).

Structure description top

With the aim of investigating the influence of electron withdrawing groups on the photochromic (Irving et al., 1949; Webb et al., 1950) and redox reactions (von Eschwege et al., 2011) of dithizonatophenylmercury(II) complexes, a series of halogenated dithizones were synthesized and for the first time complexed with mercury. Deep orange-red needle crystals of the para-fluoro derivative, suitable for X-ray crystallography, were isolated from a dichloromethane solution overlaid with ethanol.

The asymmetric unit of the title compound contains two crystallographically independent mercury(II) molecules and one solvent molecule of dichloromethane (Fig. 1). Geometrical parameters of the two dithizonato complexes are fairly similar with Hg—C = 2.079 (4) / 2.087 (4) Å; Hg—S = 2.3869 (10) / 2.3889 (11) Å; and C—Hg—S = 166.42 (12)/ 168.09 (13)° for Hg1 and Hg2, respectively. The mercury coordination environments differ slightly and can be seen most prominently from the dihedral angles between the metal coordination plane vs. the plane formed by the dithizonato ligands (19.03 (8)° vs. 23.45 (8)° for Hg1 and Hg2, respectively). Differences between the two units are illustrated in Fig. 2 with a superimposed fit using Mercury (Weng et al., 2008a; Weng et al., 2008b). The root mean square deviation (RMSD) was calculated as 0.151 Å, and the maximum distance between two atoms = 0.333 Å.

Several interactions C—H···X (X = Cl, F, N), C—H···Cg (Table 1) and Cg···Cg (Table 2) stabilizes the crystal packing, creating parallel planes along the [101] direction (Fig. 3).

For general background to thiocarbazonatomercury(II) complexes, see: Irving et al. (1949); Webb et al. (1950); von Eschwege et al. (2011). For synthetic procedures relating to the title compound, see: Mirkhalaf et al. (1998); von Eschwege et al. (2008). For details of the superimposed fitting of structures with Mercury, see: Weng et al. (2008a,b).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound indicating labelling and displacement ellipsoids (drawn at a 50% probability level).
[Figure 2] Fig. 2. Superimposed drawing of the two crystallographically independent mercury(II) molecules of the crystal structure.
[Figure 3] Fig. 3. Packing diagram of the title compound showing the parallel packing arrangement along the [101] direction.
[1,5-Bis(4-fluorophenyl)thiocarbazonato- κ2N5,S]phenylmercury(II)} dichloromethane hemisolvate top
Crystal data top
[Hg(C6H5)(C13H9F2N4S)]·0.5CH2Cl2F(000) = 4656
Mr = 611.46Dx = 2.076 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9279 reflections
a = 31.996 (3) Åθ = 2.7–28.3°
b = 10.1889 (9) ŵ = 8.14 mm1
c = 26.892 (2) ÅT = 100 K
β = 116.818 (1)°Plate, red
V = 7823.8 (12) Å30.5 × 0.41 × 0.12 mm
Z = 16
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
9726 independent reflections
Graphite monochromator8965 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.045
φ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 4242
Tmin = 0.106, Tmax = 0.441k = 1313
94461 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0197P)2 + 88.7759P]
where P = (Fo2 + 2Fc2)/3
9726 reflections(Δ/σ)max = 0.003
514 parametersΔρmax = 3.10 e Å3
0 restraintsΔρmin = 2.47 e Å3
Crystal data top
[Hg(C6H5)(C13H9F2N4S)]·0.5CH2Cl2V = 7823.8 (12) Å3
Mr = 611.46Z = 16
Monoclinic, C2/cMo Kα radiation
a = 31.996 (3) ŵ = 8.14 mm1
b = 10.1889 (9) ÅT = 100 K
c = 26.892 (2) Å0.5 × 0.41 × 0.12 mm
β = 116.818 (1)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
9726 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
8965 reflections with I > 2σ(I)
Tmin = 0.106, Tmax = 0.441Rint = 0.045
94461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0197P)2 + 88.7759P]
where P = (Fo2 + 2Fc2)/3
9726 reflectionsΔρmax = 3.10 e Å3
514 parametersΔρmin = 2.47 e Å3
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 2980 frames were collected with a frame width of 0.5° covering up to θ = 28.33° with 99.5% completeness accomplished.

Analytical data: M.p. 208 °C; λmax (dichloromethane) 471 nm; 1H (300 MHz, CDCl3) 7.06 – 7.99 (13 H, m, 2 × C6H4F & 1 × C6H5).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46620 (14)0.7851 (4)0.15534 (16)0.0126 (8)
C20.35329 (14)0.7322 (4)0.04266 (17)0.0150 (8)
C30.34667 (15)0.5979 (4)0.03934 (18)0.0180 (9)
H30.36970.54130.06550.022*
C40.30560 (16)0.5467 (5)0.00303 (19)0.0215 (9)
H40.30030.45470.0060.026*
C50.27293 (16)0.6309 (5)0.04042 (19)0.0226 (10)
C60.27872 (15)0.7644 (5)0.03753 (19)0.0214 (9)
H60.25540.82030.06370.026*
C70.31949 (15)0.8161 (5)0.00454 (18)0.0175 (9)
H70.32440.90830.00740.021*
C80.57739 (14)0.6773 (4)0.25709 (17)0.0148 (8)
C90.61666 (14)0.7429 (4)0.29689 (17)0.0148 (8)
H90.61750.83610.29770.018*
C100.65435 (15)0.6717 (5)0.33513 (17)0.0183 (9)
H100.68110.71490.36250.022*
C110.65210 (15)0.5387 (4)0.33253 (18)0.0183 (9)
C120.61417 (17)0.4698 (5)0.2933 (2)0.0226 (10)
H120.61410.37660.29240.027*
C130.57615 (16)0.5418 (4)0.25539 (19)0.0195 (9)
H130.54940.49770.22830.023*
C140.60941 (14)1.1066 (4)0.25128 (18)0.0156 (8)
C150.62304 (15)1.1764 (4)0.21641 (19)0.0181 (9)
H150.60171.18580.17810.022*
C160.66723 (16)1.2325 (5)0.2365 (2)0.0200 (9)
H160.67571.28040.21220.024*
C170.69890 (16)1.2186 (5)0.2922 (2)0.0219 (9)
H170.72941.2550.3060.026*
C180.68571 (16)1.1510 (5)0.32781 (19)0.0211 (9)
H180.70731.14170.36610.025*
C190.64101 (16)1.0969 (4)0.30767 (18)0.0180 (9)
H190.6321.0530.33250.022*
N10.54016 (12)0.7614 (4)0.22209 (14)0.0145 (7)
N20.50339 (12)0.7028 (3)0.18737 (14)0.0133 (7)
N30.43071 (12)0.7197 (4)0.11738 (14)0.0142 (7)
N40.39362 (12)0.7908 (4)0.08385 (14)0.0157 (7)
H4A0.39450.87670.08770.019*
S10.46396 (3)0.95572 (10)0.16432 (4)0.01423 (19)
Hg10.544460 (5)1.014330 (16)0.216419 (7)0.01517 (5)
C200.54721 (15)0.8218 (5)0.09362 (18)0.0172 (8)
C210.65986 (14)0.7796 (4)0.20752 (17)0.0151 (8)
C220.66609 (15)0.6447 (4)0.21190 (18)0.0173 (8)
H220.6430.58820.18580.021*
C230.70632 (16)0.5930 (5)0.25465 (18)0.0193 (9)
H230.71130.50090.2580.023*
C240.73905 (15)0.6773 (5)0.29230 (18)0.0193 (9)
C250.73349 (15)0.8114 (5)0.28909 (19)0.0190 (9)
H250.75640.86710.3160.023*
C260.69359 (15)0.8636 (5)0.24555 (19)0.0185 (9)
H260.68930.95590.24170.022*
C270.43996 (15)0.6906 (5)0.00737 (18)0.0177 (9)
C280.44574 (16)0.5554 (5)0.0017 (2)0.0228 (10)
H280.47460.51990.02510.027*
C290.40969 (19)0.4717 (5)0.0349 (2)0.0281 (11)
H290.41320.37910.03120.034*
C300.36822 (17)0.5281 (5)0.0739 (2)0.0240 (10)
C310.36194 (16)0.6599 (5)0.08133 (19)0.0242 (10)
H310.33340.69460.10930.029*
C320.39781 (15)0.7428 (5)0.04747 (18)0.0202 (9)
H320.39380.83520.05150.024*
C330.39213 (15)1.1012 (5)0.01027 (19)0.0187 (9)
C340.37593 (16)1.1470 (4)0.0471 (2)0.0205 (9)
H340.3971.15330.08560.025*
C350.32924 (17)1.1840 (5)0.0282 (2)0.0240 (10)
H350.31861.21530.05390.029*
C360.29825 (16)1.1749 (5)0.0282 (2)0.0267 (11)
H360.26631.1980.04110.032*
C370.31419 (17)1.1320 (5)0.0653 (2)0.0257 (10)
H370.29321.12720.10390.031*
C380.36084 (16)1.0957 (5)0.04644 (19)0.0211 (9)
H380.37151.06710.07240.025*
N50.47415 (12)0.7835 (4)0.02619 (15)0.0159 (7)
N60.51276 (13)0.7329 (4)0.06020 (15)0.0183 (8)
N70.58460 (13)0.7619 (4)0.13032 (15)0.0171 (7)
N80.61938 (13)0.8373 (4)0.16571 (15)0.0178 (7)
H80.6170.92330.16290.021*
F10.23290 (10)0.5798 (3)0.08167 (13)0.0331 (7)
F20.68937 (10)0.4681 (3)0.36991 (12)0.0283 (7)
F30.33195 (11)0.4477 (3)0.10507 (13)0.0363 (8)
F40.77784 (10)0.6248 (3)0.33508 (12)0.0272 (6)
S20.54317 (4)0.99363 (11)0.08664 (4)0.0172 (2)
Hg20.460639 (5)1.031777 (17)0.040790 (7)0.01692 (5)
C390.47037 (19)0.3912 (5)0.1214 (2)0.0325 (12)
H39A0.47320.48640.12950.039*
H39B0.44080.37650.08710.039*
Cl10.51796 (5)0.33931 (16)0.10993 (6)0.0417 (3)
Cl20.46844 (5)0.30584 (15)0.17705 (6)0.0385 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0108 (17)0.0143 (19)0.0125 (18)0.0015 (15)0.0050 (15)0.0012 (14)
C20.0100 (18)0.021 (2)0.0123 (18)0.0017 (15)0.0031 (15)0.0010 (15)
C30.017 (2)0.018 (2)0.0162 (19)0.0010 (16)0.0046 (17)0.0004 (16)
C40.021 (2)0.018 (2)0.024 (2)0.0047 (17)0.0082 (19)0.0049 (17)
C50.014 (2)0.030 (3)0.017 (2)0.0043 (18)0.0019 (17)0.0067 (18)
C60.0124 (19)0.024 (2)0.020 (2)0.0002 (17)0.0006 (17)0.0003 (18)
C70.0141 (19)0.018 (2)0.017 (2)0.0009 (16)0.0041 (17)0.0006 (16)
C80.0110 (18)0.018 (2)0.0136 (18)0.0004 (15)0.0040 (16)0.0014 (15)
C90.0150 (19)0.0117 (19)0.0150 (18)0.0004 (15)0.0042 (16)0.0032 (15)
C100.0124 (19)0.025 (2)0.0130 (18)0.0003 (17)0.0021 (16)0.0022 (16)
C110.0152 (19)0.019 (2)0.0175 (19)0.0085 (16)0.0046 (17)0.0034 (16)
C120.021 (2)0.013 (2)0.028 (2)0.0040 (17)0.0063 (19)0.0022 (17)
C130.015 (2)0.015 (2)0.023 (2)0.0010 (16)0.0035 (17)0.0018 (17)
C140.0098 (17)0.0118 (19)0.023 (2)0.0026 (14)0.0049 (16)0.0031 (16)
C150.016 (2)0.013 (2)0.021 (2)0.0006 (16)0.0047 (17)0.0005 (16)
C160.018 (2)0.016 (2)0.025 (2)0.0034 (17)0.0100 (18)0.0008 (17)
C170.015 (2)0.017 (2)0.029 (2)0.0030 (16)0.0056 (19)0.0023 (18)
C180.019 (2)0.017 (2)0.020 (2)0.0034 (17)0.0013 (18)0.0019 (17)
C190.020 (2)0.011 (2)0.020 (2)0.0009 (16)0.0073 (18)0.0008 (16)
N10.0108 (16)0.0164 (18)0.0133 (15)0.0001 (13)0.0027 (13)0.0005 (13)
N20.0096 (15)0.0137 (17)0.0142 (16)0.0000 (13)0.0032 (13)0.0009 (13)
N30.0118 (16)0.0141 (17)0.0140 (16)0.0005 (13)0.0035 (14)0.0007 (13)
N40.0112 (16)0.0156 (18)0.0145 (16)0.0008 (13)0.0006 (14)0.0002 (13)
S10.0113 (4)0.0120 (5)0.0158 (4)0.0002 (3)0.0030 (4)0.0009 (4)
Hg10.01147 (7)0.01376 (8)0.01828 (8)0.00258 (5)0.00496 (6)0.00227 (6)
C200.0146 (19)0.019 (2)0.0162 (19)0.0007 (16)0.0054 (17)0.0003 (16)
C210.0112 (18)0.019 (2)0.0137 (18)0.0025 (15)0.0041 (16)0.0023 (15)
C220.0142 (19)0.020 (2)0.0155 (19)0.0001 (16)0.0052 (16)0.0032 (16)
C230.020 (2)0.016 (2)0.020 (2)0.0028 (17)0.0070 (18)0.0005 (16)
C240.0128 (19)0.024 (2)0.0163 (19)0.0040 (17)0.0025 (17)0.0042 (17)
C250.0123 (19)0.021 (2)0.020 (2)0.0021 (16)0.0038 (17)0.0001 (17)
C260.0148 (19)0.016 (2)0.022 (2)0.0014 (16)0.0065 (17)0.0006 (17)
C270.0136 (19)0.022 (2)0.0164 (19)0.0006 (16)0.0056 (17)0.0018 (16)
C280.017 (2)0.022 (2)0.026 (2)0.0026 (18)0.0071 (19)0.0016 (18)
C290.029 (3)0.020 (2)0.037 (3)0.002 (2)0.016 (2)0.009 (2)
C300.023 (2)0.030 (3)0.021 (2)0.009 (2)0.0118 (19)0.0111 (19)
C310.016 (2)0.037 (3)0.015 (2)0.0026 (19)0.0024 (17)0.0001 (19)
C320.015 (2)0.023 (2)0.019 (2)0.0002 (17)0.0049 (17)0.0016 (17)
C330.0117 (18)0.019 (2)0.023 (2)0.0028 (16)0.0065 (17)0.0044 (17)
C340.018 (2)0.016 (2)0.022 (2)0.0022 (16)0.0047 (18)0.0013 (17)
C350.021 (2)0.020 (2)0.029 (2)0.0062 (18)0.010 (2)0.0000 (19)
C360.014 (2)0.026 (3)0.034 (3)0.0089 (18)0.006 (2)0.004 (2)
C370.019 (2)0.026 (3)0.022 (2)0.0067 (19)0.0014 (19)0.0052 (19)
C380.020 (2)0.023 (2)0.018 (2)0.0038 (18)0.0073 (18)0.0030 (17)
N50.0128 (16)0.0198 (19)0.0147 (16)0.0020 (14)0.0060 (14)0.0011 (14)
N60.0127 (16)0.022 (2)0.0168 (17)0.0016 (14)0.0037 (14)0.0004 (14)
N70.0133 (16)0.0204 (19)0.0154 (17)0.0021 (14)0.0046 (14)0.0011 (14)
N80.0141 (17)0.0177 (18)0.0163 (17)0.0013 (14)0.0022 (14)0.0011 (14)
F10.0203 (14)0.0312 (17)0.0299 (15)0.0072 (12)0.0044 (12)0.0097 (13)
F20.0210 (14)0.0263 (15)0.0261 (14)0.0126 (12)0.0005 (12)0.0025 (12)
F30.0330 (17)0.0390 (19)0.0339 (17)0.0150 (14)0.0124 (14)0.0188 (14)
F40.0171 (13)0.0257 (15)0.0253 (14)0.0048 (11)0.0023 (11)0.0051 (12)
S20.0127 (5)0.0169 (5)0.0192 (5)0.0007 (4)0.0048 (4)0.0027 (4)
Hg20.01199 (8)0.01754 (9)0.01911 (8)0.00276 (6)0.00514 (6)0.00486 (6)
C390.026 (3)0.025 (3)0.034 (3)0.009 (2)0.004 (2)0.006 (2)
Cl10.0363 (7)0.0410 (8)0.0430 (8)0.0185 (6)0.0138 (6)0.0053 (6)
Cl20.0435 (8)0.0335 (7)0.0314 (6)0.0023 (6)0.0107 (6)0.0066 (5)
Geometric parameters (Å, º) top
C1—N31.315 (5)C20—S21.759 (5)
C1—N21.391 (5)C21—C221.386 (6)
C1—S11.761 (4)C21—C261.395 (6)
C2—C31.382 (6)C21—N81.405 (5)
C2—C71.397 (6)C22—C231.386 (6)
C2—N41.400 (5)C22—H220.95
C3—C41.395 (6)C23—C241.379 (6)
C3—H30.95C23—H230.95
C4—C51.375 (7)C24—F41.364 (5)
C4—H40.95C24—C251.376 (7)
C5—F11.364 (5)C25—C261.391 (6)
C5—C61.370 (7)C25—H250.95
C6—C71.388 (6)C26—H260.95
C6—H60.95C27—C281.389 (7)
C7—H70.95C27—C321.397 (6)
C8—C131.382 (6)C27—N51.420 (6)
C8—C91.399 (5)C28—C291.387 (7)
C8—N11.423 (5)C28—H280.95
C9—C101.385 (6)C29—C301.391 (7)
C9—H90.95C29—H290.95
C10—C111.357 (7)C30—F31.357 (5)
C10—H100.95C30—C311.360 (8)
C11—F21.367 (5)C31—C321.384 (6)
C11—C121.387 (6)C31—H310.95
C12—C131.392 (6)C32—H320.95
C12—H120.95C33—C341.389 (7)
C13—H130.95C33—C381.398 (6)
C14—C151.394 (6)C33—Hg22.087 (4)
C14—C191.396 (6)C34—C351.396 (6)
C14—Hg12.079 (4)C34—H340.95
C15—C161.388 (6)C35—C361.391 (7)
C15—H150.95C35—H350.95
C16—C171.386 (6)C36—C371.380 (8)
C16—H160.95C36—H360.95
C17—C181.390 (7)C37—C381.393 (6)
C17—H170.95C37—H370.95
C18—C191.394 (6)C38—H380.95
C18—H180.95N5—N61.268 (5)
C19—H190.95N5—Hg22.626 (4)
N1—N21.273 (5)N7—N81.334 (5)
N1—Hg12.589 (4)N8—H80.88
N3—N41.334 (5)S2—Hg22.3889 (11)
N4—H4A0.88C39—Cl21.757 (6)
S1—Hg12.3869 (10)C39—Cl11.765 (6)
C20—N71.309 (5)C39—H39A0.99
C20—N61.396 (6)C39—H39B0.99
N3—C1—N2111.9 (4)C22—C21—C26120.8 (4)
N3—C1—S1122.1 (3)C22—C21—N8121.9 (4)
N2—C1—S1125.9 (3)C26—C21—N8117.3 (4)
C3—C2—C7120.9 (4)C23—C22—C21119.4 (4)
C3—C2—N4122.2 (4)C23—C22—H22120.3
C7—C2—N4116.8 (4)C21—C22—H22120.3
C2—C3—C4118.9 (4)C24—C23—C22119.1 (4)
C2—C3—H3120.5C24—C23—H23120.5
C4—C3—H3120.5C22—C23—H23120.5
C5—C4—C3119.3 (4)F4—C24—C25119.0 (4)
C5—C4—H4120.4F4—C24—C23118.4 (4)
C3—C4—H4120.4C25—C24—C23122.6 (4)
F1—C5—C6118.6 (4)C24—C25—C26118.4 (4)
F1—C5—C4118.8 (4)C24—C25—H25120.8
C6—C5—C4122.6 (4)C26—C25—H25120.8
C5—C6—C7118.4 (4)C25—C26—C21119.7 (4)
C5—C6—H6120.8C25—C26—H26120.1
C7—C6—H6120.8C21—C26—H26120.1
C6—C7—C2119.8 (4)C28—C27—C32119.8 (4)
C6—C7—H7120.1C28—C27—N5124.4 (4)
C2—C7—H7120.1C32—C27—N5115.8 (4)
C13—C8—C9120.3 (4)C29—C28—C27120.5 (4)
C13—C8—N1125.2 (4)C29—C28—H28119.7
C9—C8—N1114.4 (4)C27—C28—H28119.7
C10—C9—C8119.9 (4)C28—C29—C30117.7 (5)
C10—C9—H9120.1C28—C29—H29121.2
C8—C9—H9120.1C30—C29—H29121.2
C11—C10—C9118.5 (4)F3—C30—C31118.5 (5)
C11—C10—H10120.8F3—C30—C29118.4 (5)
C9—C10—H10120.8C31—C30—C29123.1 (4)
C10—C11—F2118.6 (4)C30—C31—C32118.8 (4)
C10—C11—C12123.5 (4)C30—C31—H31120.6
F2—C11—C12117.8 (4)C32—C31—H31120.6
C11—C12—C13117.8 (4)C31—C32—C27120.0 (5)
C11—C12—H12121.1C31—C32—H32120
C13—C12—H12121.1C27—C32—H32120
C8—C13—C12120.0 (4)C34—C33—C38118.5 (4)
C8—C13—H13120C34—C33—Hg2119.8 (3)
C12—C13—H13120C38—C33—Hg2121.6 (4)
C15—C14—C19118.3 (4)C33—C34—C35121.0 (4)
C15—C14—Hg1118.7 (3)C33—C34—H34119.5
C19—C14—Hg1123.0 (3)C35—C34—H34119.5
C16—C15—C14121.3 (4)C36—C35—C34119.8 (5)
C16—C15—H15119.3C36—C35—H35120.1
C14—C15—H15119.3C34—C35—H35120.1
C17—C16—C15119.9 (4)C37—C36—C35119.7 (4)
C17—C16—H16120C37—C36—H36120.2
C15—C16—H16120C35—C36—H36120.2
C16—C17—C18119.6 (4)C36—C37—C38120.4 (4)
C16—C17—H17120.2C36—C37—H37119.8
C18—C17—H17120.2C38—C37—H37119.8
C17—C18—C19120.4 (4)C37—C38—C33120.6 (5)
C17—C18—H18119.8C37—C38—H38119.7
C19—C18—H18119.8C33—C38—H38119.7
C18—C19—C14120.5 (4)N6—N5—C27114.1 (4)
C18—C19—H19119.8N6—N5—Hg2117.1 (3)
C14—C19—H19119.8C27—N5—Hg2127.3 (3)
N2—N1—C8115.1 (4)N5—N6—C20115.5 (4)
N2—N1—Hg1118.6 (3)C20—N7—N8117.0 (4)
C8—N1—Hg1125.9 (3)N7—N8—C21120.1 (4)
N1—N2—C1114.9 (4)N7—N8—H8119.9
C1—N3—N4116.3 (4)C21—N8—H8119.9
N3—N4—C2121.6 (4)C20—S2—Hg2103.17 (15)
N3—N4—H4A119.2C33—Hg2—S2168.09 (13)
C2—N4—H4A119.2C33—Hg2—N5118.83 (15)
C1—S1—Hg1103.15 (14)S2—Hg2—N572.67 (8)
C14—Hg1—S1166.42 (12)Cl2—C39—Cl1111.4 (3)
C14—Hg1—N1119.51 (14)Cl2—C39—H39A109.3
S1—Hg1—N173.36 (8)Cl1—C39—H39A109.3
N7—C20—N6111.7 (4)Cl2—C39—H39B109.3
N7—C20—S2122.9 (3)Cl1—C39—H39B109.3
N6—C20—S2125.3 (3)H39A—C39—H39B108
C7—C2—C3—C40.3 (7)C26—C21—C22—C230.1 (7)
N4—C2—C3—C4179.8 (4)N8—C21—C22—C23178.7 (4)
C2—C3—C4—C50.2 (7)C21—C22—C23—C240.7 (7)
C3—C4—C5—F1180.0 (4)C22—C23—C24—F4178.2 (4)
C3—C4—C5—C60.8 (8)C22—C23—C24—C250.2 (7)
F1—C5—C6—C7180.0 (4)F4—C24—C25—C26179.4 (4)
C4—C5—C6—C70.7 (8)C23—C24—C25—C261.1 (7)
C5—C6—C7—C20.2 (7)C24—C25—C26—C211.9 (7)
C3—C2—C7—C60.3 (7)C22—C21—C26—C251.4 (7)
N4—C2—C7—C6179.7 (4)N8—C21—C26—C25177.5 (4)
C13—C8—C9—C100.6 (7)C32—C27—C28—C291.2 (8)
N1—C8—C9—C10177.0 (4)N5—C27—C28—C29177.4 (5)
C8—C9—C10—C110.4 (7)C27—C28—C29—C300.6 (8)
C9—C10—C11—F2179.5 (4)C28—C29—C30—F3177.2 (5)
C9—C10—C11—C120.5 (8)C28—C29—C30—C311.1 (8)
C10—C11—C12—C131.2 (8)F3—C30—C31—C32176.2 (4)
F2—C11—C12—C13179.8 (4)C29—C30—C31—C322.1 (8)
C9—C8—C13—C120.2 (7)C30—C31—C32—C271.4 (7)
N1—C8—C13—C12177.5 (4)C28—C27—C32—C310.1 (7)
C11—C12—C13—C81.0 (7)N5—C27—C32—C31178.5 (4)
C19—C14—C15—C161.5 (7)C38—C33—C34—C351.5 (7)
Hg1—C14—C15—C16175.5 (3)Hg2—C33—C34—C35174.8 (4)
C14—C15—C16—C170.6 (7)C33—C34—C35—C360.1 (8)
C15—C16—C17—C181.5 (7)C34—C35—C36—C371.4 (8)
C16—C17—C18—C190.3 (7)C35—C36—C37—C381.1 (8)
C17—C18—C19—C141.8 (7)C36—C37—C38—C330.5 (8)
C15—C14—C19—C182.7 (7)C34—C33—C38—C371.8 (7)
Hg1—C14—C19—C18174.2 (3)Hg2—C33—C38—C37174.4 (4)
C13—C8—N1—N20.5 (6)C28—C27—N5—N64.7 (7)
C9—C8—N1—N2176.9 (4)C32—C27—N5—N6176.7 (4)
C13—C8—N1—Hg1172.6 (4)C28—C27—N5—Hg2160.7 (4)
C9—C8—N1—Hg19.9 (5)C32—C27—N5—Hg217.9 (6)
C8—N1—N2—C1176.6 (4)C27—N5—N6—C20179.7 (4)
Hg1—N1—N2—C19.7 (5)Hg2—N5—N6—C2013.3 (5)
N3—C1—N2—N1174.9 (4)N7—C20—N6—N5175.2 (4)
S1—C1—N2—N17.4 (6)S2—C20—N6—N57.4 (6)
N2—C1—N3—N4178.8 (4)N6—C20—N7—N8178.1 (4)
S1—C1—N3—N43.5 (5)S2—C20—N7—N84.4 (6)
C1—N3—N4—C2178.5 (4)C20—N7—N8—C21177.7 (4)
C3—C2—N4—N39.5 (7)C22—C21—N8—N73.1 (7)
C7—C2—N4—N3170.6 (4)C26—C21—N8—N7175.8 (4)
N3—C1—S1—Hg1162.5 (3)N7—C20—S2—Hg2158.9 (4)
N2—C1—S1—Hg120.0 (4)N6—C20—S2—Hg223.9 (4)
C15—C14—Hg1—S142.8 (8)C34—C33—Hg2—S248.5 (9)
C19—C14—Hg1—S1140.3 (4)C38—C33—Hg2—S2135.3 (5)
C15—C14—Hg1—N1117.4 (3)C34—C33—Hg2—N5115.8 (4)
C19—C14—Hg1—N159.4 (4)C38—C33—Hg2—N560.4 (4)
C1—S1—Hg1—C14147.5 (6)C20—S2—Hg2—C33147.6 (6)
C1—S1—Hg1—N114.59 (16)C20—S2—Hg2—N517.98 (17)
N2—N1—Hg1—C14158.7 (3)N6—N5—Hg2—C33155.6 (3)
C8—N1—Hg1—C1414.3 (4)C27—N5—Hg2—C339.5 (4)
N2—N1—Hg1—S116.6 (3)N6—N5—Hg2—S221.1 (3)
C8—N1—Hg1—S1170.5 (3)C27—N5—Hg2—S2173.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28···Cl10.952.773.598 (5)146
C31—H31···F4i0.952.533.413 (6)155
C39—H39A···N20.992.623.558 (6)158
C7—H7···Cg1ii0.952.543.451 (5)162
C12—H12···Cg2iii0.952.703.516 (6)144
C26—H26···Cg2ii0.952.693.500 (5)144
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Hg(C6H5)(C13H9F2N4S)]·0.5CH2Cl2
Mr611.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)31.996 (3), 10.1889 (9), 26.892 (2)
β (°) 116.818 (1)
V3)7823.8 (12)
Z16
Radiation typeMo Kα
µ (mm1)8.14
Crystal size (mm)0.5 × 0.41 × 0.12
Data collection
DiffractometerBruker APEX DUO 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.106, 0.441
No. of measured, independent and
observed [I > 2σ(I)] reflections
94461, 9726, 8965
Rint0.045
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.21
No. of reflections9726
No. of parameters514
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0197P)2 + 88.7759P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.10, 2.47

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28···Cl10.952.773.598 (5)146.3
C31—H31···F4i0.952.533.413 (6)155.1
C39—H39A···N20.992.623.558 (6)158.4
C7—H7···Cg1ii0.952.543.451 (5)162
C12—H12···Cg2iii0.952.703.516 (6)144
C26—H26···Cg2ii0.952.693.500 (5)144
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y, z+1/2; (iii) x, y1, z.
Short ring-interaction geometries (°, Å) top
Cg(X)···Cg(Y)Cg···CgAlphaBetaGammaCg(X)perpCg(X)perp
Cg1···Cg4i3.648 (3)6.3 (2)21.6527.983.221 (2)3.391 (2)
Cg2···Cg3i3.641 (3)4.1 (2)27.9524.043.325 (2)3.216 (2)
For centroids: Cg1 = ring C2 – C7, Cg2 = ring C8 – C13, Cg3 = ring C21 – C26, Cg4 = ring C27 – C32; symmetry codes: i = -x,y,1/2-z; Alpha = dihedral angle between Cg(X) and Cg(Y); Cg(X)perp = perpendicular distance of Cg(X) on ring Y; Cg(X)perp = perpendicular distance of Cg(Y) on ring X; Beta = angle Cg(X)···Cg(Y) vector and normal to ring X; Gamma = angle Cg(X)···Cg(Y) vector and normal to plane Y;
 

Acknowledgements

Research funds of the University of Johannesburg and the National Research Foundation of South Africa are gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEschwege, K. G. von, Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. 112, 2211–2218.  Google Scholar
First citationEschwege, K. G. von, Van As, L. & Swarts, J. C. (2011). Electrochim. Acta, 56, 10064–10068.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIrving, H., Andrew, G. & Risdon, E. J. (1949). J. Chem. Soc. pp. 541–547.  CrossRef Web of Science Google Scholar
First citationMirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem. 452, 203–213.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWebb, J. L. A., Bhatia, I. S., Corwin, A. H. & Sharp, A. G. (1950). J. Am. Chem. Soc. 72, 91–95.  CrossRef CAS Web of Science Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955–957.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds