metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-4-azido­benzoato-κ2O:O′)bis­­[(N,N-di­methyl­formamide-κO)copper(II)]

aDepartment of Chemistry, Huangshan University, Huangshan 245041, People's Republic of China
*Correspondence e-mail: aidongwang2011@163.com

(Received 21 November 2011; accepted 28 November 2011; online 14 December 2011)

The binuclear title compound, [Cu2(C7H4N3O2)4(C3H7NO)2], is a discrete metal–organic compound having a paddle-wheel-type structure. The Cu⋯Cu distance is 2.6366 (5) Å and an inversion center is located at the mid-point of this bond. The CuII cation is coordinated by four carboxyl­ate O atoms from four 4-azido­benzoate ligands, and one O atom from a dimethyl­formamide mol­ecule, forming an overall distorted octahedral geometry when the Cu⋯Cu bond is also considered.

Related literature

For similar complexes displaying a paddle-wheel structure, see: Del Sesto et al. (2000[Del Sesto, R. E., Arif, A. M. & Miller, J. S. (2000). Inorg. Chem. 39, 4894-4902.]); Li et al. (2011[Li, Y.-W., Zhao, J.-P., Wang, L.-F. & Bu, X.-H. (2011). CrystEngComm, 13, 6002-6006.]). For the synthesis of 4-azido­benzoic acid, see: Sato et al. (2010[Sato, H., Matsuda, R., Sugimoto, K., Takata, M. & Kitagawa, S. (2010). Nat. Mater. 9, 661-666.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H4N3O2)4(C3H7NO)2]

  • Mr = 921.80

  • Monoclinic, P 21 /c

  • a = 11.9209 (8) Å

  • b = 17.9387 (10) Å

  • c = 9.3680 (5) Å

  • β = 91.277 (5)°

  • V = 2002.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.805, Tmax = 0.805

  • 12312 measured reflections

  • 3496 independent reflections

  • 3141 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.02

  • 3496 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, tetrakis(4-azidobenzoato)bis[(N,N-dimethylformamide)copper(II)], crystallizes in the monoclinic form with centrosymmetric space group P21/c. The asymmetric unit contains one copper atom, two 4-azidobenzoate ligands, and one DMF molecule. The Cu atom has a coordination number of six and is coordinated by four carboxylate O atoms from four 4-azidobenzoate ligands and one O atom from DMF molecule. The Cu—Cu bond length is 2.6366 (5) Å. The main structural feature of the title compound is the presence of the well known paddle-wheel unit (Del Sesto et al., 2000; Li et al., 2011) constructed by the asymmetric unit via the inversion symmetry. The azido groups of the ligands are not coordinated and the axial positions of the octahedral coordination polyhedra are occupied by two DMF molecules, to generate the 0D compound.

Related literature top

For similar complexes displaying a paddle-wheel structure, see: Del Sesto et al. (2000); Li et al. (2011). For the synthesis of 4-azidobenzoic acid, see: Sato et al. (2010).

Experimental top

4-Azidobenzoic acid was prepared from 4-aminoisophthalic acid by diazotization followed by azidation with sodium azide (Sato et al., 2010). A mixture of Cu(NO3)2 3 H2O (0.130 g, 0.5 mmol) 4-azidobenzoic acid (0.085 g,0.5 mmol) and DMF (5 ml) was sealed in a 20 ml stainless steel reactor with Teflon liner and heated at 393 K for 4 days. Blue crystals of the title complex were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically. C—H bonds lengths were fixed at 0.93 Å for aromatic CH groups and 0.96 Å for methyl groups, and H atoms were allowed to ride on their parent atoms. Isotropic displacement parameters were calculated as Uiso(H)=1.2Ueq(carrier C) for aromatic CH and Uiso(H)=1.5Ueq(carrier C) for methyl groups.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular drawing of the title complex, showing 30% probability displacement ellipsoids. All H atoms were omitted for clarity. Unlabeled atoms are generated by symmetry -x, 1-y, 1-z.
Tetrakis(µ-4-azidobenzoato-κ2O:O')bis[(N,N- dimethylformamide-κO)copper(II)] top
Crystal data top
[Cu2(C7H4N3O2)4(C3H7NO)2]F(000) = 940
Mr = 921.80Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4783 reflections
a = 11.9209 (8) Åθ = 3.1–25°
b = 17.9387 (10) ŵ = 1.14 mm1
c = 9.3680 (5) ÅT = 293 K
β = 91.277 (5)°Block, blue
V = 2002.8 (2) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury70
diffractometer
3496 independent reflections
Radiation source: fine-focus sealed tube3141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1921
Tmin = 0.805, Tmax = 0.805l = 1111
12312 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.7327P]
where P = (Fo2 + 2Fc2)/3
3496 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
0 constraints
Crystal data top
[Cu2(C7H4N3O2)4(C3H7NO)2]V = 2002.8 (2) Å3
Mr = 921.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.9209 (8) ŵ = 1.14 mm1
b = 17.9387 (10) ÅT = 293 K
c = 9.3680 (5) Å0.2 × 0.2 × 0.2 mm
β = 91.277 (5)°
Data collection top
Rigaku Mercury70
diffractometer
3496 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
3141 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.805Rint = 0.031
12312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
3496 reflectionsΔρmin = 0.31 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.05068 (2)0.451211 (14)0.58459 (3)0.03461 (12)
O10.16267 (14)0.44589 (9)0.43570 (18)0.0472 (4)
O50.12483 (14)0.36844 (9)0.72800 (17)0.0470 (4)
O30.04281 (13)0.62087 (9)0.52445 (18)0.0461 (4)
O20.07599 (14)0.52740 (10)0.28944 (17)0.0467 (4)
O40.12931 (15)0.53807 (9)0.66805 (19)0.0497 (4)
N70.1214 (2)0.31119 (12)0.9451 (2)0.0567 (6)
N10.4690 (2)0.4056 (2)0.1016 (3)0.0854 (9)
N20.4467 (3)0.4246 (2)0.2269 (4)0.1045 (11)
N60.4782 (4)0.8193 (3)1.0817 (4)0.1397 (18)
N30.4367 (4)0.4395 (3)0.3436 (4)0.155 (2)
N40.3389 (3)0.84292 (18)0.9011 (3)0.0855 (9)
N50.4106 (3)0.8267 (2)0.9946 (3)0.0987 (12)
C40.3881 (2)0.42884 (18)0.0005 (3)0.0584 (7)
C70.15287 (19)0.48163 (13)0.3208 (2)0.0398 (5)
C150.0863 (2)0.35912 (14)0.8475 (3)0.0484 (6)
H15A0.02590.38920.87140.058*
C10.2378 (2)0.46654 (13)0.2094 (3)0.0414 (5)
C80.17273 (19)0.66528 (13)0.6976 (2)0.0409 (5)
C20.2172 (2)0.48554 (14)0.0677 (2)0.0460 (6)
H2A0.15240.51180.04300.055*
C60.3359 (2)0.42912 (18)0.2440 (3)0.0595 (7)
H6A0.35120.41590.33840.071*
C130.1512 (2)0.73877 (15)0.6624 (3)0.0539 (6)
H13A0.09850.74980.59070.065*
C30.2911 (2)0.46609 (15)0.0371 (3)0.0512 (6)
H3A0.27530.47810.13200.061*
C90.2511 (2)0.65078 (16)0.8053 (3)0.0556 (7)
H9A0.26610.60160.83080.067*
C140.11051 (19)0.60338 (13)0.6237 (2)0.0397 (5)
C100.3073 (2)0.70738 (18)0.8752 (3)0.0603 (7)
H10A0.35960.69660.94750.072*
C120.2067 (3)0.79604 (16)0.7321 (3)0.0635 (8)
H12B0.19080.84530.70810.076*
C110.2856 (2)0.78027 (17)0.8373 (3)0.0576 (7)
C170.0706 (3)0.3082 (2)1.0850 (3)0.0822 (11)
H17A0.00970.34321.08810.123*
H17B0.12580.32071.15720.123*
H17C0.04280.25881.10180.123*
C160.2150 (3)0.26297 (19)0.9201 (4)0.0807 (10)
H16A0.24070.27040.82480.121*
H16B0.19230.21200.93150.121*
H16C0.27460.27420.98730.121*
C50.4114 (2)0.4111 (2)0.1403 (3)0.0717 (9)
H5A0.47810.38710.16520.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04444 (19)0.02783 (19)0.03131 (18)0.00240 (10)0.00460 (12)0.00345 (10)
O10.0503 (10)0.0503 (11)0.0409 (9)0.0099 (7)0.0020 (7)0.0104 (8)
O50.0606 (10)0.0393 (10)0.0408 (9)0.0062 (8)0.0076 (7)0.0085 (8)
O30.0538 (10)0.0364 (10)0.0474 (9)0.0021 (7)0.0126 (8)0.0021 (8)
O20.0541 (10)0.0447 (10)0.0416 (9)0.0133 (8)0.0052 (7)0.0058 (8)
O40.0648 (11)0.0328 (10)0.0507 (10)0.0040 (8)0.0167 (8)0.0013 (8)
N70.0779 (15)0.0430 (13)0.0485 (12)0.0044 (11)0.0166 (11)0.0141 (10)
N10.0804 (18)0.112 (3)0.0643 (18)0.0276 (17)0.0221 (14)0.0009 (17)
N20.088 (2)0.157 (3)0.069 (2)0.035 (2)0.0240 (17)0.016 (2)
N60.135 (3)0.192 (5)0.091 (3)0.087 (3)0.021 (2)0.024 (3)
N30.131 (3)0.272 (7)0.061 (2)0.059 (3)0.026 (2)0.009 (3)
N40.094 (2)0.088 (2)0.0738 (18)0.0434 (17)0.0006 (16)0.0252 (16)
N50.105 (2)0.124 (3)0.0677 (19)0.068 (2)0.0097 (18)0.0299 (19)
C40.0564 (16)0.0638 (19)0.0553 (16)0.0072 (14)0.0110 (13)0.0019 (14)
C70.0454 (13)0.0319 (13)0.0421 (13)0.0001 (10)0.0022 (10)0.0011 (10)
C150.0594 (15)0.0403 (15)0.0450 (14)0.0014 (11)0.0108 (11)0.0081 (11)
C10.0471 (13)0.0353 (13)0.0418 (13)0.0009 (10)0.0004 (10)0.0003 (10)
C80.0455 (12)0.0370 (13)0.0403 (12)0.0018 (10)0.0023 (10)0.0048 (10)
C20.0527 (14)0.0416 (14)0.0437 (13)0.0080 (11)0.0016 (10)0.0015 (11)
C60.0550 (16)0.076 (2)0.0476 (15)0.0150 (14)0.0009 (12)0.0108 (14)
C130.0583 (15)0.0437 (16)0.0593 (16)0.0019 (12)0.0070 (12)0.0032 (13)
C30.0627 (16)0.0511 (16)0.0398 (14)0.0009 (13)0.0006 (11)0.0011 (12)
C90.0623 (16)0.0483 (16)0.0557 (16)0.0008 (13)0.0105 (12)0.0027 (13)
C140.0473 (13)0.0348 (13)0.0370 (12)0.0003 (10)0.0025 (10)0.0008 (10)
C100.0559 (16)0.073 (2)0.0517 (16)0.0075 (14)0.0087 (12)0.0109 (15)
C120.0780 (19)0.0398 (16)0.0725 (19)0.0082 (14)0.0040 (15)0.0064 (14)
C110.0612 (16)0.0577 (18)0.0543 (16)0.0193 (14)0.0113 (13)0.0180 (14)
C170.124 (3)0.076 (2)0.0466 (17)0.021 (2)0.0081 (17)0.0223 (15)
C160.098 (2)0.059 (2)0.084 (2)0.0146 (18)0.0344 (19)0.0090 (18)
C50.0555 (17)0.097 (3)0.0628 (18)0.0284 (16)0.0050 (14)0.0108 (18)
Geometric parameters (Å, º) top
Cu1—O11.9545 (17)C1—C21.387 (3)
Cu1—O41.9711 (17)C1—C61.382 (4)
Cu1—O2i1.9747 (16)C8—C131.382 (4)
Cu1—O3i1.9765 (16)C8—C91.384 (3)
Cu1—O52.1767 (16)C8—C141.496 (3)
Cu1—Cu1i2.6363 (5)C2—C31.379 (3)
O1—C71.256 (3)C2—H2A0.9300
O5—C151.231 (3)C6—C51.377 (4)
O3—C141.258 (3)C6—H6A0.9300
O3—Cu1i1.9765 (16)C13—C121.379 (4)
O2—C71.260 (3)C13—H13A0.9300
O2—Cu1i1.9747 (16)C3—H3A0.9300
O4—C141.261 (3)C9—C101.375 (4)
N7—C151.316 (3)C9—H9A0.9300
N7—C161.436 (4)C10—C111.378 (4)
N7—C171.456 (4)C10—H10A0.9300
N1—N21.245 (4)C12—C111.376 (4)
N1—C41.429 (3)C12—H12B0.9300
N2—N31.130 (5)C17—H17A0.9600
N6—N51.142 (5)C17—H17B0.9600
N4—N51.245 (5)C17—H17C0.9600
N4—C111.417 (4)C16—H16A0.9600
C4—C31.373 (4)C16—H16B0.9600
C4—C51.379 (4)C16—H16C0.9600
C7—C11.495 (3)C5—H5A0.9300
C15—H15A0.9300
O1—Cu1—O489.73 (8)C3—C2—C1121.1 (2)
O1—Cu1—O2i168.40 (7)C3—C2—H2A119.4
O4—Cu1—O2i88.43 (8)C1—C2—H2A119.4
O1—Cu1—O3i89.17 (7)C5—C6—C1120.8 (3)
O4—Cu1—O3i168.48 (7)C5—C6—H6A119.6
O2i—Cu1—O3i90.35 (7)C1—C6—H6A119.6
O1—Cu1—O597.62 (6)C12—C13—C8120.9 (3)
O4—Cu1—O596.40 (7)C12—C13—H13A119.6
O2i—Cu1—O593.97 (7)C8—C13—H13A119.6
O3i—Cu1—O595.12 (7)C4—C3—C2119.6 (2)
O1—Cu1—Cu1i85.10 (5)C4—C3—H3A120.2
O4—Cu1—Cu1i85.48 (5)C2—C3—H3A120.2
O2i—Cu1—Cu1i83.34 (5)C10—C9—C8121.5 (3)
O3i—Cu1—Cu1i83.00 (5)C10—C9—H9A119.2
O5—Cu1—Cu1i176.69 (5)C8—C9—H9A119.2
C7—O1—Cu1122.33 (15)O3—C14—O4125.6 (2)
C15—O5—Cu1119.94 (16)O3—C14—C8117.4 (2)
C14—O3—Cu1i124.34 (15)O4—C14—C8117.0 (2)
C7—O2—Cu1i123.31 (15)C9—C10—C11119.4 (3)
C14—O4—Cu1121.62 (15)C9—C10—H10A120.3
C15—N7—C16121.1 (3)C11—C10—H10A120.3
C15—N7—C17121.1 (3)C11—C12—C13120.0 (3)
C16—N7—C17117.7 (3)C11—C12—H12B120.0
N2—N1—C4114.4 (3)C13—C12—H12B120.0
N3—N2—N1173.3 (4)C12—C11—C10120.1 (3)
N5—N4—C11114.0 (3)C12—C11—N4115.6 (3)
N6—N5—N4173.3 (4)C10—C11—N4124.3 (3)
C3—C4—C5120.1 (2)N7—C17—H17A109.5
C3—C4—N1123.6 (3)N7—C17—H17B109.5
C5—C4—N1116.2 (3)H17A—C17—H17B109.5
O1—C7—O2125.8 (2)N7—C17—H17C109.5
O1—C7—C1117.0 (2)H17A—C17—H17C109.5
O2—C7—C1117.1 (2)H17B—C17—H17C109.5
O5—C15—N7126.9 (3)N7—C16—H16A109.5
O5—C15—H15A116.5N7—C16—H16B109.5
N7—C15—H15A116.5H16A—C16—H16B109.5
C2—C1—C6118.4 (2)N7—C16—H16C109.5
C2—C1—C7121.0 (2)H16A—C16—H16C109.5
C6—C1—C7120.5 (2)H16B—C16—H16C109.5
C13—C8—C9118.2 (2)C4—C5—C6120.0 (3)
C13—C8—C14120.7 (2)C4—C5—H5A120.0
C9—C8—C14121.1 (2)C6—C5—H5A120.0
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C7H4N3O2)4(C3H7NO)2]
Mr921.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9209 (8), 17.9387 (10), 9.3680 (5)
β (°) 91.277 (5)
V3)2002.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury70
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.805, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
12312, 3496, 3141
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.02
No. of reflections3496
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationDel Sesto, R. E., Arif, A. M. & Miller, J. S. (2000). Inorg. Chem. 39, 4894–4902.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y.-W., Zhao, J.-P., Wang, L.-F. & Bu, X.-H. (2011). CrystEngComm, 13, 6002–6006.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSato, H., Matsuda, R., Sugimoto, K., Takata, M. & Kitagawa, S. (2010). Nat. Mater. 9, 661–666.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds