organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o99-o100

N-(2-Chloro-4-nitro­phen­yl)maleamic acid monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 December 2011; accepted 6 December 2011; online 14 December 2011)

The title compound, C10H7ClN2O5·H2O, crystallizes with a half-mol­ecule each of N-(2-chloro-4-nitro­phen­yl)maleamic acid (located on a mirror plane) and water (located on a twofold rotation axis) in the asymmetric unit. The main mol­ecule is planar by symmetry and its conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296-o1297.]); Shakuntala et al. (2011[Shakuntala, K., Vrábel, V., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3317.]), on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004[Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500.]) on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]) and on N-chloro­aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403-425.]). For modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7ClN2O5·H2O

  • Mr = 288.64

  • Orthorhombic, C m c a

  • a = 6.7499 (2) Å

  • b = 20.3357 (5) Å

  • c = 17.1671 (4) Å

  • V = 2356.42 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.81 × 0.25 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.860, Tmax = 0.965

  • 14309 measured reflections

  • 1310 independent reflections

  • 1131 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.07

  • 1310 reflections

  • 118 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O11 0.86 2.50 3.178 (3) 136
O2—H7W⋯O1 0.75 1.77 2.515 (3) 171
O11—H11⋯O3i 1.05 (1) 2.04 (2) 2.978 (2) 146 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide moiety is a constituent of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Prasad et al., 2002; Shakuntala et al., 2011), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloroarylsulfoamides (Gowda & Kumar, 2003), in the present work, the crystal structure of N-(2-chloro-4-nitrophenyl)-maleamic acid monohydrate(I) has been determined (Fig.1).

The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. But the conformation of the N—H bond is syn to the ortho-Cl atom in the phenyl ring, similar to that observed between the N—H bond and ortho-methyl group in N-(4-Chloro-2-methylphenyl)-maleamic acid (II) (Shakuntala et al., 2011).

In the maleamic acid moiety, the amide C=O bond is anti to the adjacent C—H bond, while the carboxyl C=O bond is syn to the adjacent C—H bond. The observed rare anti conformation of the C=O and O—H bonds of the acid group is similar to that observed in (II). This may be due to the hydrogen bond donated to the amide carbonyl group by the carboxyl group. The C2–C3 bond length of 1.327 (4)Å indicates the double bond character.

The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

In (I), both the intramolecular O–H···O and N—H···Cl, and intermolecular N–H···O and O–H···O hydrogen bonds have been observed. The packing of molecules linked by intermolecular N–H···O and O–H···O hydrogen bonds into infinite chains is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000); Prasad et al. (2002); Shakuntala et al. (2011), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004) on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloroarylsulfonamides, see: Gowda & Kumar (2003). For modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976)

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2-chloro-4-nitroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2-chloro-4-nitroaniline. The resultant solid N-(2-chloro-4-nitrophenyl)-maleamic acid monohydrate was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All hydrogen atoms were placed in calculated positions with C–H distances of 0.93Å and constrained to ride on their parent atoms. Amide and and O—H atoms were seen in difference map and were refined with the N—H distance restrained to 0.86 (1) Å. The Uiso(H) values were set at 1.2 Ueq (C, N, O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view of the title compound. Molecular chains along a-axis are generated by N–H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in H-bonding have been omitted.
3-[(2-chloro-4-nitrophenyl)carbamoyl]prop-2-enoic acid monohydrate top
Crystal data top
C10H7ClN2O5·H2OF(000) = 1184
Mr = 288.64Dx = 1.627 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 4659 reflections
a = 6.7499 (2) Åθ = 2.0–29.4°
b = 20.3357 (5) ŵ = 0.35 mm1
c = 17.1671 (4) ÅT = 293 K
V = 2356.42 (11) Å3Prism, colorless
Z = 80.81 × 0.25 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
1310 independent reflections
Radiation source: fine-focus sealed tube1131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 4.1°
ω scansh = 88
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 2425
Tmin = 0.860, Tmax = 0.965l = 2121
14309 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0582P)2 + 3.7851P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1310 reflectionsΔρmax = 0.25 e Å3
118 parametersΔρmin = 0.44 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (7)
Crystal data top
C10H7ClN2O5·H2OV = 2356.42 (11) Å3
Mr = 288.64Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 6.7499 (2) ŵ = 0.35 mm1
b = 20.3357 (5) ÅT = 293 K
c = 17.1671 (4) Å0.81 × 0.25 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
1310 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
1131 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.965Rint = 0.027
14309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
1310 reflectionsΔρmin = 0.44 e Å3
118 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00000.38088 (14)0.11375 (16)0.0392 (7)
C20.00000.31306 (15)0.08336 (18)0.0456 (8)
H2A0.00000.28000.12080.055*
C30.00000.29270 (15)0.00997 (17)0.0450 (8)
H3A0.00000.24720.00480.054*
C40.00000.32802 (18)0.06507 (19)0.0546 (9)
C50.00000.44114 (13)0.23898 (16)0.0350 (6)
C60.00000.43336 (14)0.32018 (16)0.0365 (6)
C70.00000.48666 (15)0.36958 (17)0.0435 (7)
H7A0.00000.48100.42330.052*
C80.00000.54865 (15)0.33704 (18)0.0440 (8)
C90.00000.55845 (14)0.25794 (19)0.0425 (7)
H9A0.00000.60080.23770.051*
C100.00000.50500 (15)0.20906 (17)0.0405 (7)
H10A0.00000.51140.15540.049*
Cl10.00000.35546 (4)0.36046 (4)0.0487 (3)
N10.00000.38484 (12)0.19242 (14)0.0431 (6)
H1A0.00000.34800.21690.052*
N20.00000.60563 (15)0.38903 (18)0.0647 (9)
O10.00000.42972 (11)0.07268 (12)0.0671 (9)
O20.00000.39196 (13)0.06678 (14)0.0886 (12)
H7W0.00000.40700.02670.133*
O30.00000.29773 (15)0.12558 (15)0.0864 (11)
O40.00000.59696 (16)0.45824 (16)0.1041 (14)
O50.00000.65986 (14)0.35994 (18)0.1049 (15)
O110.25000.26168 (15)0.25000.0931 (11)
H110.319 (5)0.2243 (11)0.2174 (17)0.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0580 (18)0.0330 (15)0.0266 (13)0.0000.0000.0002 (11)
C20.075 (2)0.0294 (15)0.0328 (15)0.0000.0000.0028 (12)
C30.070 (2)0.0306 (15)0.0349 (16)0.0000.0000.0042 (12)
C40.089 (3)0.0443 (19)0.0306 (16)0.0000.0000.0048 (14)
C50.0481 (16)0.0313 (13)0.0257 (13)0.0000.0000.0002 (10)
C60.0487 (16)0.0328 (14)0.0279 (14)0.0000.0000.0032 (11)
C70.063 (2)0.0418 (17)0.0259 (13)0.0000.0000.0025 (12)
C80.062 (2)0.0360 (16)0.0341 (15)0.0000.0000.0082 (12)
C90.0593 (19)0.0311 (14)0.0371 (16)0.0000.0000.0002 (12)
C100.0587 (18)0.0357 (15)0.0270 (14)0.0000.0000.0020 (11)
Cl10.0793 (6)0.0367 (4)0.0301 (4)0.0000.0000.0070 (3)
N10.0757 (18)0.0288 (12)0.0248 (11)0.0000.0000.0015 (9)
N20.108 (3)0.0425 (17)0.0436 (17)0.0000.0000.0118 (13)
O10.144 (3)0.0313 (12)0.0258 (11)0.0000.0000.0009 (9)
O20.197 (4)0.0424 (15)0.0262 (12)0.0000.0000.0001 (10)
O30.166 (3)0.0607 (17)0.0327 (13)0.0000.0000.0123 (12)
O40.213 (4)0.0621 (19)0.0368 (15)0.0000.0000.0167 (13)
O50.218 (5)0.0353 (14)0.0618 (19)0.0000.0000.0111 (13)
O110.145 (3)0.0680 (19)0.0664 (19)0.0000.021 (2)0.000
Geometric parameters (Å, º) top
C1—O11.218 (4)C6—Cl11.728 (3)
C1—N11.353 (4)C7—C81.379 (4)
C1—C21.474 (4)C7—H7A0.9300
C2—C31.326 (4)C8—C91.372 (4)
C2—H2A0.9300C8—N21.463 (4)
C3—C41.475 (4)C9—C101.373 (4)
C3—H3A0.9300C9—H9A0.9300
C4—O31.208 (4)C10—H10A0.9300
C4—O21.301 (4)N1—H1A0.8600
C5—C101.397 (4)N2—O41.201 (4)
C5—N11.396 (4)N2—O51.211 (4)
C5—C61.403 (4)O2—H7W0.7531
C6—C71.376 (4)O11—H111.052 (3)
O1—C1—N1122.0 (3)C6—C7—H7A121.0
O1—C1—C2123.9 (3)C8—C7—H7A121.0
N1—C1—C2114.1 (3)C9—C8—C7122.2 (3)
C3—C2—C1128.9 (3)C9—C8—N2119.3 (3)
C3—C2—H2A115.5C7—C8—N2118.5 (3)
C1—C2—H2A115.5C10—C9—C8119.3 (3)
C2—C3—C4132.7 (3)C10—C9—H9A120.3
C2—C3—H3A113.7C8—C9—H9A120.3
C4—C3—H3A113.7C9—C10—C5120.8 (3)
O3—C4—O2119.4 (3)C9—C10—H10A119.6
O3—C4—C3120.2 (3)C5—C10—H10A119.6
O2—C4—C3120.4 (3)C1—N1—C5128.3 (3)
C10—C5—N1123.5 (3)C1—N1—H1A115.9
C10—C5—C6118.1 (3)C5—N1—H1A115.8
N1—C5—C6118.4 (2)O4—N2—O5122.8 (3)
C7—C6—C5121.6 (3)O4—N2—C8119.2 (3)
C7—C6—Cl1118.4 (2)O5—N2—C8118.0 (3)
C5—C6—Cl1120.1 (2)C4—O2—H7W112.6
C6—C7—C8118.1 (3)
O1—C1—C2—C30.0C7—C8—C9—C100.000 (1)
N1—C1—C2—C3180.0N2—C8—C9—C10180.0
C1—C2—C3—C40.0C8—C9—C10—C50.0
C2—C3—C4—O3180.0N1—C5—C10—C9180.0
C2—C3—C4—O20.0C6—C5—C10—C90.0
C10—C5—C6—C70.0O1—C1—N1—C50.0
N1—C5—C6—C7180.0C2—C1—N1—C5180.0
C10—C5—C6—Cl1180.0C10—C5—N1—C10.0
N1—C5—C6—Cl10.0C6—C5—N1—C1180.0
C5—C6—C7—C80.0C9—C8—N2—O4180.0
Cl1—C6—C7—C8180.0C7—C8—N2—O40.000 (1)
C6—C7—C8—C90.000 (1)C9—C8—N2—O50.000 (1)
C6—C7—C8—N2180.0C7—C8—N2—O5180.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O110.862.503.178 (3)136
O2—H7W···O10.751.772.515 (3)171
O11—H11···O3i1.05 (1)2.04 (2)2.978 (2)146 (3)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H7ClN2O5·H2O
Mr288.64
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)293
a, b, c (Å)6.7499 (2), 20.3357 (5), 17.1671 (4)
V3)2356.42 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.81 × 0.25 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.860, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
14309, 1310, 1131
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.07
No. of reflections1310
No. of parameters118
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.44

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O110.862.503.178 (3)136.3
O2—H7W···O10.751.772.515 (3)171.2
O11—H11···O3i1.052 (3)2.044 (18)2.978 (2)146 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

MF and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10) for financial support and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for award of a research fellowship under its faculty improvement program.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationJayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.  CAS Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Vrábel, V., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o99-o100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds