organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2,6-di­ethyl­phen­yl)ace­naphthyl­ene-1,2-di­imine

aState Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and bSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wuql@jlu.edu.cn, ymu@jlu.edu.cn

(Received 9 November 2011; accepted 8 December 2011; online 14 December 2011)

The title compound, C32H32N2, has crystallographic twofold rotation symmetry, with two C atoms lying on the rotation axis. The dihedral angle between the substituted benzene ring and the naphthalene ring system is 79.8 (1)°. The crystal structure is stabilized by C—H⋯N inter­actions, which form a chain motif along the b-axis direction.

Related literature

For details and applications of acenaphthenquinone-based Schiff bases and corresponding metal complexes, see: Li et al. (2011[Li, L.-D., Gomes, C. S. B., Gomes, P. T., Duarte, M. T. & Fan, Z. Q. (2011). Dalton Trans. 40, 3365-3380.]); Hagar et al. (2010[Hagar, M., Ragaini, F., Monticelli, E., Caselli, A., Macchi, P. & Casati, N. (2010). Chem. Commun. 46, 6153-6155.]); Kovach et al. (2011[Kovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33-38.]); Oleinik et al. (2005[Oleinik, I. I., Oleinik, I. V., Ivanchev, S. S. & Tolstikov, G. A. (2005). Russ. J. Org. Chem. 41, 1354-1357.]); Ragaini et al. (2006[Ragaini, F., Gasperini, M., Parma, P., Gallo, E., Casati, N. & Macchi, P. (2006). New J. Chem. 30, 1046-1057.]); Rosa et al. (2008[Rosa, V., Aviles, T., Aullon, G., Covelo, B. & Lodeiro, C. (2008). Inorg. Chem. 47, 7734-7744.]); Small et al. (2007[Small, B. L., Rios, R., Fernandez, E. R. & Carney, M. J. (2007). Organometallics, 26, 1744-1749.]); Zhou et al. (2008[Zhou, J., Sun, H.-J., Harms, K. & Sundermeyer, J. (2008). Z. Anorg. Allg. Chem. 634, 1517-1521.]).

[Scheme 1]

Experimental

Crystal data
  • C32H32N2

  • Mr = 444.60

  • Monoclinic, C 2/c

  • a = 13.5134 (12) Å

  • b = 8.6952 (8) Å

  • c = 22.3532 (19) Å

  • β = 99.413 (1)°

  • V = 2591.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 185 K

  • 0.25 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.986

  • 7599 measured reflections

  • 2538 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.151

  • S = 1.02

  • 2538 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.95 2.43 3.379 (2) 179
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acenaphthenequinone-based Schiff bases and their metal complexes have been widely synthesized due to their significant applications in catalysis, coordination chemistry and supramolecular assemblies. (Ragaini et al., 2006; Kovach et al., 2011; Small et al., 2007; Rosa et al., 2008; Oleinik et al., 2005; Li et al., 2011; Hagar et al., 2010; Zhou et al., 2008.) As part of our research efforts focused on developing olefin polymerization catalysts, a novel series of Schiff-base derivatives were synthesized and evaluated as high-performance ligand systems. Herein, we report the preparation and crystal structure of new acenaphthenequinone-based Schiff base compound, derived from acenaphthenequinone and 2,6-diethylaniline.

The title molecule, Fig. 1, has crystallographic twofold rotation symmetry. The dihedral angle between the substituted benzene ring and the naphthalene fragment is 79.8 (1)°. Both lengths and angles in the title compound are in normal ranges and are comparable to those found in similar acenaphthenequinone-based Schiff base compounds (Kovach et al., 2011; Rosa et al., 2008).

In the packing of the crystal, there are intermolecular C—H···N interactions, which form one-dimensional chains (Fig. 2 and Table 1).

Related literature top

For details and applications of acenaphthenquinone-based Schiff bases and corresponding metal complexes, see: Li et al. (2011); Hagar et al. (2010); Kovach et al. (2011); Oleinik et al. (2005); Ragaini et al. (2006); Rosa et al. (2008); Small et al. (2007); Zhou et al. (2008).

Experimental top

Acenaphthenequinone (1.35 g, 7.4 mmol) in 65 ml of acetonitrile was heated under reflux for 30 min and then 12 ml of acetic acid was added and heating was continued until the acenaphthenequinone had completely dissolved. To this hot solution, 2.39 g (16 mmol) of 2,6-diethylaniline was added directly and the solution was heated under reflux for a further 1.5 h. It was then cooled to room temperature and the solid filtered off to give a yellow product that was washed with hexane and air dried. Yield 2.73 g (83%). The crystals suitable for X-ray structure determination were obtained by slow solvent evaporation from an ethanolic solution at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.95 (aromatic carbon), 0.99 (methylene) and 0.98 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen atoms are omitted for clarity. [Symmetry code: (A) -x, y, 0.5 - z.]
[Figure 2] Fig. 2. The molecular packing of (I). Hydrogen bonds are indicated by dashed lines.
N,N'-Bis(2,6-diethylphenyl)acenaphthylene-1,2-diimine top
Crystal data top
C32H32N2Z = 4
Mr = 444.60F(000) = 952
Monoclinic, C2/cDx = 1.140 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.5134 (12) Åθ = 3.7–52.1°
b = 8.6952 (8) ŵ = 0.07 mm1
c = 22.3532 (19) ÅT = 185 K
β = 99.413 (1)°Block, pale yellow
V = 2591.2 (4) Å30.25 × 0.24 × 0.21 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2538 independent reflections
Radiation source: fine-focus sealed tube1842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1614
Tmin = 0.984, Tmax = 0.986k = 1010
7599 measured reflectionsl = 2724
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0768P)2 + 1.7702P]
where P = (Fo2 + 2Fc2)/3
2538 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C32H32N2V = 2591.2 (4) Å3
Mr = 444.60Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.5134 (12) ŵ = 0.07 mm1
b = 8.6952 (8) ÅT = 185 K
c = 22.3532 (19) Å0.25 × 0.24 × 0.21 mm
β = 99.413 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2538 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1842 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.986Rint = 0.028
7599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
2538 reflectionsΔρmin = 0.19 e Å3
157 parameters
Special details top

Experimental. 1H NMR (300 MHz, CDCl3, 298 K) δ (p.p.m.): 1.13 (t, JH—H = 9.0 Hz, 12H, CH2CH3), 2.49 (m, 4H, CH2CH3), 2.60 (m, 4H, CH2CH3), 6.71 (d, 2H), 7.22 (m, 6H), 7.37 (t, 2H), 7.87 (d, 2H). 13C NMR (75 MHz, CDCl3, 298 K) δ (p.p.m.): 8.74, 19.58, 117.77, 118.81, 121.28, 122.94, 123.68, 124.41, 125.55, 125.86, 135.46, 143.43, 155.61 p.p.m..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48604 (12)1.10939 (19)0.30114 (7)0.0252 (4)
C20.47262 (13)1.1829 (2)0.35360 (8)0.0307 (4)
H20.46291.12600.38840.037*
C30.47366 (14)1.3456 (2)0.35439 (9)0.0358 (5)
H30.46541.39730.39070.043*
C40.48623 (14)1.4314 (2)0.30468 (9)0.0346 (5)
H40.48571.54050.30700.041*
C50.50001.3587 (3)0.25000.0296 (6)
C60.50001.1977 (3)0.25000.0259 (5)
C70.49133 (12)0.94636 (19)0.28284 (7)0.0244 (4)
C80.46314 (14)0.8115 (2)0.37023 (8)0.0290 (4)
C90.36277 (14)0.8239 (2)0.37853 (8)0.0353 (5)
C100.34091 (17)0.7996 (3)0.43645 (10)0.0531 (6)
H100.27350.80760.44320.064*
C110.41560 (19)0.7640 (3)0.48439 (10)0.0664 (8)
H110.39970.75100.52390.080*
C120.51299 (19)0.7475 (3)0.47479 (10)0.0622 (7)
H120.56350.72040.50780.075*
C130.53893 (15)0.7696 (3)0.41798 (9)0.0426 (5)
C140.28009 (15)0.8561 (3)0.32569 (9)0.0446 (5)
H14A0.29720.95010.30460.054*
H14B0.21700.87640.34150.054*
C150.26253 (17)0.7249 (3)0.28009 (10)0.0542 (6)
H15A0.32510.70180.26510.081*
H15B0.21100.75500.24600.081*
H15C0.24020.63340.29980.081*
C160.64667 (17)0.7500 (3)0.40762 (10)0.0571 (7)
H16A0.68110.67530.43740.068*
H16B0.64660.70750.36650.068*
C170.7033 (2)0.8979 (4)0.41362 (14)0.0786 (9)
H17A0.66980.97200.38400.118*
H17B0.77180.88000.40610.118*
H17C0.70540.93880.45470.118*
N10.48669 (11)0.81965 (16)0.31083 (6)0.0273 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0249 (9)0.0236 (9)0.0262 (9)0.0001 (7)0.0019 (7)0.0007 (7)
C20.0353 (10)0.0303 (10)0.0267 (10)0.0014 (7)0.0054 (8)0.0028 (8)
C30.0419 (11)0.0314 (11)0.0338 (11)0.0024 (8)0.0058 (8)0.0104 (8)
C40.0384 (11)0.0214 (9)0.0427 (12)0.0017 (7)0.0030 (8)0.0066 (8)
C50.0284 (13)0.0230 (13)0.0359 (15)0.0000.0006 (11)0.000
C60.0236 (12)0.0251 (13)0.0281 (13)0.0000.0017 (10)0.000
C70.0247 (8)0.0239 (9)0.0240 (9)0.0000 (7)0.0024 (7)0.0012 (7)
C80.0383 (10)0.0267 (9)0.0230 (9)0.0045 (7)0.0077 (7)0.0004 (7)
C90.0373 (11)0.0386 (11)0.0308 (10)0.0032 (8)0.0080 (8)0.0010 (8)
C100.0409 (12)0.0832 (18)0.0377 (12)0.0097 (11)0.0141 (10)0.0014 (11)
C110.0583 (16)0.117 (2)0.0267 (12)0.0145 (14)0.0150 (11)0.0090 (13)
C120.0520 (15)0.104 (2)0.0286 (12)0.0064 (13)0.0007 (10)0.0142 (12)
C130.0409 (12)0.0584 (14)0.0282 (11)0.0055 (9)0.0053 (9)0.0060 (9)
C140.0333 (11)0.0582 (14)0.0427 (12)0.0037 (9)0.0069 (9)0.0033 (10)
C150.0395 (12)0.0708 (16)0.0486 (14)0.0116 (11)0.0040 (10)0.0032 (12)
C160.0445 (13)0.0889 (19)0.0357 (12)0.0050 (12)0.0002 (10)0.0137 (12)
C170.0503 (15)0.098 (2)0.086 (2)0.0047 (15)0.0064 (14)0.0121 (17)
N10.0327 (8)0.0243 (8)0.0248 (8)0.0001 (6)0.0043 (6)0.0004 (6)
Geometric parameters (Å, º) top
C1—C21.373 (2)C10—C111.382 (3)
C1—C61.415 (2)C10—H100.9500
C1—C71.480 (2)C11—C121.375 (3)
C2—C31.414 (3)C11—H110.9500
C2—H20.9500C12—C131.385 (3)
C3—C41.372 (3)C12—H120.9500
C3—H30.9500C13—C161.521 (3)
C4—C51.415 (2)C14—C151.522 (3)
C4—H40.9500C14—H14A0.9900
C5—C61.401 (3)C14—H14B0.9900
C5—C4i1.415 (2)C15—H15A0.9800
C6—C1i1.415 (2)C15—H15B0.9800
C7—N11.274 (2)C15—H15C0.9800
C7—C7i1.524 (3)C16—C171.491 (4)
C8—C131.401 (3)C16—H16A0.9900
C8—C91.403 (3)C16—H16B0.9900
C8—N11.417 (2)C17—H17A0.9800
C9—C101.390 (3)C17—H17B0.9800
C9—C141.513 (3)C17—H17C0.9800
C2—C1—C6119.40 (17)C10—C11—H11120.0
C2—C1—C7134.50 (16)C11—C12—C13121.4 (2)
C6—C1—C7106.10 (15)C11—C12—H12119.3
C1—C2—C3118.29 (17)C13—C12—H12119.3
C1—C2—H2120.9C12—C13—C8118.13 (19)
C3—C2—H2120.9C12—C13—C16121.09 (19)
C4—C3—C2122.42 (17)C8—C13—C16120.78 (17)
C4—C3—H3118.8C9—C14—C15113.50 (18)
C2—C3—H3118.8C9—C14—H14A108.9
C3—C4—C5120.52 (18)C15—C14—H14A108.9
C3—C4—H4119.7C9—C14—H14B108.9
C5—C4—H4119.7C15—C14—H14B108.9
C6—C5—C4116.53 (12)H14A—C14—H14B107.7
C6—C5—C4i116.53 (12)C14—C15—H15A109.5
C4—C5—C4i126.9 (2)C14—C15—H15B109.5
C5—C6—C1i122.85 (11)H15A—C15—H15B109.5
C5—C6—C1122.85 (11)C14—C15—H15C109.5
C1i—C6—C1114.3 (2)H15A—C15—H15C109.5
N1—C7—C1133.16 (15)H15B—C15—H15C109.5
N1—C7—C7i120.06 (10)C17—C16—C13112.3 (2)
C1—C7—C7i106.75 (9)C17—C16—H16A109.1
C13—C8—C9121.42 (16)C13—C16—H16A109.1
C13—C8—N1118.61 (16)C17—C16—H16B109.1
C9—C8—N1119.36 (16)C13—C16—H16B109.1
C10—C9—C8117.95 (18)H16A—C16—H16B107.9
C10—C9—C14120.84 (18)C16—C17—H17A109.5
C8—C9—C14121.16 (16)C16—C17—H17B109.5
C11—C10—C9121.1 (2)H17A—C17—H17B109.5
C11—C10—H10119.4C16—C17—H17C109.5
C9—C10—H10119.4H17A—C17—H17C109.5
C12—C11—C10119.9 (2)H17B—C17—H17C109.5
C12—C11—H11120.0C7—N1—C8122.72 (15)
C6—C1—C2—C30.2 (2)C13—C8—C9—C14174.83 (19)
C7—C1—C2—C3178.84 (18)N1—C8—C9—C143.9 (3)
C1—C2—C3—C40.9 (3)C8—C9—C10—C110.1 (3)
C2—C3—C4—C50.7 (3)C14—C9—C10—C11177.3 (2)
C3—C4—C5—C60.04 (19)C9—C10—C11—C122.0 (4)
C3—C4—C5—C4i179.96 (19)C10—C11—C12—C131.6 (4)
C4—C5—C6—C1i179.32 (11)C11—C12—C13—C80.8 (4)
C4i—C5—C6—C1i0.68 (11)C11—C12—C13—C16179.5 (2)
C4—C5—C6—C10.68 (11)C9—C8—C13—C122.9 (3)
C4i—C5—C6—C1179.32 (11)N1—C8—C13—C12173.9 (2)
C2—C1—C6—C50.55 (17)C9—C8—C13—C16177.40 (19)
C7—C1—C6—C5179.85 (8)N1—C8—C13—C166.4 (3)
C2—C1—C6—C1i179.45 (18)C10—C9—C14—C15110.2 (2)
C7—C1—C6—C1i0.15 (8)C8—C9—C14—C1567.1 (3)
C2—C1—C7—N11.4 (3)C12—C13—C16—C1793.2 (3)
C6—C1—C7—N1177.72 (17)C8—C13—C16—C1786.5 (3)
C2—C1—C7—C7i179.52 (19)C1—C7—N1—C87.1 (3)
C6—C1—C7—C7i0.4 (2)C7i—C7—N1—C8175.03 (17)
C13—C8—C9—C102.6 (3)C13—C8—N1—C7109.9 (2)
N1—C8—C9—C10173.49 (18)C9—C8—N1—C778.9 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N10.982.483.106 (3)122
C16—H16B···N10.992.512.862 (3)101
C4—H4···N1ii0.952.433.379 (2)179
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H32N2
Mr444.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)185
a, b, c (Å)13.5134 (12), 8.6952 (8), 22.3532 (19)
β (°) 99.413 (1)
V3)2591.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.984, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7599, 2538, 1842
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.151, 1.02
No. of reflections2538
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.952.433.379 (2)178.6
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant Nos. 21004026 and 21074043).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHagar, M., Ragaini, F., Monticelli, E., Caselli, A., Macchi, P. & Casati, N. (2010). Chem. Commun. 46, 6153–6155.  Web of Science CSD CrossRef CAS Google Scholar
First citationKovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L.-D., Gomes, C. S. B., Gomes, P. T., Duarte, M. T. & Fan, Z. Q. (2011). Dalton Trans. 40, 3365–3380.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOleinik, I. I., Oleinik, I. V., Ivanchev, S. S. & Tolstikov, G. A. (2005). Russ. J. Org. Chem. 41, 1354–1357.  Web of Science CrossRef Google Scholar
First citationRagaini, F., Gasperini, M., Parma, P., Gallo, E., Casati, N. & Macchi, P. (2006). New J. Chem. 30, 1046–1057.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosa, V., Aviles, T., Aullon, G., Covelo, B. & Lodeiro, C. (2008). Inorg. Chem. 47, 7734–7744.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmall, B. L., Rios, R., Fernandez, E. R. & Carney, M. J. (2007). Organometallics, 26, 1744–1749.  Web of Science CrossRef CAS Google Scholar
First citationZhou, J., Sun, H.-J., Harms, K. & Sundermeyer, J. (2008). Z. Anorg. Allg. Chem. 634, 1517–1521.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds