organic compounds
1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-iminium chloride
aX-ray Crystallography Laboratory, Post-Graduate Department of Physics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India
*Correspondence e-mail: rkvk.paper11@gmail.com
The title compound, C9H12ClN4+·Cl−, is a natural metabolic product of imidacloprid [systematic name: (E)-1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and was obtained by the reduction of the latter using Fe in HCl. The dihedral angle between the pyridine and imidazole rings is 62.09 (12)°. The is stabilized by N—H⋯Cl and C—H⋯Cl interactions involving the chloride anion. The pyridine N and the chloride atoms are not involved in intermolecular interactions.
Related literature
For background to the insecticidal applications of imidacloprid, see: Kanne et al. (2005); Schulz-Jander et al. (2002); Dai et al. (2010); Tanner (2010). For ring conformations, see: Duax & Norton (1975). For related structures, see: Kapoor et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536811053487/gg2070sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811053487/gg2070Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811053487/gg2070Isup3.cml
Imidacloprid (12.75 g, 0.05 mol) was dissolved in 30 ml alcohol, fine powdered Fe (5.59 g, 0.10 mol) metal in the proportion of 1:2 was added, followed by 40 ml of conc. HCl. The mixture was refluxed for 10 hrs and the solid product was washed and cleaned by normal organic protocols, separated out, dissolved in alcohol and by the process of slow evaporation a yellowish crystalline compound was separated out. IR (KBr) νmax: 3233, 3083, 2923, 1690 cm-1. 1H NMR (300 MHz, CDCl3) δ: 3.55(s, 2 x CH2), 4.62(s, CH2), 7.36(d, J = 8.2 Hz, Py1H), 7.74(dd, J1= 7.5 Hz, J2 = 2.5 Hz, PyH), 8.21(s, NH), 8.32(s, Py1H) ppm. 13C NMR (300 MHz, CDCl3) δ: 159, 150, 149, 139, 130, 124, 100, 47, 45 ppm. LC—MS/MS (m/z): 211, 193, 175, 169, 133, 126, 84.
All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.97 Å; N—H distances of 0.86 Å and with Uiso(H) = 1.2Ueq(C/N).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).C9H12ClN4+·Cl− | Z = 2 |
Mr = 247.13 | F(000) = 256 |
Triclinic, P1 | Dx = 1.448 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4773 (3) Å | Cell parameters from 7015 reflections |
b = 7.3091 (3) Å | θ = 3.9–29.1° |
c = 12.4758 (4) Å | µ = 0.55 mm−1 |
α = 88.996 (3)° | T = 293 K |
β = 77.214 (3)° | Plate, yellow |
γ = 79.925 (3)° | 0.3 × 0.2 × 0.1 mm |
V = 566.98 (4) Å3 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2468 independent reflections |
Radiation source: fine-focus sealed tube | 2059 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 27.0°, θmin = 3.9° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −9→9 |
Tmin = 0.742, Tmax = 1.000 | l = −15→15 |
14139 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0442P)2 + 0.3165P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
2468 reflections | Δρmax = 0.36 e Å−3 |
137 parameters | Δρmin = −0.34 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.027 (4) |
C9H12ClN4+·Cl− | γ = 79.925 (3)° |
Mr = 247.13 | V = 566.98 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.4773 (3) Å | Mo Kα radiation |
b = 7.3091 (3) Å | µ = 0.55 mm−1 |
c = 12.4758 (4) Å | T = 293 K |
α = 88.996 (3)° | 0.3 × 0.2 × 0.1 mm |
β = 77.214 (3)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2468 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | 2059 reflections with I > 2σ(I) |
Tmin = 0.742, Tmax = 1.000 | Rint = 0.035 |
14139 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.36 e Å−3 |
2468 reflections | Δρmin = −0.34 e Å−3 |
137 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl2 | 0.86358 (8) | 0.30462 (7) | 0.60008 (4) | 0.04939 (19) | |
Cl1 | 0.23994 (12) | 0.35819 (11) | 1.17486 (5) | 0.0720 (2) | |
N1 | 0.1057 (3) | 0.2611 (3) | 1.00679 (16) | 0.0649 (6) | |
C2 | 0.1336 (3) | 0.2148 (4) | 0.89995 (19) | 0.0587 (6) | |
H2 | 0.0126 | 0.2007 | 0.8745 | 0.070* | |
C3 | 0.3286 (3) | 0.1868 (3) | 0.82568 (15) | 0.0365 (4) | |
C4 | 0.5059 (3) | 0.2069 (3) | 0.86513 (18) | 0.0500 (5) | |
H4 | 0.6416 | 0.1874 | 0.8184 | 0.060* | |
C5 | 0.4824 (4) | 0.2558 (4) | 0.97404 (19) | 0.0544 (6) | |
H5 | 0.6002 | 0.2700 | 1.0023 | 0.065* | |
C6 | 0.2785 (4) | 0.2826 (3) | 1.03902 (16) | 0.0473 (5) | |
C7 | 0.3440 (3) | 0.1424 (3) | 0.70621 (15) | 0.0380 (4) | |
H7A | 0.2113 | 0.1987 | 0.6860 | 0.046* | |
H7B | 0.4600 | 0.1959 | 0.6613 | 0.046* | |
N8 | 0.3828 (3) | −0.0570 (2) | 0.68359 (13) | 0.0392 (4) | |
C9 | 0.2100 (4) | −0.1652 (3) | 0.7134 (2) | 0.0510 (5) | |
H9A | 0.0927 | −0.1189 | 0.6779 | 0.061* | |
H9B | 0.1550 | −0.1632 | 0.7923 | 0.061* | |
C10 | 0.3206 (4) | −0.3597 (3) | 0.6710 (2) | 0.0566 (6) | |
H10A | 0.3486 | −0.4399 | 0.7308 | 0.068* | |
H10B | 0.2345 | −0.4152 | 0.6305 | 0.068* | |
N11 | 0.5199 (3) | −0.3268 (2) | 0.59921 (15) | 0.0503 (5) | |
H11 | 0.6049 | −0.4064 | 0.5525 | 0.060* | |
C12 | 0.5523 (3) | −0.1553 (3) | 0.61621 (15) | 0.0388 (4) | |
N13 | 0.7288 (3) | −0.0930 (3) | 0.57049 (15) | 0.0512 (5) | |
H13A | 0.7407 | 0.0194 | 0.5835 | 0.061* | |
H13B | 0.8325 | −0.1646 | 0.5276 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.0360 (3) | 0.0522 (3) | 0.0531 (3) | −0.0003 (2) | −0.0009 (2) | −0.0019 (2) |
Cl1 | 0.0869 (5) | 0.0993 (5) | 0.0355 (3) | −0.0398 (4) | −0.0064 (3) | −0.0068 (3) |
N1 | 0.0480 (11) | 0.1002 (17) | 0.0444 (11) | −0.0233 (11) | 0.0042 (8) | −0.0210 (10) |
C2 | 0.0351 (11) | 0.0911 (18) | 0.0490 (13) | −0.0136 (11) | −0.0034 (9) | −0.0215 (12) |
C3 | 0.0359 (10) | 0.0346 (9) | 0.0362 (10) | −0.0034 (7) | −0.0042 (7) | −0.0012 (7) |
C4 | 0.0356 (10) | 0.0674 (14) | 0.0445 (11) | −0.0099 (10) | −0.0025 (9) | −0.0040 (10) |
C5 | 0.0448 (12) | 0.0730 (15) | 0.0499 (12) | −0.0173 (11) | −0.0145 (10) | −0.0023 (11) |
C6 | 0.0590 (13) | 0.0517 (12) | 0.0330 (10) | −0.0199 (10) | −0.0059 (9) | −0.0001 (8) |
C7 | 0.0378 (10) | 0.0366 (10) | 0.0361 (10) | −0.0015 (8) | −0.0045 (8) | −0.0021 (7) |
N8 | 0.0363 (8) | 0.0393 (9) | 0.0390 (9) | −0.0055 (7) | −0.0023 (7) | −0.0044 (7) |
C9 | 0.0455 (12) | 0.0518 (12) | 0.0554 (13) | −0.0158 (10) | −0.0048 (10) | 0.0007 (10) |
C10 | 0.0685 (15) | 0.0456 (12) | 0.0600 (14) | −0.0166 (11) | −0.0184 (12) | 0.0011 (10) |
N11 | 0.0540 (11) | 0.0429 (10) | 0.0514 (11) | 0.0018 (8) | −0.0136 (8) | −0.0121 (8) |
C12 | 0.0384 (10) | 0.0437 (10) | 0.0326 (9) | 0.0016 (8) | −0.0106 (8) | −0.0033 (8) |
N13 | 0.0386 (9) | 0.0571 (11) | 0.0497 (10) | −0.0015 (8) | 0.0034 (8) | −0.0121 (8) |
Cl1—C6 | 1.743 (2) | N8—C12 | 1.328 (2) |
N1—C6 | 1.305 (3) | N8—C9 | 1.460 (3) |
N1—C2 | 1.346 (3) | C9—C10 | 1.522 (3) |
C2—C3 | 1.376 (3) | C9—H9A | 0.9700 |
C2—H2 | 0.9300 | C9—H9B | 0.9700 |
C3—C4 | 1.377 (3) | C10—N11 | 1.455 (3) |
C3—C7 | 1.509 (3) | C10—H10A | 0.9700 |
C4—C5 | 1.380 (3) | C10—H10B | 0.9700 |
C4—H4 | 0.9300 | N11—C12 | 1.334 (3) |
C5—C6 | 1.372 (3) | N11—H11 | 0.8600 |
C5—H5 | 0.9300 | C12—N13 | 1.313 (3) |
C7—N8 | 1.457 (2) | N13—H13A | 0.8600 |
C7—H7A | 0.9700 | N13—H13B | 0.8600 |
C7—H7B | 0.9700 | ||
C6—N1—C2 | 115.96 (19) | C12—N8—C9 | 110.48 (17) |
N1—C2—C3 | 124.6 (2) | C7—N8—C9 | 121.21 (16) |
N1—C2—H2 | 117.7 | N8—C9—C10 | 102.83 (18) |
C3—C2—H2 | 117.7 | N8—C9—H9A | 111.2 |
C2—C3—C4 | 116.79 (19) | C10—C9—H9A | 111.2 |
C2—C3—C7 | 121.09 (18) | N8—C9—H9B | 111.2 |
C4—C3—C7 | 122.09 (17) | C10—C9—H9B | 111.2 |
C3—C4—C5 | 120.0 (2) | H9A—C9—H9B | 109.1 |
C3—C4—H4 | 120.0 | N11—C10—C9 | 102.83 (18) |
C5—C4—H4 | 120.0 | N11—C10—H10A | 111.2 |
C6—C5—C4 | 117.4 (2) | C9—C10—H10A | 111.2 |
C6—C5—H5 | 121.3 | N11—C10—H10B | 111.2 |
C4—C5—H5 | 121.3 | C9—C10—H10B | 111.2 |
N1—C6—C5 | 125.2 (2) | H10A—C10—H10B | 109.1 |
N1—C6—Cl1 | 115.99 (17) | C12—N11—C10 | 110.36 (17) |
C5—C6—Cl1 | 118.74 (17) | C12—N11—H11 | 124.8 |
N8—C7—C3 | 112.18 (15) | C10—N11—H11 | 124.8 |
N8—C7—H7A | 109.2 | N13—C12—N8 | 125.00 (19) |
C3—C7—H7A | 109.2 | N13—C12—N11 | 123.74 (18) |
N8—C7—H7B | 109.2 | N8—C12—N11 | 111.26 (18) |
C3—C7—H7B | 109.2 | C12—N13—H13A | 120.0 |
H7A—C7—H7B | 107.9 | C12—N13—H13B | 120.0 |
C12—N8—C7 | 126.77 (17) | H13A—N13—H13B | 120.0 |
C6—N1—C2—C3 | 1.1 (4) | C3—C7—N8—C12 | −118.6 (2) |
N1—C2—C3—C4 | 0.5 (4) | C3—C7—N8—C9 | 76.9 (2) |
N1—C2—C3—C7 | −177.6 (2) | C12—N8—C9—C10 | 11.1 (2) |
C2—C3—C4—C5 | −1.0 (3) | C7—N8—C9—C10 | 177.87 (18) |
C7—C3—C4—C5 | 177.1 (2) | N8—C9—C10—N11 | −14.3 (2) |
C3—C4—C5—C6 | 0.0 (4) | C9—C10—N11—C12 | 13.7 (2) |
C2—N1—C6—C5 | −2.3 (4) | C7—N8—C12—N13 | 10.4 (3) |
C2—N1—C6—Cl1 | 175.7 (2) | C9—N8—C12—N13 | 176.29 (19) |
C4—C5—C6—N1 | 1.8 (4) | C7—N8—C12—N11 | −168.74 (18) |
C4—C5—C6—Cl1 | −176.16 (18) | C9—N8—C12—N11 | −2.9 (2) |
C2—C3—C7—N8 | −91.8 (2) | C10—N11—C12—N13 | 173.4 (2) |
C4—C3—C7—N8 | 90.2 (2) | C10—N11—C12—N8 | −7.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···Cl2 | 0.86 | 2.39 | 3.227 (2) | 166 |
N13—H13B···Cl2i | 0.86 | 2.33 | 3.177 (2) | 169 |
N11—H11···Cl2ii | 0.86 | 2.60 | 3.182 (2) | 126 |
C7—H7A···Cl2iii | 0.97 | 2.69 | 3.650 (2) | 169 |
C7—H7B···Cl2 | 0.97 | 2.80 | 3.722 (2) | 158 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x, y−1, z; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C9H12ClN4+·Cl− |
Mr | 247.13 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.4773 (3), 7.3091 (3), 12.4758 (4) |
α, β, γ (°) | 88.996 (3), 77.214 (3), 79.925 (3) |
V (Å3) | 566.98 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.55 |
Crystal size (mm) | 0.3 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.742, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14139, 2468, 2059 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.108, 1.03 |
No. of reflections | 2468 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.34 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···Cl2 | 0.86 | 2.39 | 3.227 (2) | 166 |
N13—H13B···Cl2i | 0.86 | 2.33 | 3.177 (2) | 169 |
N11—H11···Cl2ii | 0.86 | 2.60 | 3.182 (2) | 126 |
C7—H7A···Cl2iii | 0.97 | 2.69 | 3.650 (2) | 169 |
C7—H7B···Cl2 | 0.97 | 2.80 | 3.722 (2) | 158 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x, y−1, z; (iii) x−1, y, z. |
Acknowledgements
RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He also thanks the UGC for research funding under research project F. No. 37–415/2009 (J&K) (SR).
References
Dai, Y., Ji, W., Chen, T., Zhang, W., Liu, Z., Ge, F. & Yuan, S. (2010). J. Agric. Food Chem. 58, 2419–2425. Web of Science CrossRef CAS PubMed Google Scholar
Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kanne, D. B., Dick, R. A., Tomizawa, M. & Casida, J. E. (2005). Chem. Res. Toxicol. 18, 1479–1484. Web of Science CrossRef PubMed CAS Google Scholar
Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Struct. Anal. Online, 27, x55–x56. CrossRef Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Schulz-Jander, D. A., Leimkuehler, W. M. & Casida, J. E. (2002). Chem. Res. Toxicol. 15, 1158–1165. Web of Science PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanner, G. (2010). MSc thesis, Austrian Agency for Health and Food Safety, Vienna. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidacloprid is one of the largest selling insecticides worldwide (Tanner, 2010). The discovery of imidacloprid has been referred to as a milestone in the past three decades of insecticidal research. Neonicotinoid insecticides act as antagonists on the pest synaptic nicotinic acetylcholine receptor (nAchRs) of the insect central nervous system (Tanner, 2010). The nitroguanidine moiety of imidacloprid is also a common site for metabolism via cleavage to the guanidine and reduction to des-nitro-imidacloprid. These metabolic modifications often result in an enhanced potency for vertebrate nAchRs and toxicity. (Kanne et al., 2005; Schulz-Jander et al., 2002; Dai et al., 2010). The bond lengths and angles observed in (I) are normal and are comparable with related structures (Kapoor et al., 2011). The imidazole ring adopts an envelope conformation with the asymmetric parameter: ΔCs(C10)=3.63 (Duax et al., 1975). The dihedral angle between the C5N pyridine and C3N2 imidazole ring is 62.09 (12)°. The stabilization of crystal packing (Fig.2) is influenced by intermolecular N—H···Cl and C—H···Cl hydrogen bonds involving the chloride anion (Table 1).