organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(7-Fluoro-4-oxo-4H-chromen-3-yl)-3,3,6,6-tetra­methyl-2,3,4,5,6,7,8,9-octa­hydro-1H-xanthene-1,8-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 November 2011; accepted 1 December 2011; online 7 December 2011)

In the title compound, C26H25FO5, the terminal cyclo­hexane rings of the xanthene ring system adopt half-boat conformations. The 4H-chromene ring make a dihedral angle of 87.94 (5)° with the xanthene ring system and its carbonyl O atom lies above the xanthene O atom. In the crystal, mol­ecules are linked into ribbons propagating along the a-axis direction by C—H⋯O hydrogen bonds. Aromatic ππ stacking inter­actions [centroid–centroid distance = 3.7367 (12) Å] also occur.

Related literature

For a related structure and background to the properties and applications of xanthene derivatives, see: Mehdi et al. (2011[Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719-o1720.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25FO5

  • Mr = 436.46

  • Monoclinic, P 21 /c

  • a = 6.9475 (8) Å

  • b = 18.596 (2) Å

  • c = 17.559 (2) Å

  • β = 93.658 (2)°

  • V = 2264.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.51 × 0.38 × 0.24 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.978

  • 21143 measured reflections

  • 6574 independent reflections

  • 4315 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.03

  • 6574 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O4i 0.97 2.44 3.3487 (19) 156
C18—H18A⋯O5i 0.97 2.45 3.3821 (19) 162
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of xanthene derivatives (Mehdi et al., 2011), we now describe the synthesis and structure of the title compound, (I).

In the molecular structure, (Fig. 1), the terminal cyclohexane rings (C11–C16 & C17–C22) of the xanthene ring system adopt half boat conformations with puckering parameters Q= 0.4688 (18) Å, Θ= 124.2 (2)°, ϕ= 348.2 (3)° and Q= 0.4638 (17) Å, Θ= 54.8 (2)°, ϕ= 129.1 (2)° (Cremer & Pople, 1975), respectively. The 4H-chromene ring (O1/C1–C9) is approximately perpendicular to the xanthene ring system (O2/C10–C22) with dihedral angle of 87.94 (5)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a related structure (Mehdi et al., 2011).

The crystal packing is shown in Fig. 2. The molecules are linked into ribbons along the a axis via intermolecular C15—H15B···O4 and C18—H18A···O5 hydrogen bonds (Table 1). ππ interactions of Cg1···Cg1 = 3.7367 (12) Å [Cg1 is the centroid of the benzene ring (C2–C7); symmetry code: -x, 1 - y, 2 - z] further stabilized the structure.

Related literature top

For a related structure and background to the properties and applications of xanthene derivatives, see: Mehdi et al. (2011). For ring conformations, see: Cremer & Pople (1975). For reference bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 7-fluoro-3-formylchromone (2.60 mmol, 0.50 g) and dimedone (5.20 mmol, 0.73 g) in 30 ml methanol was stirred at room temperature overnight. The reaction progress was monitored by TLC. After the reaction was completed, the precipitate obtained was filtered, washed with methanol and dried. The isolated product was further purified by recrystallization from chloroform-methanol (1:1 v/v) to give the pure title compounds as colorless blocks in 92% yield.

Refinement top

All H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
9-(7-Fluoro-4-oxo-4H-chromen-3-yl)-3,3,6,6-tetramethyl- 2,3,4,5,6,7,8,9-octahydro-1H-xanthene-1,8-dione top
Crystal data top
C26H25FO5F(000) = 920
Mr = 436.46Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5340 reflections
a = 6.9475 (8) Åθ = 2.5–29.3°
b = 18.596 (2) ŵ = 0.09 mm1
c = 17.559 (2) ÅT = 296 K
β = 93.658 (2)°Block, colourless
V = 2264.0 (5) Å30.51 × 0.38 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6574 independent reflections
Radiation source: fine-focus sealed tube4315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.954, Tmax = 0.978k = 2426
21143 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.5163P]
where P = (Fo2 + 2Fc2)/3
6574 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H25FO5V = 2264.0 (5) Å3
Mr = 436.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9475 (8) ŵ = 0.09 mm1
b = 18.596 (2) ÅT = 296 K
c = 17.559 (2) Å0.51 × 0.38 × 0.24 mm
β = 93.658 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6574 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4315 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.978Rint = 0.034
21143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
6574 reflectionsΔρmin = 0.22 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0382 (3)0.36000 (10)1.08974 (8)0.1100 (6)
O10.25037 (17)0.46251 (7)0.86767 (7)0.0562 (3)
O20.29558 (13)0.54942 (6)0.61824 (6)0.0400 (2)
O30.26966 (16)0.48699 (8)0.77520 (7)0.0599 (4)
O40.21687 (16)0.66244 (8)0.73490 (8)0.0624 (4)
O50.25611 (16)0.40218 (7)0.62320 (8)0.0626 (4)
C10.2364 (2)0.48941 (9)0.79629 (10)0.0467 (4)
H1A0.35020.50280.76920.056*
C20.0864 (3)0.43986 (9)0.90721 (10)0.0491 (4)
C30.1071 (3)0.41034 (11)0.97924 (11)0.0654 (5)
H3A0.22780.40600.99880.079*
C40.0547 (4)0.38826 (12)1.01969 (12)0.0713 (6)
C50.2370 (4)0.39369 (13)0.99353 (12)0.0735 (6)
H5A0.34470.37831.02330.088*
C60.2552 (3)0.42249 (11)0.92207 (11)0.0612 (5)
H6A0.37680.42600.90310.073*
C70.0939 (2)0.44652 (9)0.87767 (9)0.0462 (4)
C80.1115 (2)0.47825 (9)0.80182 (9)0.0438 (4)
C90.0704 (2)0.49818 (9)0.76172 (9)0.0402 (3)
C100.07496 (19)0.52939 (8)0.68162 (8)0.0384 (3)
H10A0.20970.53820.66420.046*
C110.03248 (19)0.59992 (8)0.68064 (8)0.0379 (3)
C120.0564 (2)0.66493 (9)0.71072 (9)0.0444 (4)
C130.0533 (2)0.73440 (10)0.70679 (12)0.0560 (4)
H13A0.01270.76640.74640.067*
H13B0.02030.75710.65790.067*
C140.2729 (2)0.72520 (9)0.71637 (10)0.0455 (4)
C150.3311 (2)0.67069 (9)0.65689 (9)0.0426 (3)
H15A0.32340.69340.60710.051*
H15B0.46420.65660.66850.051*
C160.20817 (19)0.60537 (8)0.65378 (8)0.0368 (3)
C170.18772 (19)0.48912 (8)0.60097 (8)0.0354 (3)
C180.2912 (2)0.43901 (8)0.55154 (9)0.0406 (3)
H18A0.42750.43930.56740.049*
H18B0.27730.45580.49920.049*
C190.2145 (2)0.36198 (9)0.55528 (9)0.0423 (3)
C200.0053 (2)0.36473 (9)0.54550 (10)0.0474 (4)
H20A0.04280.38030.49400.057*
H20B0.05570.31660.55170.057*
C210.0958 (2)0.41424 (9)0.60100 (9)0.0420 (3)
C220.01150 (19)0.47845 (8)0.62625 (8)0.0367 (3)
C230.3742 (3)0.79644 (10)0.70260 (13)0.0630 (5)
H23A0.33810.81320.65200.094*
H23B0.51130.78950.70800.094*
H23C0.33690.83130.73920.094*
C240.3312 (3)0.69813 (11)0.79693 (10)0.0565 (5)
H24A0.46850.69160.80220.085*
H24B0.26840.65310.80540.085*
H24C0.29340.73270.83370.085*
C250.2778 (3)0.32836 (10)0.63219 (11)0.0555 (4)
H25A0.22590.28060.63480.083*
H25B0.23130.35710.67260.083*
H25C0.41610.32620.63750.083*
C260.2962 (3)0.31780 (11)0.49147 (12)0.0645 (5)
H26A0.24580.26980.49250.097*
H26B0.43430.31630.49870.097*
H26C0.26000.33960.44310.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1401 (15)0.1261 (13)0.0658 (8)0.0020 (11)0.0231 (9)0.0400 (8)
O10.0411 (6)0.0750 (8)0.0545 (7)0.0079 (6)0.0193 (5)0.0016 (6)
O20.0267 (5)0.0454 (6)0.0489 (6)0.0015 (4)0.0099 (4)0.0043 (5)
O30.0291 (5)0.0953 (10)0.0562 (7)0.0035 (6)0.0084 (5)0.0158 (7)
O40.0302 (6)0.0743 (9)0.0838 (9)0.0068 (5)0.0124 (6)0.0161 (7)
O50.0307 (6)0.0703 (9)0.0874 (10)0.0117 (5)0.0089 (6)0.0105 (7)
C10.0328 (7)0.0583 (10)0.0502 (9)0.0036 (7)0.0112 (6)0.0029 (7)
C20.0518 (9)0.0494 (9)0.0476 (9)0.0067 (7)0.0141 (7)0.0031 (7)
C30.0758 (13)0.0663 (13)0.0569 (11)0.0111 (10)0.0256 (10)0.0029 (9)
C40.0988 (17)0.0660 (13)0.0505 (11)0.0014 (12)0.0167 (11)0.0118 (9)
C50.0844 (15)0.0763 (15)0.0595 (12)0.0116 (12)0.0021 (11)0.0148 (10)
C60.0567 (11)0.0704 (13)0.0569 (11)0.0086 (9)0.0069 (8)0.0093 (9)
C70.0450 (8)0.0495 (9)0.0449 (8)0.0012 (7)0.0085 (7)0.0006 (7)
C80.0337 (7)0.0547 (9)0.0437 (8)0.0001 (6)0.0067 (6)0.0002 (7)
C90.0281 (6)0.0493 (9)0.0441 (8)0.0018 (6)0.0086 (6)0.0037 (7)
C100.0198 (6)0.0507 (9)0.0448 (8)0.0012 (5)0.0042 (5)0.0020 (6)
C110.0256 (6)0.0478 (8)0.0403 (7)0.0026 (6)0.0022 (5)0.0018 (6)
C120.0278 (7)0.0563 (10)0.0487 (9)0.0072 (6)0.0007 (6)0.0057 (7)
C130.0418 (9)0.0516 (10)0.0745 (12)0.0079 (7)0.0023 (8)0.0099 (9)
C140.0379 (8)0.0469 (9)0.0517 (9)0.0029 (6)0.0044 (6)0.0069 (7)
C150.0324 (7)0.0503 (9)0.0456 (8)0.0048 (6)0.0070 (6)0.0011 (7)
C160.0278 (6)0.0450 (8)0.0377 (7)0.0022 (6)0.0028 (5)0.0009 (6)
C170.0280 (6)0.0414 (8)0.0367 (7)0.0003 (5)0.0019 (5)0.0020 (6)
C180.0342 (7)0.0466 (8)0.0418 (8)0.0029 (6)0.0088 (6)0.0014 (6)
C190.0376 (7)0.0465 (9)0.0430 (8)0.0029 (6)0.0054 (6)0.0001 (7)
C200.0415 (8)0.0520 (10)0.0479 (9)0.0032 (7)0.0034 (7)0.0050 (7)
C210.0281 (7)0.0509 (9)0.0461 (8)0.0004 (6)0.0031 (6)0.0030 (7)
C220.0250 (6)0.0462 (8)0.0388 (7)0.0018 (5)0.0009 (5)0.0010 (6)
C230.0614 (12)0.0505 (11)0.0772 (13)0.0082 (8)0.0057 (10)0.0060 (9)
C240.0476 (10)0.0734 (12)0.0486 (9)0.0106 (8)0.0038 (7)0.0075 (9)
C250.0487 (9)0.0567 (11)0.0611 (11)0.0096 (8)0.0034 (8)0.0174 (9)
C260.0683 (12)0.0607 (12)0.0662 (12)0.0054 (9)0.0177 (10)0.0122 (9)
Geometric parameters (Å, º) top
F1—C41.349 (2)C14—C231.527 (2)
O1—C11.359 (2)C14—C151.528 (2)
O1—C21.363 (2)C14—C241.532 (2)
O2—C171.3719 (18)C15—C161.484 (2)
O2—C161.3744 (17)C15—H15A0.9700
O3—C81.2317 (18)C15—H15B0.9700
O4—C121.2192 (18)C17—C221.3433 (18)
O5—C211.2243 (18)C17—C181.489 (2)
C1—C91.3470 (19)C18—C191.531 (2)
C1—H1A0.9300C18—H18A0.9700
C2—C71.391 (2)C18—H18B0.9700
C2—C31.395 (3)C19—C201.526 (2)
C3—C41.354 (3)C19—C251.527 (2)
C3—H3A0.9300C19—C261.528 (2)
C4—C51.378 (3)C20—C211.507 (2)
C5—C61.378 (3)C20—H20A0.9700
C5—H5A0.9300C20—H20B0.9700
C6—C71.397 (3)C21—C221.461 (2)
C6—H6A0.9300C23—H23A0.9600
C7—C81.469 (2)C23—H23B0.9600
C8—C91.455 (2)C23—H23C0.9600
C9—C101.520 (2)C24—H24A0.9600
C10—C221.509 (2)C24—H24B0.9600
C10—C111.510 (2)C24—H24C0.9600
C10—H10A0.9800C25—H25A0.9600
C11—C161.3402 (18)C25—H25B0.9600
C11—C121.471 (2)C25—H25C0.9600
C12—C131.503 (3)C26—H26A0.9600
C13—C141.534 (2)C26—H26B0.9600
C13—H13A0.9700C26—H26C0.9600
C13—H13B0.9700
C1—O1—C2118.51 (12)C14—C15—H15B109.0
C17—O2—C16117.92 (10)H15A—C15—H15B107.8
C9—C1—O1125.01 (16)C11—C16—O2122.77 (14)
C9—C1—H1A117.5C11—C16—C15125.73 (14)
O1—C1—H1A117.5O2—C16—C15111.49 (11)
O1—C2—C7121.73 (15)C22—C17—O2122.97 (13)
O1—C2—C3116.91 (16)C22—C17—C18125.75 (14)
C7—C2—C3121.36 (18)O2—C17—C18111.29 (11)
C4—C3—C2117.71 (19)C17—C18—C19112.21 (12)
C4—C3—H3A121.1C17—C18—H18A109.2
C2—C3—H3A121.1C19—C18—H18A109.2
F1—C4—C3118.7 (2)C17—C18—H18B109.2
F1—C4—C5117.8 (2)C19—C18—H18B109.2
C3—C4—C5123.53 (19)H18A—C18—H18B107.9
C6—C5—C4118.2 (2)C20—C19—C25110.06 (13)
C6—C5—H5A120.9C20—C19—C26110.59 (15)
C4—C5—H5A120.9C25—C19—C26109.19 (15)
C5—C6—C7121.02 (19)C20—C19—C18108.20 (13)
C5—C6—H6A119.5C25—C19—C18109.84 (14)
C7—C6—H6A119.5C26—C19—C18108.95 (13)
C2—C7—C6118.21 (16)C21—C20—C19113.78 (13)
C2—C7—C8120.19 (15)C21—C20—H20A108.8
C6—C7—C8121.60 (15)C19—C20—H20A108.8
O3—C8—C9123.44 (15)C21—C20—H20B108.8
O3—C8—C7121.67 (15)C19—C20—H20B108.8
C9—C8—C7114.89 (13)H20A—C20—H20B107.7
C1—C9—C8119.57 (15)O5—C21—C22120.65 (14)
C1—C9—C10119.69 (14)O5—C21—C20121.30 (15)
C8—C9—C10120.73 (12)C22—C21—C20118.03 (13)
C22—C10—C11108.70 (11)C17—C22—C21118.57 (13)
C22—C10—C9111.76 (13)C17—C22—C10121.92 (13)
C11—C10—C9111.17 (13)C21—C22—C10119.48 (12)
C22—C10—H10A108.4C14—C23—H23A109.5
C11—C10—H10A108.4C14—C23—H23B109.5
C9—C10—H10A108.4H23A—C23—H23B109.5
C16—C11—C12118.48 (14)C14—C23—H23C109.5
C16—C11—C10122.12 (13)H23A—C23—H23C109.5
C12—C11—C10119.40 (12)H23B—C23—H23C109.5
O4—C12—C11120.52 (15)C14—C24—H24A109.5
O4—C12—C13121.74 (15)C14—C24—H24B109.5
C11—C12—C13117.66 (13)H24A—C24—H24B109.5
C12—C13—C14113.74 (14)C14—C24—H24C109.5
C12—C13—H13A108.8H24A—C24—H24C109.5
C14—C13—H13A108.8H24B—C24—H24C109.5
C12—C13—H13B108.8C19—C25—H25A109.5
C14—C13—H13B108.8C19—C25—H25B109.5
H13A—C13—H13B107.7H25A—C25—H25B109.5
C23—C14—C15108.81 (14)C19—C25—H25C109.5
C23—C14—C24109.51 (15)H25A—C25—H25C109.5
C15—C14—C24110.32 (14)H25B—C25—H25C109.5
C23—C14—C13110.57 (15)C19—C26—H26A109.5
C15—C14—C13107.69 (13)C19—C26—H26B109.5
C24—C14—C13109.92 (14)H26A—C26—H26B109.5
C16—C15—C14113.03 (12)C19—C26—H26C109.5
C16—C15—H15A109.0H26A—C26—H26C109.5
C14—C15—H15A109.0H26B—C26—H26C109.5
C16—C15—H15B109.0
C2—O1—C1—C92.6 (3)C11—C12—C13—C1433.4 (2)
C1—O1—C2—C72.8 (2)C12—C13—C14—C23173.48 (16)
C1—O1—C2—C3177.91 (16)C12—C13—C14—C1554.7 (2)
O1—C2—C3—C4179.30 (18)C12—C13—C14—C2465.50 (19)
C7—C2—C3—C40.0 (3)C23—C14—C15—C16166.89 (15)
C2—C3—C4—F1179.54 (19)C24—C14—C15—C1672.95 (17)
C2—C3—C4—C50.2 (3)C13—C14—C15—C1647.01 (19)
F1—C4—C5—C6180.0 (2)C12—C11—C16—O2173.90 (13)
C3—C4—C5—C60.7 (4)C10—C11—C16—O26.7 (2)
C4—C5—C6—C70.9 (3)C12—C11—C16—C155.1 (2)
O1—C2—C7—C6179.51 (17)C10—C11—C16—C15174.23 (14)
C3—C2—C7—C60.3 (3)C17—O2—C16—C118.7 (2)
O1—C2—C7—C80.4 (3)C17—O2—C16—C15170.42 (12)
C3—C2—C7—C8179.60 (17)C14—C15—C16—C1119.2 (2)
C5—C6—C7—C20.7 (3)C14—C15—C16—O2161.68 (13)
C5—C6—C7—C8179.15 (19)C16—O2—C17—C229.4 (2)
C2—C7—C8—O3177.60 (17)C16—O2—C17—C18170.45 (12)
C6—C7—C8—O32.2 (3)C22—C17—C18—C1921.3 (2)
C2—C7—C8—C92.3 (2)O2—C17—C18—C19158.87 (12)
C6—C7—C8—C9177.86 (17)C17—C18—C19—C2047.87 (17)
O1—C1—C9—C80.2 (3)C17—C18—C19—C2572.29 (16)
O1—C1—C9—C10179.64 (15)C17—C18—C19—C26168.15 (14)
O3—C8—C9—C1177.33 (17)C25—C19—C20—C2165.87 (19)
C7—C8—C9—C12.6 (2)C26—C19—C20—C21173.42 (15)
O3—C8—C9—C102.1 (3)C18—C19—C20—C2154.16 (18)
C7—C8—C9—C10178.01 (14)C19—C20—C21—O5149.34 (16)
C1—C9—C10—C22121.20 (15)C19—C20—C21—C2232.2 (2)
C8—C9—C10—C2259.36 (18)O2—C17—C22—C21176.60 (13)
C1—C9—C10—C11117.14 (16)C18—C17—C22—C213.2 (2)
C8—C9—C10—C1162.29 (18)O2—C17—C22—C105.4 (2)
C22—C10—C11—C1618.99 (19)C18—C17—C22—C10174.73 (14)
C9—C10—C11—C16104.44 (16)O5—C21—C22—C17179.38 (15)
C22—C10—C11—C12161.65 (13)C20—C21—C22—C172.2 (2)
C9—C10—C11—C1274.93 (16)O5—C21—C22—C101.4 (2)
C16—C11—C12—O4179.18 (16)C20—C21—C22—C10179.80 (13)
C10—C11—C12—O41.4 (2)C11—C10—C22—C1718.33 (19)
C16—C11—C12—C132.2 (2)C9—C10—C22—C17104.74 (16)
C10—C11—C12—C13178.44 (15)C11—C10—C22—C21163.73 (13)
O4—C12—C13—C14149.58 (17)C9—C10—C22—C2173.20 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O4i0.972.443.3487 (19)156
C18—H18A···O5i0.972.453.3821 (19)162
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H25FO5
Mr436.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.9475 (8), 18.596 (2), 17.559 (2)
β (°) 93.658 (2)
V3)2264.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.38 × 0.24
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
21143, 6574, 4315
Rint0.034
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.03
No. of reflections6574
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O4i0.972.443.3487 (19)156
C18—H18A···O5i0.972.453.3821 (19)162
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: oocw@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grants (1001/PFIZIK/811160) and (203/PKIMIA/6711179). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. MA also thanks Universiti Sains Malaysia for the award of a post-doctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719–o1720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds