metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m71-m72

Bis­(μ-pyridine-2,3-di­carboxyl­ato)bis­­[aqua­(3-carb­­oxy­pyridine-2-carboxyl­ato)indium(III)] tetra­hydrate

aDepartment of Chemistry, Ferdowsi University of Mashhad, 917791436 Mashhad, Iran, bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

(Received 9 December 2011; accepted 12 December 2011; online 21 December 2011)

In the binuclear centrosymmetric title compound, [In2(C7H3NO4)2(C7H4NO4)2(H2O)2]·4H2O, which contains both pyridine-2,3-dicarboxyl­ate and 3-carb­oxy­pyridine-2-carboxyl­ate ligands, the InIII atom is six-coordinated in a distorted octa­hedral geometry. One pyridine ligand is N,O-chelated while the other is N,O-chelated and at the same time bridging to the other via the second carboxyl group. In the crystal, an extensive O—H⋯O hydrogen-bonding network, involving the coordinated and lattice water mol­ecules and the carboxyl groups of the ligands, together with C—H⋯O and ππ inter­actions [centroid–centroid distance = 3.793 (1) Å], leads to the formation of a three-dimensional structure.

Related literature

For metal complexes with polycarboxyl­ate ligands, see: Aghabozorg, Daneshvar et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]); Aghabozorg, Khadivi et al. (2008[Aghabozorg, H., Khadivi, R., Ghadermazi, M., Pasdar, H. & Hooshmand, S. (2008). Acta Cryst. E64, m267-m268.]); Aghabozorg, Ramezanipour et al. (2006[Aghabozorg, H., Ramezanipour, F., Kheirollahi, P., Saeia, A. A., Shokrollahi, A., Shamsipur, M., Manteghi, F., Soleimannejad, J. & Sharif, M. A. (2006). Z. Anorg. Allg. Chem. 632, 147-154.]); Eshtiagh-Hosseini et al. (2010[Eshtiagh-Hosseini, H., Hassanpoor, A., Alfi, N., Mirzaei, M., Fromm, K. M., Shokrollahi, A., Gschwind, F. & Karami, E. (2010). J. Coord. Chem. 63, 3175-3186.]); Mirzaei et al. (2011[Mirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580-607.]). For examples of self-assembly, see: Kondo et al. (1999[Kondo, M., Okubo, T., Asami, A., Noro, S. I., Yoshitomi, T., Kitagawa, S., Ishii, T., Matsuzaka, H. & Seki, K. (1999). Angew. Chem. Int. Ed. 38, 140-143.]); Beobide et al. (2006[Beobide, G., Castillo, O., Luque, A., García-Couceiro, U., García -Terán, J. P. & Román, P. (2006). Inorg. Chem. 45, 5367-5382.]). For a discussion of hard–soft acid base concepts, see: Schlemper et al. (1967[Schlemper, E. O. (1967). Inorg. Chem. 6, 2012-2017.]). For examples of ππ stacking, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For three-dimensional network structures, see: Krygowski et al. (1998[Krygowski, T. M., Grabowski, S. J. & Konarski, J. (1998). Tetrahedron, 54, 11311-11316.]).

[Scheme 1]

Experimental

Crystal data
  • [In2(C7H3NO4)2(C7H4NO4)2(H2O)2]·4H2O

  • Mr = 1000.17

  • Triclinic, [P \overline 1]

  • a = 8.0166 (3) Å

  • b = 10.0890 (4) Å

  • c = 11.9838 (5) Å

  • α = 110.069 (4)°

  • β = 96.236 (3)°

  • γ = 109.076 (3)°

  • V = 833.36 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 120 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.588, Tmax = 0.664

  • 10774 measured reflections

  • 3373 independent reflections

  • 3168 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.039

  • S = 1.10

  • 3373 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H91⋯O11i 0.84 1.75 2.5938 (19) 178
O9—H92⋯O3i 0.84 1.80 2.6402 (17) 175
O11—H112⋯O7ii 0.84 1.95 2.7595 (18) 162
O10—H101⋯O5iii 0.84 1.97 2.8065 (18) 175
O10—H102⋯O7iv 0.84 1.88 2.7237 (19) 178
O4—H4O⋯O10 0.84 1.67 2.5124 (17) 178
C4—H4⋯O1v 0.95 2.35 3.231 (2) 154
C5—H5⋯O6vi 0.95 2.36 3.293 (2) 168
C11—H11⋯O3vii 0.95 2.61 3.495 (2) 156
C12—H12⋯O2vii 0.95 2.33 2.993 (2) 126
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z-1; (iii) x, y, z-1; (iv) -x+1, -y+2, -z+1; (v) x-1, y, z; (vi) -x+1, -y+2, -z+2; (vii) -x+2, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For several years our research group, among others, has been interested in the synthesis of new coordination compounds from polycarboxylic acids and amines using a proton transfer methodology (Aghabozorg, Daneshvar, et al., 2007; Aghabozorg, Khadivi, et al., 2008; Aghabozorg, Ramezanipour, et al., 2006; Eshtiagh-Hosseini et al., 2010; Mirzaei et al., 2011). Polycarboxylate ligands are versatile because of their diversity of coordination modes and also because of their ability to initiate self assembly processes by supramolecular interactions (Kondo et al., 1999; Beobide et al., 2006). In the majority of the complexes obtained by proton-transfer methods the metal complex is anionic with the cation derived from the amine used in the synthesis. Among these multicarboxylate ligands, pyridine-2,3-dicarboxylic acid (py-2,3dcH2) has rarely been used under the conditions generally employed in our studies. In the course of this work we prepared the title binuclear indium(II) compound, whose crystal structure we report on herein.

In addition to being a neutral complex, the title compound (Fig. 1) appears to be the first indiumIII complex N,O chelated by one py-2,3-dcH- ion and one py-2,3-dc2-ion, with the latter using the carboxyl group in the 3-position to bridge to a second metal. In the resulting centrosymmetric dimer, the coordination sphere of each metal is completed by a water molecule. The O4N2 coordination sphere adopts a distorted octahedral geometry with the largest departure being the 75.30 (5)° angles subtended by the chelating ligands (Fig. 1). The average In—O distance of 2.1253 (14) Å is slightly shorter than the average In—N of 2.2478 (17) Å. This can be explained by Pearson's hard and soft acid-base concept (Schlemper et al., 1967).

The solid state structure can be described as chains of dimers associated via hydrogen bonding interactions between the coordinated water molecule, the monoprotonated carboxyl group and oxygen atoms in the pyridine dicarboxylate ligand as well as C—H···O interactons between ring hydrogen atoms and carboxylate oxygen atoms (Table 1). Additionally there is a slipped π-π stacking interaction (Fig. 2) between the (N1,C1-C5) ring and its counterpart in the dimer at -x+1, -y+2, -z+1 [perpendicular separation = 3.107 (1) Å, centroid-to-centroid distance = 3.793 (1) Å, slippage = 1.37 Å, angle between planes = 11.28 (8)° (Janiak, 2000)]. The chains are associated via hydrogen bonding interactions between the lattice water molecules, the coordinated water molecule and oxygen atoms of the carboxylate ligands (Table 1, Fig. 3) to complete the three-dimensional network structure (Krygowski et al., 1998).

A final interaction of significance is a complementary π-π stacking interaction (Fig. 2) between the C13O6 moiety in one half of the dimer and the (N2,C8-C12) ring in the other half (centroid-to-centroid distance = 3.347 (2) Å, angle of the line joining the centroids to the plane of the ring = 74.7 (1)°).

Related literature top

For metal complexes with polycarboxylate ligands, see: Aghabozorg, Daneshvar et al. (2007); Aghabozorg, Khadivi et al. (2008); Aghabozorg, Ramezanipour et al. (2006); Eshtiagh-Hosseini et al. (2010); Mirzaei et al. (2011). For examples of self-assembly, see: Kondo et al. (1999); Beobide et al. (2006). For a discussion of hard–soft acid base concepts, see: Schlemper et al. (1967). For examples of ππ stacking, see: Janiak (2000). For three-dimensional network structures, see: Krygowski et al. (1998).

Experimental top

A solution of In2(SO4)3.xH2O (34 mg, 0.06 mmol) in water (5 ml) was added dropwise to an aqueous solution of pyridine-2,3-dicarboxylic acid (10 mg, 0.06 mmol) and 2-amino-6-methyl pyridine (13 mg, 0.12 mmol) in a 1:1:2 molar ratio at reflux. The solution was cooled to room temperature and upon slow evaporation, X-ray quality crystals were formed which were collected and washed with distilled water.

Refinement top

The OH and water H-atoms were located in difference Fourier maps and were refined as riding atoms with Uiso(H) = 1.2Ueq(O). The C-bound H-atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the local coordination environments of InIII atoms in the title molecule, with 50% probability thermal ellipsoids. Primed atoms are related to the non-primed atoms by the center of symmetry.
[Figure 2] Fig. 2. Perspective view of the π···π and C—O···π stacking interactions (dashed lines) in the title compound (In = large green circles, H = small green circles, O = red circles, N = blue circles).
[Figure 3] Fig. 3. Perspective view of the crystal packing of the title compound, showing the intermolecular hydrogen bonds as dashed lines (In = large green circles, H = small green circles, O = red circles, N = blue circles; see Table 1 for details).
bis(µ-pyridine-2,3-dicarboxylato)bis[aqua(3-carboxypyridine-2- carboxylato)indium(III)] tetrahydrate top
Crystal data top
[In2(C7H3NO4)2(C7H4NO4)2(H2O)2]·4H2OZ = 1
Mr = 1000.17F(000) = 496
Triclinic, P1Dx = 1.993 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0166 (3) ÅCell parameters from 8569 reflections
b = 10.0890 (4) Åθ = 2.8–27.2°
c = 11.9838 (5) ŵ = 1.49 mm1
α = 110.069 (4)°T = 120 K
β = 96.236 (3)°Block, colourless
γ = 109.076 (3)°0.40 × 0.30 × 0.30 mm
V = 833.36 (6) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
3373 independent reflections
Radiation source: Enhance (Mo) X-ray Source3168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 8.4353 pixels mm-1θmax = 27.2°, θmin = 3.3°
ω scanh = 810
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.588, Tmax = 0.664l = 1515
10774 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0197P)2 + 0.3217P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
3373 reflectionsΔρmax = 0.38 e Å3
254 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (5)
Crystal data top
[In2(C7H3NO4)2(C7H4NO4)2(H2O)2]·4H2Oγ = 109.076 (3)°
Mr = 1000.17V = 833.36 (6) Å3
Triclinic, P1Z = 1
a = 8.0166 (3) ÅMo Kα radiation
b = 10.0890 (4) ŵ = 1.49 mm1
c = 11.9838 (5) ÅT = 120 K
α = 110.069 (4)°0.40 × 0.30 × 0.30 mm
β = 96.236 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
3373 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3168 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.664Rint = 0.013
10774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.039H-atom parameters constrained
S = 1.10Δρmax = 0.38 e Å3
3373 reflectionsΔρmin = 0.31 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.716069 (17)0.792788 (13)0.730349 (10)0.00941 (5)
O10.81082 (17)0.78122 (15)0.57022 (11)0.0132 (3)
O20.77166 (18)0.81433 (15)0.39645 (11)0.0165 (3)
O30.43118 (19)0.60530 (14)0.22385 (11)0.0154 (3)
O40.38691 (19)0.80920 (15)0.21595 (11)0.0179 (3)
H4O0.38700.77210.14160.021*
O50.64775 (17)0.86624 (14)0.90207 (10)0.0127 (3)
O60.73152 (19)1.05169 (15)1.08983 (11)0.0171 (3)
O70.92356 (19)1.40964 (15)1.17662 (11)0.0165 (3)
O81.10615 (18)1.31541 (14)1.24362 (11)0.0144 (3)
O90.50749 (18)0.56958 (14)0.66940 (11)0.0168 (3)
H910.39720.55390.64730.020*
H920.53250.51800.70570.020*
N10.5111 (2)0.83155 (16)0.61329 (13)0.0105 (3)
N20.9159 (2)1.03454 (17)0.83361 (13)0.0104 (3)
C10.5347 (2)0.80161 (19)0.49914 (15)0.0101 (4)
C20.4018 (3)0.78340 (19)0.40403 (16)0.0120 (4)
C30.2455 (3)0.8044 (2)0.43128 (17)0.0159 (4)
H30.15270.79380.36850.019*
C40.2254 (3)0.8406 (2)0.54992 (17)0.0165 (4)
H40.12090.85830.56990.020*
C50.3595 (3)0.8508 (2)0.63908 (16)0.0135 (4)
H50.34420.87170.72000.016*
C60.7195 (2)0.79807 (19)0.48430 (15)0.0107 (4)
C70.4120 (3)0.7255 (2)0.27281 (16)0.0124 (4)
C80.9017 (3)1.0999 (2)0.94915 (15)0.0100 (3)
C91.0201 (3)1.2475 (2)1.02728 (15)0.0113 (4)
C101.1540 (3)1.3289 (2)0.98329 (16)0.0153 (4)
H101.23611.43051.03480.018*
C111.1667 (3)1.2612 (2)0.86462 (16)0.0158 (4)
H111.25701.31540.83350.019*
C121.0452 (3)1.1130 (2)0.79220 (16)0.0131 (4)
H121.05371.06550.71070.016*
C130.7493 (3)1.0014 (2)0.98602 (15)0.0113 (4)
C141.0119 (3)1.3270 (2)1.15813 (15)0.0121 (4)
O100.39345 (18)0.69562 (15)0.00496 (11)0.0167 (3)
H1010.47040.75120.02930.020*
H1020.29440.66160.05720.020*
O110.83456 (19)0.48403 (16)0.39983 (12)0.0217 (3)
H1110.89430.56680.46090.026*
H1120.88490.47550.34130.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.00961 (8)0.01133 (8)0.00717 (7)0.00362 (6)0.00213 (5)0.00400 (5)
O10.0104 (7)0.0217 (7)0.0097 (6)0.0077 (6)0.0033 (5)0.0072 (5)
O20.0164 (8)0.0241 (7)0.0127 (6)0.0077 (6)0.0072 (6)0.0105 (6)
O30.0209 (8)0.0118 (6)0.0123 (6)0.0055 (6)0.0014 (6)0.0050 (5)
O40.0275 (9)0.0184 (7)0.0112 (6)0.0112 (6)0.0027 (6)0.0084 (5)
O50.0112 (7)0.0143 (6)0.0108 (6)0.0026 (6)0.0040 (5)0.0049 (5)
O60.0181 (8)0.0196 (7)0.0113 (6)0.0046 (6)0.0074 (6)0.0049 (5)
O70.0191 (8)0.0186 (7)0.0129 (6)0.0119 (6)0.0014 (6)0.0039 (5)
O80.0164 (8)0.0191 (7)0.0098 (6)0.0102 (6)0.0018 (5)0.0055 (5)
O90.0132 (7)0.0150 (7)0.0218 (7)0.0033 (6)0.0003 (6)0.0106 (6)
N10.0104 (8)0.0097 (7)0.0111 (7)0.0032 (6)0.0033 (6)0.0046 (6)
N20.0103 (8)0.0124 (7)0.0098 (7)0.0047 (7)0.0026 (6)0.0054 (6)
C10.0104 (10)0.0068 (8)0.0122 (8)0.0017 (7)0.0028 (7)0.0044 (7)
C20.0130 (10)0.0083 (8)0.0135 (8)0.0021 (8)0.0013 (7)0.0056 (7)
C30.0128 (10)0.0173 (9)0.0183 (9)0.0062 (8)0.0001 (8)0.0087 (8)
C40.0124 (10)0.0161 (9)0.0238 (10)0.0074 (8)0.0067 (8)0.0089 (8)
C50.0145 (10)0.0109 (9)0.0158 (9)0.0048 (8)0.0068 (8)0.0057 (7)
C60.0100 (10)0.0088 (8)0.0100 (8)0.0015 (7)0.0013 (7)0.0023 (7)
C70.0072 (9)0.0135 (9)0.0136 (8)0.0008 (8)0.0013 (7)0.0063 (7)
C80.0104 (10)0.0131 (9)0.0094 (8)0.0063 (8)0.0027 (7)0.0062 (7)
C90.0115 (10)0.0142 (9)0.0100 (8)0.0068 (8)0.0012 (7)0.0058 (7)
C100.0149 (11)0.0139 (9)0.0139 (8)0.0027 (8)0.0007 (8)0.0054 (7)
C110.0147 (11)0.0171 (9)0.0153 (9)0.0027 (8)0.0056 (8)0.0090 (8)
C120.0142 (10)0.0158 (9)0.0107 (8)0.0057 (8)0.0050 (7)0.0065 (7)
C130.0104 (10)0.0148 (9)0.0113 (8)0.0070 (8)0.0017 (7)0.0067 (7)
C140.0103 (10)0.0110 (9)0.0115 (8)0.0009 (8)0.0015 (7)0.0038 (7)
O100.0133 (7)0.0224 (7)0.0134 (6)0.0027 (6)0.0014 (5)0.0106 (6)
O110.0204 (8)0.0215 (7)0.0203 (7)0.0069 (6)0.0059 (6)0.0061 (6)
Geometric parameters (Å, º) top
In1—O8i2.1153 (12)C1—C21.390 (2)
In1—O12.1199 (12)C1—C61.522 (2)
In1—O92.1319 (13)C2—C31.392 (3)
In1—O52.1324 (11)C2—C71.500 (2)
In1—N22.2339 (15)C3—C41.383 (3)
In1—N12.2618 (14)C3—H30.9500
O1—C61.289 (2)C4—C51.383 (3)
O2—C61.216 (2)C4—H40.9500
O3—C71.221 (2)C5—H50.9500
O4—C71.302 (2)C8—C91.386 (3)
O4—H4O0.8401C8—C131.517 (3)
O5—C131.300 (2)C9—C101.396 (3)
O6—C131.216 (2)C9—C141.517 (2)
O7—C141.240 (2)C10—C111.382 (2)
O8—C141.268 (2)C10—H100.9500
O8—In1i2.1152 (12)C11—C121.383 (3)
O9—H910.8400C11—H110.9500
O9—H920.8400C12—H120.9500
N1—C51.343 (2)O10—H1010.8400
N1—C11.345 (2)O10—H1020.8400
N2—C121.339 (2)O11—H1110.8400
N2—C81.350 (2)O11—H1120.8400
O8i—In1—O183.58 (5)C2—C3—H3120.0
O8i—In1—O984.44 (5)C5—C4—C3119.06 (17)
O1—In1—O9101.63 (5)C5—C4—H4120.5
O8i—In1—O5104.07 (5)C3—C4—H4120.5
O1—In1—O5165.16 (5)N1—C5—C4121.17 (16)
O9—In1—O591.87 (5)N1—C5—H5119.4
O8i—In1—N297.32 (5)C4—C5—H5119.4
O1—In1—N291.20 (5)O2—C6—O1125.21 (17)
O9—In1—N2167.17 (5)O2—C6—C1119.13 (15)
O5—In1—N275.36 (5)O1—C6—C1115.64 (14)
O8i—In1—N1153.16 (5)O3—C7—O4124.16 (16)
O1—In1—N175.34 (5)O3—C7—C2121.80 (15)
O9—In1—N183.75 (5)O4—C7—C2113.89 (15)
O5—In1—N1100.33 (5)N2—C8—C9121.27 (16)
N2—In1—N199.52 (5)N2—C8—C13115.55 (15)
C6—O1—In1119.19 (11)C9—C8—C13123.18 (15)
C7—O4—H4O112.4C8—C9—C10118.45 (16)
C13—O5—In1118.93 (11)C8—C9—C14123.82 (16)
C14—O8—In1i140.24 (11)C10—C9—C14117.73 (16)
In1—O9—H91121.2C11—C10—C9119.83 (18)
In1—O9—H92112.4C11—C10—H10120.1
H91—O9—H92117.5C9—C10—H10120.1
C5—N1—C1120.12 (15)C10—C11—C12118.58 (18)
C5—N1—In1126.80 (11)C10—C11—H11120.7
C1—N1—In1111.76 (11)C12—C11—H11120.7
C12—N2—C8119.97 (16)N2—C12—C11121.89 (16)
C12—N2—In1126.11 (11)N2—C12—H12119.1
C8—N2—In1113.89 (12)C11—C12—H12119.1
N1—C1—C2121.65 (16)O6—C13—O5124.90 (17)
N1—C1—C6115.19 (15)O6—C13—C8119.05 (16)
C2—C1—C6123.09 (15)O5—C13—C8116.05 (14)
C1—C2—C3118.00 (16)O7—C14—O8123.27 (15)
C1—C2—C7122.31 (16)O7—C14—C9117.88 (15)
C3—C2—C7119.33 (16)O8—C14—C9118.63 (15)
C4—C3—C2119.91 (17)H101—O10—H102105.0
C4—C3—H3120.0H111—O11—H112111.8
O8i—In1—O1—C6162.67 (13)C2—C3—C4—C52.0 (3)
O9—In1—O1—C679.72 (13)C1—N1—C5—C40.1 (3)
O5—In1—O1—C675.3 (2)In1—N1—C5—C4165.89 (13)
N2—In1—O1—C6100.10 (13)C3—C4—C5—N12.5 (3)
N1—In1—O1—C60.57 (12)In1—O1—C6—O2169.57 (14)
O8i—In1—O5—C1389.72 (12)In1—O1—C6—C18.69 (19)
O1—In1—O5—C1330.0 (2)N1—C1—C6—O2159.83 (16)
O9—In1—O5—C13174.45 (12)C2—C1—C6—O216.9 (3)
N2—In1—O5—C134.31 (11)N1—C1—C6—O118.5 (2)
N1—In1—O5—C13101.56 (12)C2—C1—C6—O1164.68 (16)
O8i—In1—N1—C5138.04 (14)C1—C2—C7—O353.6 (3)
O1—In1—N1—C5177.42 (15)C3—C2—C7—O3119.3 (2)
O9—In1—N1—C573.64 (15)C1—C2—C7—O4130.59 (18)
O5—In1—N1—C517.12 (15)C3—C2—C7—O456.5 (2)
N2—In1—N1—C593.83 (15)C12—N2—C8—C90.6 (2)
O8i—In1—N1—C128.73 (19)In1—N2—C8—C9177.46 (12)
O1—In1—N1—C110.65 (11)C12—N2—C8—C13179.38 (15)
O9—In1—N1—C193.12 (12)In1—N2—C8—C132.56 (18)
O5—In1—N1—C1176.11 (12)N2—C8—C9—C100.9 (2)
N2—In1—N1—C199.40 (12)C13—C8—C9—C10179.06 (16)
O8i—In1—N2—C1278.74 (14)N2—C8—C9—C14179.73 (16)
O1—In1—N2—C124.94 (14)C13—C8—C9—C140.3 (3)
O9—In1—N2—C12175.85 (19)C8—C9—C10—C110.5 (3)
O5—In1—N2—C12178.56 (15)C14—C9—C10—C11179.94 (16)
N1—In1—N2—C1280.27 (14)C9—C10—C11—C120.1 (3)
O8i—In1—N2—C899.18 (12)C8—N2—C12—C110.1 (3)
O1—In1—N2—C8177.14 (12)In1—N2—C12—C11177.90 (13)
O9—In1—N2—C82.1 (3)C10—C11—C12—N20.4 (3)
O5—In1—N2—C83.52 (11)In1—O5—C13—O6174.77 (13)
N1—In1—N2—C8101.80 (12)In1—O5—C13—C84.34 (18)
C5—N1—C1—C22.7 (3)N2—C8—C13—O6178.18 (15)
In1—N1—C1—C2165.07 (13)C9—C8—C13—O61.8 (3)
C5—N1—C1—C6174.13 (15)N2—C8—C13—O51.0 (2)
In1—N1—C1—C618.10 (17)C9—C8—C13—O5179.00 (15)
N1—C1—C2—C33.0 (3)In1i—O8—C14—O7176.98 (13)
C6—C1—C2—C3173.52 (16)In1i—O8—C14—C92.6 (3)
N1—C1—C2—C7169.95 (16)C8—C9—C14—O793.8 (2)
C6—C1—C2—C713.5 (3)C10—C9—C14—O785.6 (2)
C1—C2—C3—C40.7 (3)C8—C9—C14—O891.5 (2)
C7—C2—C3—C4172.56 (17)C10—C9—C14—O889.1 (2)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O11ii0.841.752.5938 (19)178
O9—H92···O3ii0.841.802.6402 (17)175
O11—H112···O7iii0.841.952.7595 (18)162
O10—H101···O5iv0.841.972.8065 (18)175
O10—H102···O7v0.841.882.7237 (19)178
O4—H4O···O100.841.672.5124 (17)178
C4—H4···O1vi0.952.353.231 (2)154
C5—H5···O6vii0.952.363.293 (2)168
C11—H11···O3viii0.952.613.495 (2)156
C12—H12···O2viii0.952.332.993 (2)126
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z1; (iv) x, y, z1; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x+1, y+2, z+2; (viii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[In2(C7H3NO4)2(C7H4NO4)2(H2O)2]·4H2O
Mr1000.17
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.0166 (3), 10.0890 (4), 11.9838 (5)
α, β, γ (°)110.069 (4), 96.236 (3), 109.076 (3)
V3)833.36 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.588, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
10774, 3373, 3168
Rint0.013
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.039, 1.10
No. of reflections3373
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O11i0.841.752.5938 (19)178
O9—H92···O3i0.841.802.6402 (17)175
O11—H112···O7ii0.841.952.7595 (18)162
O10—H101···O5iii0.841.972.8065 (18)175
O10—H102···O7iv0.841.882.7237 (19)178
O4—H4O···O100.841.672.5124 (17)178
C4—H4···O1v0.952.353.231 (2)154
C5—H5···O6vi0.952.363.293 (2)168
C11—H11···O3vii0.952.613.495 (2)156
C12—H12···O2vii0.952.332.993 (2)126
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z1; (iii) x, y, z1; (iv) x+1, y+2, z+1; (v) x1, y, z; (vi) x+1, y+2, z+2; (vii) x+2, y+2, z+1.
 

Acknowledgements

The authors wish to thank to the Ferdowsi University of Mashhad for financial support (grant No. P/2098).

References

First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Khadivi, R., Ghadermazi, M., Pasdar, H. & Hooshmand, S. (2008). Acta Cryst. E64, m267–m268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ramezanipour, F., Kheirollahi, P., Saeia, A. A., Shokrollahi, A., Shamsipur, M., Manteghi, F., Soleimannejad, J. & Sharif, M. A. (2006). Z. Anorg. Allg. Chem. 632, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeobide, G., Castillo, O., Luque, A., García-Couceiro, U., García -Terán, J. P. & Román, P. (2006). Inorg. Chem. 45, 5367–5382.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEshtiagh-Hosseini, H., Hassanpoor, A., Alfi, N., Mirzaei, M., Fromm, K. M., Shokrollahi, A., Gschwind, F. & Karami, E. (2010). J. Coord. Chem. 63, 3175–3186.  CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKondo, M., Okubo, T., Asami, A., Noro, S. I., Yoshitomi, T., Kitagawa, S., Ishii, T., Matsuzaka, H. & Seki, K. (1999). Angew. Chem. Int. Ed. 38, 140–143.  CrossRef CAS Google Scholar
First citationKrygowski, T. M., Grabowski, S. J. & Konarski, J. (1998). Tetrahedron, 54, 11311–11316.  Web of Science CrossRef CAS Google Scholar
First citationMirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580–607.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSchlemper, E. O. (1967). Inorg. Chem. 6, 2012–2017.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m71-m72
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds