organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,5-Tris(pyridin-4-yl)-1H-imidazole monohydrate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: guangbocheujs@yahoo.com.cn

(Received 4 November 2011; accepted 9 December 2011; online 14 December 2011)

In the crystal structure of the title compound, C18H13N5·H2O, adjacent mol­ecules are linked by O—H⋯N and N—H⋯O hydrogen bonds, generating a chain propagating along [001].

Related literature

For the use of 2,4,5-tri(4-pyrid­yl)imidazole in the construction of metal-organic coordination polymers, see: Wang et al. (2009[Wang, L., Gu, W., Deng, J.-X., Liu, M.-L., Xu, N. & Liu, X. (2009). Z. Anorg. Allg. Chem, 635, 1124-1128.]); Liang et al. (2009[Liang, X.-Q., Zhou, X.-H., Chen, C., Xiao, H.-P., Li, Y.-Z., Zuo, J.-L. & You, X.-Z. (2009). Cryst. Growth Des. 9, 1041-1053.]). For related structures, see: Jiang & Hou (2011[Jiang, Y.-K. & Hou, G.-G. (2011). Acta Cryst. E67, o3073.]); Li (2011[Li, H.-D. (2011). Acta Cryst. E67, o3156.]); Li & Xia (2011[Li, C.-R. & Xia, Z.-Q. (2011). Acta Cryst. E67, o2481.]). For the preparation, see: Proskurnina et al. (2002[Proskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. & Zefirov, N. S. (2002). Russ. J. Org. Chem. 38, 1149-1153.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N5·H2O

  • Mr = 317.35

  • Triclinic, [P \overline 1]

  • a = 8.1510 (16) Å

  • b = 9.5210 (19) Å

  • c = 11.506 (2) Å

  • α = 103.80 (3)°

  • β = 105.64 (3)°

  • γ = 101.03 (3)°

  • V = 803.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.2 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 1.000

  • 7510 measured reflections

  • 2912 independent reflections

  • 1792 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.125

  • S = 1.02

  • 2876 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N5i 0.85 1.99 2.843 (3) 177
N1—H1⋯O1 0.89 1.85 2.741 (3) 176
O1—H1B⋯N4ii 0.85 1.94 2.787 (3) 172
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the 2,4,5-tri(4-pyridyl)imidazole three pyridyl groups (pyridyl ring B (C4-C8 and N3), C (C9-C13 and N4), D (C14-C18 and N5)) are directly connected with the imidazole ring A (C1-C3 , N1 and N2). The dihedral angles between the mean planes of pyridyl ring B and imidazole ring A, pyridyl ring C and imidazole ring A, and pyridyl ring D and imidazole ring A are 9.1 (7) °, 21.5 (5) °, 45.5 (1) °, respectively.

We report herein on the crystal structure of the title compound (Fig. 1). In the crystal lattice the molecules are linked by O—H···N and N—H···O hydrogen bonds (Jiang et al. 2011; Li et al. 2011; Li 2011) interactions to generate a one-dimensional double chain structure (Fig. 2).

Related literature top

For the use of 2,4,5-tri(4-pyridyl)imidazole in the construction of metal-organic coordination polymers, see: Wang et al. (2009); Liang et al. (2009). For related structures, see: Jiang & Hou (2011); Li (2011); Li & Xia (2011). For the preparation, see: Proskurnina et al. (2002).

Experimental top

The 2,4,5-tri(4-pyridyl)imidazole was prepared by the methord reported in the literature (Proskurnina et al. 2002). A mixture of 2,4,5-tri(4-pyridyl)imidazole (0.030 g, 0.1 mmol), 2 drops of 1 mol/L HCl and water (10 mL) was placed in a 25 mL Teflon-lined autoclave and heated for 3 d at 433 K under autogenous pressure. Upon cooling and opening the bomb, colourless block-shaped crystals were obtained, then washed with water and dried in air.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2 Ueq(C). The hydrogen atoms of water molecules were located in a difference Fourier map, and were refined with suitable O—H distance restraint; Uiso = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The one-dimensional superamolecular structure linked by the hydrogen bonds.
2,4,5-Tris(pyridin-4-yl)-1H-imidazole monohydrate top
Crystal data top
C18H13N5·H2OZ = 2
Mr = 317.35F(000) = 332
Triclinic, P1Dx = 1.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1510 (16) ÅCell parameters from 3107 reflections
b = 9.5210 (19) Åθ = 3.0–25.2°
c = 11.506 (2) ŵ = 0.09 mm1
α = 103.80 (3)°T = 293 K
β = 105.64 (3)°Prism, colourless
γ = 101.03 (3)°0.35 × 0.25 × 0.2 mm
V = 803.3 (4) Å3
Data collection top
Bruker SMART
diffractometer
2912 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.970, Tmax = 1.000k = 1111
7510 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0171P)2 + 0.605P]
where P = (Fo2 + 2Fc2)/3
2876 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H13N5·H2Oγ = 101.03 (3)°
Mr = 317.35V = 803.3 (4) Å3
Triclinic, P1Z = 2
a = 8.1510 (16) ÅMo Kα radiation
b = 9.5210 (19) ŵ = 0.09 mm1
c = 11.506 (2) ÅT = 293 K
α = 103.80 (3)°0.35 × 0.25 × 0.2 mm
β = 105.64 (3)°
Data collection top
Bruker SMART
diffractometer
2912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1792 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.000Rint = 0.040
7510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2876 reflectionsΔρmin = 0.17 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2548 (3)0.5006 (2)0.26415 (19)0.0544 (6)
H10.28000.54370.34690.082*
N20.1414 (3)0.3416 (2)0.06806 (19)0.0542 (6)
N30.0531 (4)0.0012 (3)0.3185 (2)0.0738 (7)
N40.2559 (4)0.5283 (3)0.2901 (2)0.0749 (7)
N50.5288 (4)1.0560 (3)0.3379 (3)0.0764 (8)
C10.1603 (3)0.3582 (3)0.1895 (2)0.0518 (6)
C20.2265 (3)0.4798 (3)0.0649 (2)0.0523 (6)
C30.2960 (3)0.5811 (3)0.1858 (2)0.0530 (7)
C40.0870 (3)0.2404 (3)0.2365 (2)0.0520 (6)
C50.1271 (4)0.2521 (3)0.3637 (3)0.0671 (8)
H5A0.20260.33990.42520.080*
C60.0536 (4)0.1317 (3)0.3987 (3)0.0739 (9)
H6A0.08120.14330.48490.089*
C70.0932 (4)0.0074 (3)0.1966 (3)0.0754 (9)
H7A0.17030.09620.13740.091*
C80.0284 (4)0.1062 (3)0.1517 (3)0.0668 (8)
H8A0.06210.09260.06500.080*
C90.2386 (3)0.4986 (3)0.0558 (2)0.0527 (6)
C100.1214 (4)0.4006 (3)0.1700 (2)0.0594 (7)
H10A0.03420.32110.17090.071*
C110.1334 (4)0.4203 (3)0.2821 (3)0.0708 (8)
H11A0.05050.35370.35720.085*
C120.3716 (4)0.6201 (4)0.1801 (3)0.0775 (9)
H12A0.46000.69620.18260.093*
C130.3698 (4)0.6105 (3)0.0626 (3)0.0681 (8)
H13A0.45520.67780.01100.082*
C140.3805 (4)0.7431 (3)0.2368 (2)0.0549 (7)
C150.3141 (4)0.8416 (3)0.1767 (3)0.0675 (8)
H15A0.21850.80490.10150.081*
C160.3925 (4)0.9939 (3)0.2305 (3)0.0754 (9)
H16A0.34701.05770.18900.090*
C170.5915 (4)0.9608 (3)0.3939 (3)0.0735 (9)
H17A0.68791.00090.46850.088*
C180.5219 (4)0.8055 (3)0.3480 (3)0.0650 (8)
H18A0.57010.74460.39180.078*
O10.3155 (4)0.6367 (2)0.51602 (18)0.1058 (10)
H1A0.35970.72980.55810.159*
H1B0.30440.59920.57450.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0703 (14)0.0475 (12)0.0430 (12)0.0090 (10)0.0198 (10)0.0139 (9)
N20.0711 (15)0.0475 (12)0.0439 (12)0.0088 (10)0.0215 (11)0.0167 (9)
N30.0983 (19)0.0555 (14)0.0683 (17)0.0082 (13)0.0323 (15)0.0249 (13)
N40.102 (2)0.0736 (16)0.0558 (15)0.0144 (15)0.0375 (15)0.0265 (13)
N50.0884 (19)0.0549 (15)0.0791 (18)0.0055 (14)0.0317 (16)0.0152 (14)
C10.0689 (17)0.0422 (13)0.0430 (14)0.0118 (12)0.0187 (13)0.0129 (11)
C20.0652 (16)0.0482 (14)0.0426 (14)0.0091 (12)0.0199 (12)0.0153 (11)
C30.0660 (17)0.0482 (14)0.0446 (14)0.0091 (12)0.0201 (13)0.0171 (11)
C40.0680 (17)0.0428 (13)0.0470 (15)0.0122 (12)0.0209 (13)0.0174 (11)
C50.097 (2)0.0510 (15)0.0484 (16)0.0064 (15)0.0245 (15)0.0162 (13)
C60.111 (3)0.0599 (18)0.0564 (18)0.0163 (17)0.0360 (18)0.0236 (15)
C70.094 (2)0.0519 (17)0.068 (2)0.0007 (15)0.0184 (17)0.0212 (15)
C80.088 (2)0.0522 (16)0.0527 (16)0.0074 (15)0.0191 (15)0.0174 (13)
C90.0659 (17)0.0511 (14)0.0462 (14)0.0145 (12)0.0225 (13)0.0204 (12)
C100.0738 (18)0.0566 (16)0.0473 (15)0.0113 (14)0.0228 (14)0.0169 (13)
C110.090 (2)0.0732 (19)0.0474 (17)0.0160 (17)0.0259 (16)0.0173 (14)
C120.097 (2)0.071 (2)0.068 (2)0.0054 (17)0.0402 (19)0.0273 (17)
C130.079 (2)0.0656 (18)0.0517 (17)0.0000 (15)0.0251 (15)0.0158 (14)
C140.0670 (17)0.0486 (14)0.0492 (15)0.0082 (12)0.0251 (13)0.0148 (12)
C150.078 (2)0.0519 (16)0.0657 (19)0.0083 (14)0.0172 (16)0.0212 (14)
C160.087 (2)0.0536 (17)0.086 (2)0.0151 (16)0.0285 (19)0.0265 (16)
C170.080 (2)0.0604 (18)0.0624 (19)0.0019 (16)0.0216 (16)0.0061 (15)
C180.077 (2)0.0548 (16)0.0552 (17)0.0068 (14)0.0185 (15)0.0156 (13)
O10.187 (3)0.0597 (13)0.0500 (12)0.0125 (14)0.0451 (14)0.0087 (10)
Geometric parameters (Å, º) top
N1—C11.363 (3)C7—H7A0.9300
N1—C31.381 (3)C8—H8A0.9300
N1—H10.8907C9—C101.381 (3)
N2—C11.331 (3)C9—C131.390 (3)
N2—C21.379 (3)C10—C111.373 (4)
N3—C61.326 (4)C10—H10A0.9300
N3—C71.329 (4)C11—H11A0.9300
N4—C111.329 (4)C12—C131.381 (4)
N4—C121.330 (4)C12—H12A0.9300
N5—C161.330 (4)C13—H13A0.9300
N5—C171.333 (4)C14—C181.378 (4)
C1—C41.454 (3)C14—C151.397 (4)
C2—C31.383 (3)C15—C161.378 (4)
C2—C91.469 (3)C15—H15A0.9300
C3—C141.463 (3)C16—H16A0.9300
C4—C51.383 (3)C17—C181.390 (4)
C4—C81.385 (3)C17—H17A0.9300
C5—C61.387 (4)C18—H18A0.9300
C5—H5A0.9300O1—H1A0.8543
C6—H6A0.9300O1—H1B0.8500
C7—C81.382 (4)
C1—N1—C3107.5 (2)C10—C9—C13116.4 (2)
C1—N1—H1130.1C10—C9—C2120.8 (2)
C3—N1—H1122.1C13—C9—C2122.8 (2)
C1—N2—C2105.6 (2)C11—C10—C9120.2 (3)
C6—N3—C7115.0 (2)C11—C10—H10A119.9
C11—N4—C12115.6 (2)C9—C10—H10A119.9
C16—N5—C17116.0 (3)N4—C11—C10124.1 (3)
N2—C1—N1111.3 (2)N4—C11—H11A117.9
N2—C1—C4124.4 (2)C10—C11—H11A117.9
N1—C1—C4124.3 (2)N4—C12—C13124.6 (3)
N2—C2—C3110.2 (2)N4—C12—H12A117.7
N2—C2—C9119.8 (2)C13—C12—H12A117.7
C3—C2—C9130.0 (2)C12—C13—C9119.1 (3)
N1—C3—C2105.3 (2)C12—C13—H13A120.5
N1—C3—C14120.4 (2)C9—C13—H13A120.5
C2—C3—C14134.0 (2)C18—C14—C15117.3 (2)
C5—C4—C8116.3 (2)C18—C14—C3122.0 (2)
C5—C4—C1123.8 (2)C15—C14—C3120.6 (2)
C8—C4—C1119.9 (2)C16—C15—C14118.9 (3)
C4—C5—C6119.4 (3)C16—C15—H15A120.5
C4—C5—H5A120.3C14—C15—H15A120.5
C6—C5—H5A120.3N5—C16—C15124.5 (3)
N3—C6—C5124.9 (3)N5—C16—H16A117.7
N3—C6—H6A117.5C15—C16—H16A117.7
C5—C6—H6A117.5N5—C17—C18124.1 (3)
N3—C7—C8124.6 (3)N5—C17—H17A117.9
N3—C7—H7A117.7C18—C17—H17A117.9
C8—C7—H7A117.7C14—C18—C17119.1 (3)
C7—C8—C4119.7 (3)C14—C18—H18A120.4
C7—C8—H8A120.1C17—C18—H18A120.4
C4—C8—H8A120.1H1A—O1—H1B100.9
C2—N2—C1—N10.5 (3)N2—C2—C9—C1021.5 (4)
C2—N2—C1—C4178.6 (3)C3—C2—C9—C10161.6 (3)
C3—N1—C1—N21.3 (3)N2—C2—C9—C13156.1 (3)
C3—N1—C1—C4177.8 (3)C3—C2—C9—C1320.8 (5)
C1—N2—C2—C30.5 (3)C13—C9—C10—C112.7 (4)
C1—N2—C2—C9176.9 (2)C2—C9—C10—C11179.5 (3)
C1—N1—C3—C21.6 (3)C12—N4—C11—C100.2 (5)
C1—N1—C3—C14173.1 (2)C9—C10—C11—N41.6 (5)
N2—C2—C3—N11.3 (3)C11—N4—C12—C130.8 (5)
C9—C2—C3—N1175.8 (3)N4—C12—C13—C90.5 (5)
N2—C2—C3—C14172.3 (3)C10—C9—C13—C122.2 (4)
C9—C2—C3—C1410.6 (5)C2—C9—C13—C12179.9 (3)
N2—C1—C4—C5170.9 (3)N1—C3—C14—C1845.8 (4)
N1—C1—C4—C510.2 (4)C2—C3—C14—C18141.4 (3)
N2—C1—C4—C88.3 (4)N1—C3—C14—C15131.1 (3)
N1—C1—C4—C8170.7 (3)C2—C3—C14—C1541.7 (5)
C8—C4—C5—C60.8 (4)C18—C14—C15—C160.2 (4)
C1—C4—C5—C6178.4 (3)C3—C14—C15—C16177.3 (3)
C7—N3—C6—C52.3 (5)C17—N5—C16—C150.7 (5)
C4—C5—C6—N31.1 (5)C14—C15—C16—N50.3 (5)
C6—N3—C7—C81.7 (5)C16—N5—C17—C180.9 (5)
N3—C7—C8—C40.1 (5)C15—C14—C18—C170.4 (4)
C5—C4—C8—C71.3 (4)C3—C14—C18—C17177.4 (3)
C1—C4—C8—C7177.9 (3)N5—C17—C18—C140.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5i0.851.992.843 (3)177
N1—H1···O10.891.852.741 (3)176
O1—H1B···N4ii0.851.942.787 (3)172
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H13N5·H2O
Mr317.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1510 (16), 9.5210 (19), 11.506 (2)
α, β, γ (°)103.80 (3), 105.64 (3), 101.03 (3)
V3)803.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.2
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.970, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7510, 2912, 1792
Rint0.040
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.125, 1.02
No. of reflections2876
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5i0.851.992.843 (3)177.3
N1—H1···O10.891.852.741 (3)175.5
O1—H1B···N4ii0.851.942.787 (3)172.4
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors thank Jiangsu University for supporting this work.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Y.-K. & Hou, G.-G. (2011). Acta Cryst. E67, o3073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-D. (2011). Acta Cryst. E67, o3156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-R. & Xia, Z.-Q. (2011). Acta Cryst. E67, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, X.-Q., Zhou, X.-H., Chen, C., Xiao, H.-P., Li, Y.-Z., Zuo, J.-L. & You, X.-Z. (2009). Cryst. Growth Des. 9, 1041–1053.  Web of Science CSD CrossRef CAS Google Scholar
First citationProskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. & Zefirov, N. S. (2002). Russ. J. Org. Chem. 38, 1149–1153.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Gu, W., Deng, J.-X., Liu, M.-L., Xu, N. & Liu, X. (2009). Z. Anorg. Allg. Chem, 635, 1124–1128.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds