organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­isophthalic acid

aKey Laboratory of Urban and Architectural Heritage Conservation, (Southeast University), Ministry of Education, Nanjing 210096, People's Republic of China, and College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: peluoyh@sina.com

(Received 30 November 2011; accepted 14 December 2011; online 21 December 2011)

In the crystal structure of the title compound, C8H5NO6, both carboxyl groups are involved in inter­molecular centrosymmetric cyclic O—H⋯O hydrogen-bonding associations, which give a zigzag chain structure extending along (2[\overline{1}]1). Weak ππ stacking inter­actions are also present [minimum ring centroid separation = 3.893 (4) Å].

Related literature

For 4-nitro­isophthalic acid as an inter­mediate in the synthesis of pharmaceutical drugs and as a ligand in transition metal complexes, see: Birk & Weihe (2009[Birk, T. & Weihe, H. (2009). J. Chem. Crystallogr. 39, 766-771.]); Pan et al. (2011[Pan, M.-L., Luo, Y.-H. & Mao, S.-L. (2011). Acta Cryst. E67, o2345.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5NO6

  • Mr = 211.13

  • Triclinic, [P \overline 1]

  • a = 7.0261 (14) Å

  • b = 7.4380 (15) Å

  • c = 8.5775 (17) Å

  • α = 80.09 (3)°

  • β = 86.22 (3)°

  • γ = 75.37 (3)°

  • V = 427.14 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini CCD-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.957, Tmax = 0.971

  • 4103 measured reflections

  • 1943 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.136

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.308

  • S = 0.86

  • 1943 reflections

  • 136 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.86 1.76 2.605 (7) 168
O5—H5⋯O6ii 0.87 1.73 2.602 (7) 180
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4-Nitroisophthalic acid is an important chemical material because it is an intermediate in the synthesis of many pharmaceutical drugs and is also an excellent ligand for many transition metal complexes (Pan et al., 2011; Birk & Weihe, 2009). As part of our interest in this compound, we report here the crystal structure of this acid.

The molecular structure of the title compound, C8H5NO6 is shown in Fig. 1. All of the non-H and non-O atoms are approximately coplanar: the maximu r.m.s. deviation being 0.0202 Å. In the crystal structure, both carboxylic acid groups are involved in intermolecular centrosymmetric cyclic O—H···O hydrogen-bonding associations (Table 1) which give a zigzag chain structure extending along (2 -1 1) (Fig. 2). Weak π···π stacking interactions are also present [minimum ring centroid separation = 3.893 (4) Å].

Related literature top

For related literature, see: Birk & Weihe (2009); Pan et al. (2011).

Experimental top

4-Nitroisophthalic acid was obtained commercially from ChemFuture PharmaTech, Ltd (Nanjing, Jiangsu). Crystals of it suitable for X-ray diffraction were obstained by slow evaporation of a methanol solution.

Refinement top

All H atoms attached to C atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, and O—H = 0.86±1 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram viewed down the a axis showing the three-dimensional network. Intermolecular hydrogen bonds are shown as dashed lines.
4-nitrobenzene-1,3-dicarboxylic acid top
Crystal data top
C8H5NO6Z = 2
Mr = 211.13F(000) = 216
Triclinic, P1Dx = 1.642 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0261 (14) ÅCell parameters from 1943 reflections
b = 7.4380 (15) Åθ = 3.0–27.5°
c = 8.5775 (17) ŵ = 0.15 mm1
α = 80.09 (3)°T = 293 K
β = 86.22 (3)°Prism, red
γ = 75.37 (3)°0.30 × 0.25 × 0.20 mm
V = 427.14 (15) Å3
Data collection top
Rigaku SCXmini CCD-detector
diffractometer
1943 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.136
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD profile–fitting scansh = 99
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
k = 99
Tmin = 0.957, Tmax = 0.971l = 1111
4103 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.308H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.1225P)2]
where P = (Fo2 + 2Fc2)/3
1943 reflections(Δ/σ)max = 0.017
136 parametersΔρmax = 0.40 e Å3
8 restraintsΔρmin = 0.50 e Å3
Crystal data top
C8H5NO6γ = 75.37 (3)°
Mr = 211.13V = 427.14 (15) Å3
Triclinic, P1Z = 2
a = 7.0261 (14) ÅMo Kα radiation
b = 7.4380 (15) ŵ = 0.15 mm1
c = 8.5775 (17) ÅT = 293 K
α = 80.09 (3)°0.30 × 0.25 × 0.20 mm
β = 86.22 (3)°
Data collection top
Rigaku SCXmini CCD-detector
diffractometer
1943 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
1554 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.971Rint = 0.136
4103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0928 restraints
wR(F2) = 0.308H-atom parameters constrained
S = 0.86Δρmax = 0.40 e Å3
1943 reflectionsΔρmin = 0.50 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7042 (7)0.0658 (7)0.5109 (6)0.0760 (19)
O20.8052 (7)0.0122 (8)0.2874 (6)0.081 (2)
O30.9385 (6)0.3293 (8)0.4061 (6)0.076 (2)
O40.7716 (6)0.6167 (8)0.4485 (6)0.074 (2)
O50.2226 (6)0.9309 (7)0.0974 (5)0.0637 (18)
O60.0288 (6)0.7626 (7)0.0224 (6)0.0706 (18)
N10.7089 (7)0.1015 (8)0.3680 (6)0.0470 (19)
C10.7884 (8)0.4702 (9)0.3938 (7)0.041 (2)
C20.6144 (7)0.4407 (9)0.3070 (6)0.0396 (19)
C30.5813 (8)0.2668 (9)0.2931 (7)0.044 (2)
C40.4265 (8)0.2656 (9)0.2113 (7)0.0446 (19)
C50.2929 (8)0.4233 (10)0.1433 (7)0.049 (2)
C60.4838 (7)0.6123 (9)0.2397 (6)0.0397 (19)
C70.3223 (7)0.5954 (10)0.1615 (6)0.045 (2)
C80.1809 (8)0.7812 (9)0.0882 (7)0.045 (2)
H40.875600.635200.484100.0880*
H4A0.408000.149200.199700.0540*
H50.138301.033600.057000.0770*
H5A0.187200.415000.087500.0590*
H6A0.504800.729000.247300.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.075 (3)0.068 (4)0.066 (3)0.011 (3)0.018 (3)0.005 (3)
O20.098 (4)0.058 (4)0.067 (3)0.017 (3)0.008 (3)0.006 (3)
O30.034 (2)0.080 (4)0.105 (4)0.007 (3)0.030 (2)0.010 (3)
O40.045 (2)0.097 (4)0.085 (4)0.009 (3)0.029 (2)0.032 (3)
O50.049 (2)0.067 (4)0.074 (3)0.006 (3)0.034 (2)0.008 (3)
O60.042 (2)0.086 (4)0.079 (3)0.001 (3)0.034 (2)0.010 (3)
N10.046 (3)0.053 (4)0.036 (3)0.006 (3)0.015 (2)0.005 (3)
C10.035 (3)0.047 (4)0.041 (4)0.012 (3)0.007 (3)0.001 (3)
C20.025 (3)0.052 (4)0.038 (3)0.000 (3)0.012 (2)0.007 (3)
C30.032 (3)0.055 (4)0.043 (4)0.002 (3)0.012 (3)0.012 (3)
C40.048 (3)0.032 (3)0.060 (4)0.017 (3)0.011 (3)0.010 (3)
C50.038 (3)0.067 (5)0.044 (4)0.010 (4)0.016 (3)0.011 (3)
C60.032 (3)0.052 (4)0.036 (3)0.011 (3)0.012 (2)0.004 (3)
C70.030 (3)0.071 (5)0.032 (3)0.004 (3)0.009 (2)0.010 (3)
C80.037 (3)0.046 (4)0.054 (4)0.006 (3)0.013 (3)0.012 (3)
Geometric parameters (Å, º) top
O1—N11.209 (7)C2—C61.424 (9)
O2—N11.225 (8)C2—C31.396 (9)
O3—C11.281 (8)C3—C41.335 (8)
O4—C11.235 (9)C4—C51.370 (9)
O5—C81.237 (8)C5—C71.383 (10)
O6—C81.289 (7)C6—C71.398 (7)
O4—H40.8600C7—C81.543 (9)
O5—H50.8700C4—H4A0.9300
N1—C31.406 (8)C5—H5A0.9300
C1—C21.552 (8)C6—H6A0.9300
C1—O4—H4118.00C4—C5—C7117.0 (5)
C8—O5—H5116.00C2—C6—C7116.2 (6)
O1—N1—C3118.7 (5)C5—C7—C8120.9 (5)
O2—N1—C3119.2 (5)C6—C7—C8116.3 (6)
O1—N1—O2121.5 (6)C5—C7—C6122.7 (6)
O4—C1—C2120.2 (6)O6—C8—C7115.3 (5)
O3—C1—O4126.0 (6)O5—C8—O6126.5 (6)
O3—C1—C2113.8 (5)O5—C8—C7118.2 (5)
C3—C2—C6121.0 (5)C3—C4—H4A118.00
C1—C2—C6113.4 (5)C5—C4—H4A118.00
C1—C2—C3125.6 (5)C4—C5—H5A122.00
N1—C3—C4122.9 (6)C7—C5—H5A121.00
N1—C3—C2118.9 (5)C2—C6—H6A122.00
C2—C3—C4118.2 (6)C7—C6—H6A122.00
C3—C4—C5124.8 (6)
O1—N1—C3—C269.8 (8)C3—C2—C6—C70.6 (8)
O1—N1—C3—C4108.8 (7)N1—C3—C4—C5176.5 (6)
O2—N1—C3—C2118.3 (6)C2—C3—C4—C52.1 (9)
O2—N1—C3—C463.1 (8)C3—C4—C5—C70.0 (9)
O3—C1—C2—C323.2 (8)C4—C5—C7—C62.5 (8)
O3—C1—C2—C6157.0 (5)C4—C5—C7—C8179.5 (5)
O4—C1—C2—C3154.2 (6)C2—C6—C7—C52.7 (8)
O4—C1—C2—C625.5 (8)C2—C6—C7—C8179.9 (5)
C1—C2—C3—N12.8 (9)C5—C7—C8—O5174.4 (5)
C1—C2—C3—C4178.6 (5)C5—C7—C8—O65.5 (8)
C6—C2—C3—N1177.0 (5)C6—C7—C8—O52.8 (8)
C6—C2—C3—C41.7 (8)C6—C7—C8—O6177.3 (5)
C1—C2—C6—C7179.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.861.762.605 (7)168
O5—H5···O6ii0.871.732.602 (7)180
C5—H5A···O6iii0.932.563.423 (8)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H5NO6
Mr211.13
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0261 (14), 7.4380 (15), 8.5775 (17)
α, β, γ (°)80.09 (3), 86.22 (3), 75.37 (3)
V3)427.14 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini CCD-detector
diffractometer
Absorption correctionMulti-scan
CrystalClear (Rigaku, 2005)
Tmin, Tmax0.957, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
4103, 1943, 1554
Rint0.136
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.308, 0.86
No. of reflections1943
No. of parameters136
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.50

Computer programs: CrystalClear (Rigaku, 2005), CrystalClear, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.861.762.605 (7)168
O5—H5···O6ii0.871.732.602 (7)180
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+2, z.
 

References

First citationBirk, T. & Weihe, H. (2009). J. Chem. Crystallogr. 39, 766–771.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationPan, M.-L., Luo, Y.-H. & Mao, S.-L. (2011). Acta Cryst. E67, o2345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds