metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m218-m219

Bis{2-[(2,4-di­methyl­phen­yl)imino­meth­yl]pyridine-κ2N,N′}bis­­(thio­cyanato-κN)cadmium

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, bDepartment of Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: talei3@gmail.com

(Received 15 January 2012; accepted 22 January 2012; online 31 January 2012)

The title compound, [Cd(NCS)2(C14H14N2)2], features crystallographic inversion symmetry with the CdII ion located on a centre of inversion. The CdII ion is six-coordinated in a slightly distorted octa­hedral geometry with the thiocyanate anions in axial positions. The angle between the benzene and pyridine rings is 69.64 (9)°. An inter­molecular C—H⋯S hydrogen bond stabilizes the crystal structure.

Related literature

For the medicinal and pharmaceutical application of Schiff base compounds, see: Azza & Abu (2006[Azza, A. A. & Abu, H. (2006). J. Coord. Chem. 59, 157-176.]); Dudek & Dudek (1966[Dudek, G. O. & Dudek, F. P. (1966). J. Am. Chem. Soc. 88, 2407-2412.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Declercq, E. (1999). Eur. J. Pharmacol. 9, 25-31.]); Panneerselvam et al. (2005[Panneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225-229.]); Singh et al. (2006[Singh, K., Sing Barwa, M. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 1-9.]); Sridhar et al. (2001[Sridhar, S. K., Saravan, M. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615-625.]); Mladenova et al. (2002[Mladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J. 38, 989-1000.]); Walsh et al. (1996[Walsh, O. M., Meegan, M. J., Prendergast, R. M. & Nakib, T. A. (1996). Eur. J. Med. Chem. 31, 989-1000.]). For the crystal structures of imino­pyridine complexes, see: Talei Bavil Olyai et al. (2008[Talei Bavil Olyai, M. R., Dehghanpour, S., Hoormehr, B., Gholami, F. & Khavasi, H. R. (2008). Acta Cryst. E64, m1191.]); Talei Bavil Olyai, Gholami Troujeni et al. (2010[Talei Bavil Olyai, M. R., Gholami Troujeni, F., Hoormehr, B. & Khavasi, H. R. (2010). Z. Kristallogr. New Cryst. Struct. 225, 23-24.]); Talei Bavil Olyai, Razzaghi Fard et al. (2010[Talei Bavil Olyai, M. R., Razzaghi Fard, V., Shakibaii Far, J. & Mahmoudi, A. (2010). Z. Kristallogr. New Cryst. Struct. 225, 169-170.]); Fallah Nejad et al. (2010[Fallah Nejad, M., Talei Bavil Olyai, M. R. & Khavasi, H. R. (2010). Z. Kristallogr. New Cryst. Struct. 225, 717-718.]); Loni et al. (2011[Loni, S., Talei Bavil Olyai, M. R., Roodbari, F. & Notash, B. (2011). Acta Cryst. E67, m489-m490.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C14H14N2)2]

  • Mr = 649.13

  • Orthorhombic, P b c n

  • a = 11.285 (2) Å

  • b = 15.048 (3) Å

  • c = 17.576 (4) Å

  • V = 2984.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 298 K

  • 0.45 × 0.4 × 0.4 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.])Tmin = 0.406, Tmax = 0.430

  • 12952 measured reflections

  • 4016 independent reflections

  • 2589 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.075

  • S = 1.00

  • 4016 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N3 2.3032 (17)
Cd1—N1 2.3529 (14)
Cd1—N2 2.3708 (14)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯S1ii 0.93 2.87 3.591 (2) 136
Symmetry code: (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitrogen donor ligands particularly Schiff bases have been a subject of interest for chemists. Schiff bases form a class of compounds with azomethine group, which are usually synthesized from the condensation of primary amines and active carbonyl groups by elimination of water molecule. The Schiff bases and their metal complexes are important class of compounds in medicinal and pharmaceutical field (Azza & Abu, 2006; Dudek & Dudek, 1966; Pandeya et al., 1999; Panneerselvam et al., 2005; Singh et al., 2006; Sridhar et al. 2001; Mladenova et al., 2002; Walsh et al., 1996).

Following our studies on the synthesis and structural determination of transition metal complexes with iminopyridine ligands by X-ray crystallography (Talei Bavil Olyai et al., 2008; Talei Bavil Olyai, Gholami Troujeni et al., 2010; Talei Bavil Olyai, Razzaghi Fard et al., 2010; Fallah Nejad et al., 2010; Loni et al., 2011). We report herein the crystal structure of the title compound, a new cadmium(II) complex, (1), derived from the Schiff base ligand and thiocyanate. The title complex was synthesized by the reaction of Cd(CH3COO)2.2H2O with 2-[(2,4-dimethylphenyl)iminomethyl]- pyridine and KSCN in methanol as solution.

In the crystal structure of the title compound (Fig. 1), the cadmium(II) ion is six-coordinated in distorted octahedral geometry. Two Schiff base ligands coordinate the cadmium center as a bidentate ligand through the nitrogen atoms of imine group and pyridine ring. The Cd(II) ion is soft acidic metal center. According to symbiosis logic of Jorgensen, coordination of four electronegative nitrogen atoms of iminopyridine ligands have increased hardness of the cadmium ion and makes it a hard Lewis acid. Therefore, the Cd(II) ion prefers to bond to nitrogen atom of the ambidentate thiocyanate ligand.

The Cd—Nthiocyanate distances [2.3032 (17) Å] are notably shorter than the Cd—Nimine distances [2.3529 (1) Å] and Cd—Npyridine [2.3708 (14) Å] (Table 1). The two imine linkages, C9—N1 [1.268 (2) Å], are both short, which is in the accepted range for carbon-nitrogen double bonds. Four donor nitrogen atoms of the iminopyridine ligands are absolutely planar with the Cadmium(II). In the title compound, coordination plane (containing the ligands backbone and the cadmium atom), and two thiocyanate ions are trans to each other. The angle between phenyl and pyridine rings are 69.64 (9) Å. In the crystal structure of the title compound an intermolecular C—H···S hydrogen bond (Table 2) stabilize crystal structure.

Related literature top

For the medicinal and pharmaceutical application of Schiff base compounds, see: Azza & Abu (2006); Dudek & Dudek (1966); Pandeya et al. (1999); Panneerselvam et al. (2005); Singh et al. (2006); Sridhar et al. (2001); Mladenova et al. (2002); Walsh et al. (1996). For the crystal structure of iminopyridine complexes, see: Talei Bavil Olyai et al. (2008); Talei Bavil Olyai, Gholami Troujeni et al. (2010); Talei Bavil Olyai, Razzaghi Fard et al. (2010); Fallah Nejad et al. (2010); Loni et al. (2011).

Experimental top

For the preparation of the title compound, a mixed solution of 2-[(2,4-dimethylphenyl)-iminomethyl]-pyridine (0.420 g, 2.00 mmol) and KSCN (0.195 g 2.00 mmol) in methanol (10 ml) was added slowly to a solution of Cd(CH3COO)2.2H2O (0.267 g, 1.00 mmol) in methanol (10 ml) and the resulting yellow solution was stirred for 45 min at room temperature, and then left to evaporate slowly at 3–5°C. After twenty days, yellow crystals of the title compound were isolated (yield; 0.426 g, 74.2%, m. p. 453 K).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms with C—H=0.93(CH) and 0.96(CH3) Å and with Uiso(H) = 1.2 (1.5 for methyl)Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code:(a)-x + 1, -y, -z + 1].
[Figure 2] Fig. 2. Packing diagram of the title compound showing intermolecular C—H···S hydrogen bonding.
Bis{2-[(2,4-dimethylphenyl)iminomethyl]pyridine- κ2N,N'}bis(thiocyanato-κN)cadmium top
Crystal data top
[Cd(NCS)2(C14H14N2)2]F(000) = 1320.0
Mr = 649.13Dx = 1.445 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4016 reflections
a = 11.285 (2) Åθ = 2.3–29.2°
b = 15.048 (3) ŵ = 0.90 mm1
c = 17.576 (4) ÅT = 298 K
V = 2984.7 (10) Å3Block, yellow
Z = 40.45 × 0.4 × 0.4 mm
Data collection top
Stoe IPDS II
diffractometer
4016 independent reflections
Radiation source: fine-focus sealed tube2589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.3°
rotation method scansh = 1513
Absorption correction: numerical
shape of crystal determined optically
k = 2018
Tmin = 0.406, Tmax = 0.430l = 2024
12952 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.0706P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4016 reflectionsΔρmax = 0.20 e Å3
181 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (4)
Crystal data top
[Cd(NCS)2(C14H14N2)2]V = 2984.7 (10) Å3
Mr = 649.13Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 11.285 (2) ŵ = 0.90 mm1
b = 15.048 (3) ÅT = 298 K
c = 17.576 (4) Å0.45 × 0.4 × 0.4 mm
Data collection top
Stoe IPDS II
diffractometer
4016 independent reflections
Absorption correction: numerical
shape of crystal determined optically
2589 reflections with I > 2σ(I)
Tmin = 0.406, Tmax = 0.430Rint = 0.028
12952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
4016 reflectionsΔρmin = 0.39 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.50000.05113 (8)
S10.81414 (5)0.10677 (4)0.32032 (3)0.08019 (19)
N10.40527 (12)0.08917 (9)0.40838 (7)0.0506 (3)
N20.56541 (13)0.09386 (10)0.59987 (8)0.0522 (3)
N30.66504 (15)0.03255 (13)0.42813 (10)0.0687 (4)
C10.40926 (15)0.18477 (11)0.40648 (9)0.0484 (4)
C20.34254 (16)0.23310 (12)0.45844 (9)0.0537 (4)
C30.35215 (18)0.32527 (12)0.45528 (11)0.0607 (5)
H30.30750.35890.48920.073*
C40.42425 (17)0.36928 (12)0.40456 (11)0.0603 (5)
C50.49090 (17)0.31881 (14)0.35509 (12)0.0645 (5)
H50.54130.34690.32080.077*
C60.48400 (16)0.22711 (14)0.35565 (11)0.0585 (5)
H60.52950.19390.32190.070*
C70.2607 (2)0.18931 (16)0.51445 (12)0.0771 (6)
H7A0.20060.15690.48750.116*
H7B0.22410.23380.54570.116*
H7C0.30510.14920.54590.116*
C80.4294 (2)0.46981 (15)0.40349 (16)0.0888 (7)
H8A0.37750.49310.44190.133*
H8B0.40490.49110.35450.133*
H8C0.50900.48900.41340.133*
C90.37889 (16)0.04762 (12)0.34795 (10)0.0560 (4)
H90.35560.08000.30540.067*
C100.61622 (16)0.04953 (12)0.65736 (9)0.0530 (4)
C110.66386 (19)0.09220 (14)0.71998 (12)0.0700 (5)
H110.69920.05970.75880.084*
C120.6583 (2)0.18377 (15)0.72401 (13)0.0756 (6)
H120.68950.21390.76560.091*
C130.6062 (2)0.22922 (14)0.66575 (12)0.0698 (5)
H130.60160.29090.66700.084*
C140.56032 (18)0.18261 (13)0.60500 (11)0.0619 (5)
H140.52430.21420.56580.074*
C150.72622 (16)0.06333 (12)0.38293 (10)0.0522 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.06666 (13)0.05083 (12)0.03589 (10)0.00527 (8)0.00409 (7)0.00119 (7)
S10.0866 (4)0.0912 (4)0.0628 (3)0.0209 (3)0.0033 (3)0.0211 (3)
N10.0607 (8)0.0512 (9)0.0399 (7)0.0054 (7)0.0001 (6)0.0038 (6)
N20.0612 (9)0.0500 (9)0.0453 (8)0.0035 (7)0.0000 (6)0.0037 (6)
N30.0716 (11)0.0741 (11)0.0603 (10)0.0121 (9)0.0033 (8)0.0023 (9)
C10.0585 (10)0.0476 (10)0.0390 (8)0.0059 (7)0.0049 (7)0.0004 (7)
C20.0597 (10)0.0555 (11)0.0459 (9)0.0052 (8)0.0011 (8)0.0029 (8)
C30.0684 (11)0.0553 (11)0.0584 (10)0.0112 (9)0.0002 (9)0.0086 (9)
C40.0667 (11)0.0533 (11)0.0609 (11)0.0013 (9)0.0121 (9)0.0007 (9)
C50.0689 (12)0.0657 (13)0.0590 (11)0.0056 (10)0.0020 (9)0.0101 (10)
C60.0706 (12)0.0607 (12)0.0442 (9)0.0069 (9)0.0049 (8)0.0000 (9)
C70.0892 (15)0.0687 (13)0.0733 (13)0.0118 (12)0.0293 (12)0.0053 (11)
C80.1038 (19)0.0544 (12)0.108 (2)0.0100 (13)0.0139 (15)0.0021 (13)
C90.0691 (11)0.0571 (12)0.0418 (9)0.0060 (9)0.0044 (8)0.0015 (8)
C100.0618 (10)0.0546 (12)0.0426 (9)0.0016 (8)0.0012 (8)0.0067 (8)
C110.0891 (14)0.0677 (14)0.0531 (10)0.0060 (11)0.0140 (10)0.0143 (10)
C120.0940 (16)0.0691 (15)0.0636 (11)0.0024 (12)0.0115 (12)0.0225 (11)
C130.0852 (14)0.0517 (11)0.0727 (13)0.0019 (10)0.0019 (11)0.0165 (10)
C140.0712 (13)0.0538 (11)0.0607 (11)0.0017 (9)0.0021 (10)0.0008 (9)
C150.0588 (10)0.0489 (9)0.0491 (9)0.0032 (8)0.0094 (8)0.0014 (8)
Geometric parameters (Å, º) top
Cd1—N3i2.3032 (17)C5—C61.382 (3)
Cd1—N32.3032 (17)C5—H50.9300
Cd1—N12.3529 (14)C6—H60.9300
Cd1—N1i2.3529 (14)C7—H7A0.9600
Cd1—N2i2.3708 (14)C7—H7B0.9600
Cd1—N22.3708 (14)C7—H7C0.9600
S1—C151.619 (2)C8—H8A0.9600
N1—C91.268 (2)C8—H8B0.9600
N1—C11.440 (2)C8—H8C0.9600
N2—C101.340 (2)C9—C10i1.466 (3)
N2—C141.340 (2)C9—H90.9300
N3—C151.150 (2)C10—C111.383 (2)
C1—C61.384 (3)C10—C9i1.466 (3)
C1—C21.389 (2)C11—C121.381 (3)
C2—C31.392 (2)C11—H110.9300
C2—C71.502 (3)C12—C131.365 (3)
C3—C41.377 (3)C12—H120.9300
C3—H30.9300C13—C141.378 (3)
C4—C51.378 (3)C13—H130.9300
C4—C81.514 (3)C14—H140.9300
N3i—Cd1—N3180.0C6—C5—H5119.5
N3i—Cd1—N197.43 (6)C5—C6—C1119.89 (18)
N3—Cd1—N182.57 (6)C5—C6—H6120.1
N3i—Cd1—N1i82.57 (6)C1—C6—H6120.1
N3—Cd1—N1i97.43 (6)C2—C7—H7A109.5
N1—Cd1—N1i180.00 (5)C2—C7—H7B109.5
N3i—Cd1—N2i91.58 (6)H7A—C7—H7B109.5
N3—Cd1—N2i88.42 (6)C2—C7—H7C109.5
N1—Cd1—N2i72.03 (5)H7A—C7—H7C109.5
N1i—Cd1—N2i107.97 (5)H7B—C7—H7C109.5
N3i—Cd1—N288.42 (6)C4—C8—H8A109.5
N3—Cd1—N291.58 (6)C4—C8—H8B109.5
N1—Cd1—N2107.97 (5)H8A—C8—H8B109.5
N1i—Cd1—N272.03 (5)C4—C8—H8C109.5
N2i—Cd1—N2180.0H8A—C8—H8C109.5
C9—N1—C1118.73 (15)H8B—C8—H8C109.5
C9—N1—Cd1113.50 (12)N1—C9—C10i122.43 (16)
C1—N1—Cd1124.85 (10)N1—C9—H9118.8
C10—N2—C14117.64 (16)C10i—C9—H9118.8
C10—N2—Cd1113.27 (11)N2—C10—C11122.37 (17)
C14—N2—Cd1129.08 (12)N2—C10—C9i117.69 (15)
C15—N3—Cd1161.83 (17)C11—C10—C9i119.94 (17)
C6—C1—C2120.91 (16)C12—C11—C10119.1 (2)
C6—C1—N1119.60 (16)C12—C11—H11120.4
C2—C1—N1119.40 (15)C10—C11—H11120.4
C1—C2—C3116.94 (17)C13—C12—C11118.8 (2)
C1—C2—C7122.30 (17)C13—C12—H12120.6
C3—C2—C7120.73 (17)C11—C12—H12120.6
C4—C3—C2123.43 (18)C12—C13—C14119.2 (2)
C4—C3—H3118.3C12—C13—H13120.4
C2—C3—H3118.3C14—C13—H13120.4
C3—C4—C5117.78 (18)N2—C14—C13122.92 (19)
C3—C4—C8120.7 (2)N2—C14—H14118.5
C5—C4—C8121.5 (2)C13—C14—H14118.5
C4—C5—C6121.01 (19)N3—C15—S1179.04 (17)
C4—C5—H5119.5
N3i—Cd1—N1—C997.15 (13)N1—C1—C2—C3178.39 (16)
N3—Cd1—N1—C982.85 (13)C6—C1—C2—C7179.92 (19)
N2i—Cd1—N1—C97.89 (12)N1—C1—C2—C73.3 (3)
N2—Cd1—N1—C9172.11 (12)C1—C2—C3—C40.7 (3)
N3i—Cd1—N1—C1102.54 (13)C7—C2—C3—C4179.06 (19)
N3—Cd1—N1—C177.46 (13)C2—C3—C4—C50.7 (3)
N2i—Cd1—N1—C1168.21 (13)C2—C3—C4—C8179.22 (19)
N2—Cd1—N1—C111.79 (13)C3—C4—C5—C61.0 (3)
N3i—Cd1—N2—C1079.80 (12)C8—C4—C5—C6178.9 (2)
N3—Cd1—N2—C10100.20 (12)C4—C5—C6—C10.0 (3)
N1—Cd1—N2—C10177.10 (12)C2—C1—C6—C51.4 (3)
N1i—Cd1—N2—C102.90 (12)N1—C1—C6—C5178.07 (16)
N3i—Cd1—N2—C14101.74 (16)C1—N1—C9—C10i173.99 (15)
N3—Cd1—N2—C1478.26 (16)Cd1—N1—C9—C10i12.4 (2)
N1—Cd1—N2—C144.44 (17)C14—N2—C10—C110.9 (3)
N1i—Cd1—N2—C14175.56 (17)Cd1—N2—C10—C11177.80 (15)
N1—Cd1—N3—C157.1 (5)C14—N2—C10—C9i179.59 (16)
N1i—Cd1—N3—C15172.9 (5)Cd1—N2—C10—C9i1.76 (19)
N2i—Cd1—N3—C1579.2 (5)N2—C10—C11—C120.5 (3)
N2—Cd1—N3—C15100.8 (5)C9i—C10—C11—C12179.9 (2)
C9—N1—C1—C657.6 (2)C10—C11—C12—C130.2 (3)
Cd1—N1—C1—C6101.74 (16)C11—C12—C13—C140.3 (3)
C9—N1—C1—C2125.68 (18)C10—N2—C14—C130.9 (3)
Cd1—N1—C1—C274.95 (18)Cd1—N2—C14—C13177.48 (15)
C6—C1—C2—C31.7 (3)C12—C13—C14—N20.7 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···S1ii0.932.873.591 (2)136
Symmetry code: (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C14H14N2)2]
Mr649.13
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)11.285 (2), 15.048 (3), 17.576 (4)
V3)2984.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.45 × 0.4 × 0.4
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.406, 0.430
No. of measured, independent and
observed [I > 2σ(I)] reflections
12952, 4016, 2589
Rint0.028
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.075, 1.00
No. of reflections4016
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.39

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd1—N32.3032 (17)Cd1—N22.3708 (14)
Cd1—N12.3529 (14)N1—C91.268 (2)
N3i—Cd1—N3180.0N3i—Cd1—N2i91.58 (6)
N3i—Cd1—N197.43 (6)N1—Cd1—N2107.97 (5)
N3—Cd1—N182.57 (6)N2i—Cd1—N2180.0
N1—Cd1—N1i180.00 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···S1ii0.93002.87003.591 (2)136.00
Symmetry code: (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Islamic Azad University, Karaj Branch, for financial support.

References

First citationAzza, A. A. & Abu, H. (2006). J. Coord. Chem. 59, 157–176.  Google Scholar
First citationDudek, G. O. & Dudek, F. P. (1966). J. Am. Chem. Soc. 88, 2407–2412.  CrossRef CAS Google Scholar
First citationFallah Nejad, M., Talei Bavil Olyai, M. R. & Khavasi, H. R. (2010). Z. Kristallogr. New Cryst. Struct. 225, 717–718.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLoni, S., Talei Bavil Olyai, M. R., Roodbari, F. & Notash, B. (2011). Acta Cryst. E67, m489–m490.  CrossRef IUCr Journals Google Scholar
First citationMladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J. 38, 989–1000.  Web of Science CrossRef CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Declercq, E. (1999). Eur. J. Pharmacol. 9, 25–31.  CrossRef CAS Google Scholar
First citationPanneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Sing Barwa, M. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 1–9.  Google Scholar
First citationSridhar, S. K., Saravan, M. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615–625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTalei Bavil Olyai, M. R., Dehghanpour, S., Hoormehr, B., Gholami, F. & Khavasi, H. R. (2008). Acta Cryst. E64, m1191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTalei Bavil Olyai, M. R., Gholami Troujeni, F., Hoormehr, B. & Khavasi, H. R. (2010). Z. Kristallogr. New Cryst. Struct. 225, 23–24.  Google Scholar
First citationTalei Bavil Olyai, M. R., Razzaghi Fard, V., Shakibaii Far, J. & Mahmoudi, A. (2010). Z. Kristallogr. New Cryst. Struct. 225, 169–170.  Google Scholar
First citationWalsh, O. M., Meegan, M. J., Prendergast, R. M. & Nakib, T. A. (1996). Eur. J. Med. Chem. 31, 989–1000.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m218-m219
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds