metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[lead(II)-bis­­(μ2-quinolin-8-ol­ato)-κ3N,O:O;κ3O:N,O] N,N-di­methyl­formamide hemisolvate]

aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 January 2012; accepted 23 January 2012; online 31 January 2012)

The asymmetric unit of the title compound, {[Pb(C9H6NO)2]·0.5C3H7NO}n, comprises Pb(quinolate)2 and half a dimethyl­formamide mol­ecule (which is disordered about a centre of inversion). The quinolate ligands N,O-chelate to a PbII ion and simultaneously bridge a neighbouring PbII ion to form a polymeric chain along [100] comprising Pb-linked Pb2O2 distorted rhombi. These chains pack to form a square grid, with the channels thus defined occupied by the disordered solvent mol­ecules.

Related literature

For a recent PbII mixed quinolate carboxyl­ate structure, see: Ghaemi et al. (2012[Ghaemi, A., Dadkhah, Z., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m97-m98.]). For the structure of the solvent-free PbII quinolate, see: Zhu et al. (2005[Zhu, L.-H., Zeng, M.-H. & Ng, S. W. (2005). Acta Cryst. E61, m1082-m1084.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C9H6NO)2]·0.5C3H7NO

  • Mr = 532.04

  • Triclinic, [P \overline 1]

  • a = 8.1841 (2) Å

  • b = 9.6606 (3) Å

  • c = 10.8619 (3) Å

  • α = 96.683 (3)°

  • β = 98.277 (2)°

  • γ = 94.225 (3)°

  • V = 840.48 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.06 mm−1

  • T = 100 K

  • 0.30 × 0.08 × 0.04 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.152, Tmax = 0.689

  • 13299 measured reflections

  • 3866 independent reflections

  • 3613 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 1.01

  • 3866 reflections

  • 272 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected bond lengths (Å)

Pb—O2 2.408 (2)
Pb—O1 2.468 (2)
Pb—N2 2.470 (3)
Pb—N1 2.566 (3)
Pb—O1i 2.618 (2)
Pb—O2ii 2.812 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

During the course of recent studies into the structural chemistry of mixed PbII quinolate carboxylates (Ghaemi et al., 2012), the title binary PbII quinolate was isolated as a DMF hemi-solvate, (I), from an attempted reaction with maleic acid. The crystal structure of the solvent free and polymeric Pb(quinolate)2 has been described (Zhu et al., 2005).

The asymmetric unit of (I) comprises Pb(quinolate)2 and half a solvent DMF molecule (this is disordered over a centre of inversion), Fig. 1. Each quinolate anion N,O-chelates a PbII atom and at the same time bridges a neighbouring PbII atom via the carbonyl-O atom. The result is a polymeric chain comprising alternating Pb2O2 rhombi, Fig. 2. The degree in asymmetry in the Pb—O bridges varies, Table 1. The coordination geometry of the PbII atom is based on a distorted pentagonal bipyramid with one N atom occupying an axial site. The lone pair of electrons occupies the second axial position. It is noted that the O3 and O3' atoms (each with a 0.25 site occupancy factor) of disordered DMF molecule approach the PbII at distances 2.903 (12) and 2.977 (12) Å, respectively. These are not trans to the axial N atom forming angles of approximately 140°. If one of the DMF-O atoms is included as part of the coordination sphere, the coordination geometry would be described as ψ-dodecahedral.

In the crystal packing, the polymeric chains pack into a square grid which defines channels in which reside the disordered solvent molecules, Fig. 3. The aforementioned weak Pb···O(DMF) interactions serve to connect the polymeric chains into a layer in the ab plane.

Related literature top

For a recent PbII mixed quinolate carboxylate structure, see: Ghaemi et al. (2012). For the structure of the binary PbII quinolate, see: Zhu et al. (2005).

Experimental top

The title complex was obtained by the following method. 8-Hydroxyquinoline (0.036 g, 0.25 mmol) was added to an aqueous solution (5 ml) of Pb(NO3)2 (0.082 g, 0.25 mmol). The mixture was stirred for 15 min. Then to this solution, a DMF solution (5 ml) of maleic acid (0.029 g, 0.25 mmol) which with triethylamine neutralized was added slowly at room temperature. This mixture was filtered. After keeping the filtrate in air, crystals were formed at the bottom of the vessel on slow evaporation of the solvents at room temperature. M.p. 590 K. Yield: 65%.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H 0.95–0.98 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The DMF molecule is disordered over two sites over a centre of inversion. The C—O distances were restrained to 1.25 (1) Å, the Ccarbonyl—N distances to 1.35 (1) Å and the Cmethyl—N distances to 1.45 (1) Å. Each component was restrained to lie on a plane; the anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones, and they were tightly restrained to be nearly isotropic.

The final difference Fourier map had a peak of 1.23 Å-3 at 1.10 Å from the Pb atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the polymeric chain along [100] in (I).
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I) highlighting the square grid defined by the polymeric chains and the inclusion of the solvent molecules (shown in space-filling mode) in the channels.
catena-Poly[[lead(II)-bis(µ2-quinolin-8-olato)- κ3N,O:O;κ3O:N,O] N,N-dimethylformamide hemisolvate] top
Crystal data top
[Pb(C9H6NO)2]·0.5C3H7NOZ = 2
Mr = 532.04F(000) = 504
Triclinic, P1Dx = 2.102 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1841 (2) ÅCell parameters from 8798 reflections
b = 9.6606 (3) Åθ = 2.5–27.5°
c = 10.8619 (3) ŵ = 10.06 mm1
α = 96.683 (3)°T = 100 K
β = 98.277 (2)°Block, yellow
γ = 94.225 (3)°0.30 × 0.08 × 0.04 mm
V = 840.48 (4) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3866 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3613 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.152, Tmax = 0.689l = 1414
13299 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.0115P]
where P = (Fo2 + 2Fc2)/3
3866 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 1.23 e Å3
36 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Pb(C9H6NO)2]·0.5C3H7NOγ = 94.225 (3)°
Mr = 532.04V = 840.48 (4) Å3
Triclinic, P1Z = 2
a = 8.1841 (2) ÅMo Kα radiation
b = 9.6606 (3) ŵ = 10.06 mm1
c = 10.8619 (3) ÅT = 100 K
α = 96.683 (3)°0.30 × 0.08 × 0.04 mm
β = 98.277 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3866 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3613 reflections with I > 2σ(I)
Tmin = 0.152, Tmax = 0.689Rint = 0.036
13299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02136 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.01Δρmax = 1.23 e Å3
3866 reflectionsΔρmin = 0.71 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb0.758370 (14)0.465630 (13)0.543410 (11)0.01554 (5)
O11.0552 (3)0.4449 (3)0.6130 (2)0.0232 (6)
O20.5307 (3)0.5563 (3)0.6350 (2)0.0180 (5)
N10.8296 (3)0.4221 (3)0.7727 (3)0.0162 (6)
N20.8215 (4)0.7122 (3)0.6385 (3)0.0249 (7)
C10.7215 (4)0.4163 (4)0.8528 (3)0.0206 (8)
H10.61540.44810.83080.025*
C20.7575 (5)0.3651 (4)0.9686 (3)0.0248 (8)
H20.67750.36301.02380.030*
C30.9089 (5)0.3184 (4)1.0005 (3)0.0247 (8)
H30.93440.28331.07840.030*
C41.0284 (4)0.3217 (4)0.9190 (3)0.0204 (8)
C51.1862 (5)0.2725 (4)0.9433 (4)0.0259 (8)
H51.21770.23431.01900.031*
C61.2937 (5)0.2792 (4)0.8591 (4)0.0296 (9)
H61.39850.24340.87560.036*
C71.2512 (4)0.3389 (4)0.7477 (4)0.0253 (8)
H71.33010.34480.69200.030*
C81.0982 (4)0.3891 (4)0.7165 (3)0.0193 (7)
C90.9830 (4)0.3776 (4)0.8040 (3)0.0178 (7)
C100.9624 (5)0.7881 (5)0.6391 (6)0.0462 (14)
H101.04270.74920.59380.055*
C110.9986 (6)0.9237 (5)0.7038 (7)0.071 (2)
H111.10160.97530.70230.086*
C120.8836 (6)0.9807 (5)0.7689 (6)0.0586 (17)
H120.90701.07220.81340.070*
C130.7312 (5)0.9046 (4)0.7703 (4)0.0306 (9)
C140.6057 (5)0.9570 (4)0.8344 (4)0.0311 (9)
H140.62141.04860.87950.037*
C150.4614 (5)0.8749 (4)0.8309 (4)0.0299 (9)
H150.37750.91030.87440.036*
C160.4342 (5)0.7391 (4)0.7644 (4)0.0263 (9)
H160.33190.68560.76400.032*
C170.5523 (4)0.6806 (4)0.6993 (3)0.0188 (7)
C180.7048 (4)0.7676 (4)0.7030 (3)0.0199 (7)
O30.5643 (14)0.2137 (13)0.5793 (11)0.0316 (18)0.25
N30.476 (2)0.011 (2)0.4938 (14)0.0236 (17)0.25
C190.588 (2)0.1025 (17)0.5172 (12)0.031 (4)0.25
H190.69000.09710.48500.037*0.25
C200.319 (3)0.009 (3)0.540 (2)0.026 (4)0.25
H20A0.32370.06060.61340.039*0.25
H20B0.23050.05390.47450.039*0.25
H20C0.29770.08770.56500.039*0.25
C210.557 (2)0.112 (2)0.4205 (18)0.026 (4)0.25
H21A0.48480.14610.34120.039*0.25
H21B0.58030.19100.46750.039*0.25
H21C0.66180.06790.40300.039*0.25
O3'0.7253 (14)0.1552 (12)0.5310 (11)0.0316 (18)0.25
N3'0.492 (3)0.0002 (19)0.4949 (14)0.0236 (17)0.25
C19'0.5783 (18)0.124 (2)0.5450 (16)0.031 (4)0.25
H19'0.52470.19050.59290.037*0.25
C20'0.511 (3)0.130 (2)0.4189 (19)0.026 (4)0.25
H20D0.41900.14980.34930.039*0.25
H20E0.51150.20680.47080.039*0.25
H20F0.61620.12200.38560.039*0.25
C21'0.323 (3)0.023 (3)0.518 (2)0.026 (4)0.25
H21D0.31700.09210.57720.039*0.25
H21E0.25050.05900.43880.039*0.25
H21F0.28590.06490.55330.039*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.01436 (7)0.01590 (8)0.01590 (8)0.00224 (5)0.00048 (5)0.00189 (5)
O10.0172 (12)0.0320 (15)0.0241 (14)0.0070 (11)0.0044 (10)0.0146 (12)
O20.0180 (12)0.0203 (13)0.0154 (13)0.0008 (10)0.0042 (10)0.0007 (10)
N10.0178 (14)0.0164 (15)0.0138 (15)0.0004 (11)0.0001 (11)0.0032 (12)
N20.0189 (16)0.0168 (16)0.040 (2)0.0027 (12)0.0041 (14)0.0068 (15)
C10.0215 (18)0.0200 (19)0.0199 (19)0.0006 (14)0.0047 (14)0.0002 (15)
C20.034 (2)0.024 (2)0.0167 (19)0.0017 (16)0.0065 (16)0.0016 (16)
C30.039 (2)0.0175 (19)0.0156 (18)0.0003 (16)0.0020 (16)0.0022 (15)
C40.0273 (19)0.0124 (17)0.0176 (18)0.0047 (14)0.0054 (14)0.0012 (14)
C50.028 (2)0.021 (2)0.025 (2)0.0033 (15)0.0080 (16)0.0071 (16)
C60.0201 (19)0.022 (2)0.047 (3)0.0030 (15)0.0066 (17)0.0151 (19)
C70.0186 (18)0.025 (2)0.034 (2)0.0006 (15)0.0031 (16)0.0136 (18)
C80.0185 (17)0.0180 (18)0.0213 (19)0.0001 (14)0.0001 (14)0.0072 (15)
C90.0184 (17)0.0130 (17)0.0195 (18)0.0032 (13)0.0028 (13)0.0019 (14)
C100.021 (2)0.024 (2)0.095 (4)0.0009 (17)0.013 (2)0.005 (3)
C110.031 (3)0.021 (2)0.158 (7)0.003 (2)0.015 (3)0.003 (3)
C120.041 (3)0.014 (2)0.113 (5)0.0008 (19)0.002 (3)0.007 (3)
C130.035 (2)0.0173 (19)0.036 (2)0.0053 (16)0.0092 (18)0.0034 (18)
C140.048 (3)0.019 (2)0.024 (2)0.0141 (18)0.0063 (18)0.0012 (17)
C150.049 (3)0.031 (2)0.0136 (19)0.0164 (19)0.0081 (17)0.0035 (17)
C160.034 (2)0.029 (2)0.0175 (19)0.0051 (17)0.0097 (16)0.0032 (17)
C170.0270 (19)0.0208 (18)0.0089 (16)0.0056 (15)0.0017 (14)0.0023 (14)
C180.0213 (18)0.0189 (18)0.0193 (19)0.0062 (14)0.0017 (14)0.0044 (15)
O30.036 (4)0.026 (3)0.031 (4)0.003 (3)0.005 (3)0.003 (3)
N30.025 (4)0.023 (3)0.025 (3)0.001 (3)0.012 (2)0.007 (2)
C190.029 (5)0.031 (8)0.035 (8)0.001 (5)0.006 (5)0.017 (7)
C200.024 (5)0.031 (6)0.025 (5)0.000 (4)0.007 (4)0.007 (4)
C210.029 (5)0.026 (6)0.026 (6)0.005 (4)0.012 (4)0.003 (4)
O3'0.036 (4)0.026 (3)0.031 (4)0.003 (3)0.005 (3)0.003 (3)
N3'0.025 (4)0.023 (3)0.025 (3)0.001 (3)0.012 (2)0.007 (2)
C19'0.029 (5)0.031 (8)0.035 (8)0.001 (5)0.006 (5)0.017 (7)
C20'0.024 (5)0.031 (6)0.025 (5)0.000 (4)0.007 (4)0.007 (4)
C21'0.029 (5)0.026 (6)0.026 (6)0.005 (4)0.012 (4)0.003 (4)
Geometric parameters (Å, º) top
Pb—O22.408 (2)C12—C131.403 (6)
Pb—O12.468 (2)C12—H120.9500
Pb—N22.470 (3)C13—C141.413 (6)
Pb—N12.566 (3)C13—C181.421 (5)
Pb—O1i2.618 (2)C14—C151.366 (6)
Pb—O2ii2.812 (2)C14—H140.9500
Pb—O32.903 (12)C15—C161.408 (6)
Pb—O3'2.977 (12)C15—H150.9500
O1—C81.317 (4)C16—C171.392 (5)
O1—Pbi2.618 (2)C16—H160.9500
O2—C171.304 (4)C17—C181.445 (5)
N1—C11.330 (4)O3—C191.244 (10)
N1—C91.367 (4)N3—C191.350 (10)
N2—C101.319 (5)N3—C201.449 (10)
N2—C181.367 (5)N3—C211.448 (10)
C1—C21.405 (5)C19—H190.9500
C1—H10.9500C20—H20A0.9800
C2—C31.361 (5)C20—H20B0.9800
C2—H20.9500C20—H20C0.9800
C3—C41.412 (5)C21—H21A0.9800
C3—H30.9500C21—H21B0.9800
C4—C51.409 (5)C21—H21C0.9800
C4—C91.429 (5)O3'—C19'1.254 (10)
C5—C61.361 (6)N3'—C19'1.357 (10)
C5—H50.9500N3'—C21'1.453 (10)
C6—C71.410 (5)N3'—C20'1.455 (10)
C6—H60.9500C19'—H19'0.9500
C7—C81.387 (5)C20'—H20D0.9800
C7—H70.9500C20'—H20E0.9800
C8—C91.439 (5)C20'—H20F0.9800
C10—C111.402 (7)C21'—H21D0.9800
C10—H100.9500C21'—H21E0.9800
C11—C121.366 (8)C21'—H21F0.9800
C11—H110.9500
O2—Pb—O1136.81 (8)C11—C10—H10118.6
O2—Pb—N267.61 (9)C12—C11—C10119.0 (4)
O1—Pb—N284.94 (9)C12—C11—H11120.5
O2—Pb—N177.78 (8)C10—C11—H11120.5
O1—Pb—N165.49 (8)C11—C12—C13120.4 (5)
N2—Pb—N182.06 (10)C11—C12—H12119.8
O2—Pb—O1i133.72 (8)C13—C12—H12119.8
O1—Pb—O1i67.90 (9)C12—C13—C14123.6 (4)
N2—Pb—O1i80.59 (10)C12—C13—C18117.0 (4)
N1—Pb—O1i131.30 (8)C14—C13—C18119.4 (4)
C8—O1—Pb118.6 (2)C15—C14—C13119.4 (4)
C8—O1—Pbi129.3 (2)C15—C14—H14120.3
Pb—O1—Pbi112.10 (9)C13—C14—H14120.3
C17—O2—Pb119.0 (2)C14—C15—C16121.6 (4)
C1—N1—C9119.1 (3)C14—C15—H15119.2
C1—N1—Pb124.9 (2)C16—C15—H15119.2
C9—N1—Pb114.9 (2)C17—C16—C15122.2 (4)
C10—N2—C18119.0 (4)C17—C16—H16118.9
C10—N2—Pb124.8 (3)C15—C16—H16118.9
C18—N2—Pb116.1 (2)O2—C17—C16124.0 (3)
N1—C1—C2122.8 (3)O2—C17—C18119.8 (3)
N1—C1—H1118.6C16—C17—C18116.2 (3)
C2—C1—H1118.6N2—C18—C13121.8 (3)
C3—C2—C1118.9 (3)N2—C18—C17117.0 (3)
C3—C2—H2120.5C13—C18—C17121.3 (3)
C1—C2—H2120.5C19—N3—C20121.2 (19)
C2—C3—C4120.7 (3)C19—N3—C21103.1 (15)
C2—C3—H3119.6C20—N3—C21135.6 (19)
C4—C3—H3119.6O3—C19—N3122.8 (18)
C3—C4—C5124.4 (3)O3—C19—H19118.6
C3—C4—C9116.8 (3)N3—C19—H19118.6
C5—C4—C9118.8 (3)C19'—N3'—C21'118 (2)
C6—C5—C4120.5 (4)C19'—N3'—C20'141 (2)
C6—C5—H5119.8C21'—N3'—C20'101.4 (16)
C4—C5—H5119.8O3'—C19'—N3'123 (2)
C5—C6—C7120.7 (3)O3'—C19'—H19'118.6
C5—C6—H6119.6N3'—C19'—H19'118.6
C7—C6—H6119.6N3'—C20'—H20D109.5
C8—C7—C6122.4 (3)N3'—C20'—H20E109.5
C8—C7—H7118.8H20D—C20'—H20E109.5
C6—C7—H7118.8N3'—C20'—H20F109.5
O1—C8—C7123.6 (3)H20D—C20'—H20F109.5
O1—C8—C9119.8 (3)H20E—C20'—H20F109.5
C7—C8—C9116.6 (3)N3'—C21'—H21D109.5
N1—C9—C4121.6 (3)N3'—C21'—H21E109.5
N1—C9—C8117.4 (3)H21D—C21'—H21E109.5
C4—C9—C8120.9 (3)N3'—C21'—H21F109.5
N2—C10—C11122.8 (4)H21D—C21'—H21F109.5
N2—C10—H10118.6H21E—C21'—H21F109.5
O2—Pb—O1—C850.9 (3)C6—C7—C8—C90.0 (6)
N2—Pb—O1—C8100.2 (3)C1—N1—C9—C41.6 (5)
N1—Pb—O1—C816.6 (2)Pb—N1—C9—C4167.0 (3)
O1i—Pb—O1—C8178.0 (3)C1—N1—C9—C8178.3 (3)
O2—Pb—O1—Pbi131.10 (11)Pb—N1—C9—C813.1 (4)
N2—Pb—O1—Pbi81.88 (12)C3—C4—C9—N11.8 (5)
N1—Pb—O1—Pbi165.45 (14)C5—C4—C9—N1177.5 (3)
O1i—Pb—O1—Pbi0.0C3—C4—C9—C8178.2 (3)
O1—Pb—O2—C1748.0 (3)C5—C4—C9—C82.6 (5)
N2—Pb—O2—C176.7 (2)O1—C8—C9—N12.0 (5)
N1—Pb—O2—C1779.7 (2)C7—C8—C9—N1177.8 (3)
O1i—Pb—O2—C1757.0 (3)O1—C8—C9—C4177.9 (3)
O2—Pb—N1—C120.5 (3)C7—C8—C9—C42.3 (5)
O1—Pb—N1—C1177.2 (3)C18—N2—C10—C110.3 (8)
N2—Pb—N1—C189.2 (3)Pb—N2—C10—C11174.2 (5)
O1i—Pb—N1—C1159.2 (2)N2—C10—C11—C120.2 (10)
O2—Pb—N1—C9171.7 (2)C10—C11—C12—C130.4 (10)
O1—Pb—N1—C914.9 (2)C11—C12—C13—C14179.3 (5)
N2—Pb—N1—C9103.0 (2)C11—C12—C13—C180.7 (8)
O1i—Pb—N1—C933.0 (3)C12—C13—C14—C15179.7 (5)
O2—Pb—N2—C10179.4 (4)C18—C13—C14—C150.3 (6)
O1—Pb—N2—C1034.7 (4)C13—C14—C15—C160.3 (6)
N1—Pb—N2—C10100.6 (4)C14—C15—C16—C170.3 (6)
O1i—Pb—N2—C1033.7 (4)Pb—O2—C17—C16174.8 (3)
O2—Pb—N2—C186.0 (2)Pb—O2—C17—C186.8 (4)
O1—Pb—N2—C18139.9 (3)C15—C16—C17—O2178.8 (3)
N1—Pb—N2—C1874.0 (3)C15—C16—C17—C180.4 (5)
O1i—Pb—N2—C18151.7 (3)C10—N2—C18—C130.0 (6)
C9—N1—C1—C20.5 (5)Pb—N2—C18—C13175.1 (3)
Pb—N1—C1—C2166.9 (3)C10—N2—C18—C17179.9 (4)
N1—C1—C2—C30.4 (6)Pb—N2—C18—C175.1 (4)
C1—C2—C3—C40.2 (6)C12—C13—C18—N20.5 (6)
C2—C3—C4—C5178.4 (4)C14—C13—C18—N2179.5 (3)
C2—C3—C4—C90.8 (5)C12—C13—C18—C17179.6 (4)
C3—C4—C5—C6179.7 (4)C14—C13—C18—C170.3 (6)
C9—C4—C5—C60.5 (5)O2—C17—C18—N20.9 (5)
C4—C5—C6—C71.7 (6)C16—C17—C18—N2179.4 (3)
C5—C6—C7—C82.0 (6)O2—C17—C18—C13178.9 (3)
Pb—O1—C8—C7162.6 (3)C16—C17—C18—C130.4 (5)
Pbi—O1—C8—C714.9 (5)C20—N3—C19—O30.0 (3)
Pb—O1—C8—C917.2 (4)C21—N3—C19—O3179.9 (3)
Pbi—O1—C8—C9165.3 (2)C21'—N3'—C19'—O3'179.9 (3)
C6—C7—C8—O1179.8 (4)C20'—N3'—C19'—O3'0.0 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb(C9H6NO)2]·0.5C3H7NO
Mr532.04
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1841 (2), 9.6606 (3), 10.8619 (3)
α, β, γ (°)96.683 (3), 98.277 (2), 94.225 (3)
V3)840.48 (4)
Z2
Radiation typeMo Kα
µ (mm1)10.06
Crystal size (mm)0.30 × 0.08 × 0.04
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.152, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
13299, 3866, 3613
Rint0.036
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.01
No. of reflections3866
No. of parameters272
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.71

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb—O22.408 (2)Pb—N12.566 (3)
Pb—O12.468 (2)Pb—O1i2.618 (2)
Pb—N22.470 (3)Pb—O2ii2.812 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

The authors gratefully acknowledge practical support of this study by the Islamic Azad University (Saveh Branch), and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhaemi, A., Dadkhah, Z., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m97–m98.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L.-H., Zeng, M.-H. & Ng, S. W. (2005). Acta Cryst. E61, m1082–m1084.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds