organic compounds
3,12-Diaza-6,9-diazonia-2,13-dioxotetradecane bis(perchlorate)
aSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand, bSchool of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand, cDepartment of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany, dCentre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University, Hospitals NHS, Foundation Trust, York Place, Manchester M13 9WL, England, and eSchool of Medicine, University of Manchester, Oxford Road, Manchester M13, England
*Correspondence e-mail: t.soehnel@auckland.ac.nz
The 10H24N4O22+·2ClO4−, can be described as a three-dimensional assembly of alternating layers consisting of diprotonated diacetyltriethylenetetramine (H2DAT)2+ strands along [100] and the anionic species ClO4−. The (H2DAT)2+ cations in the strands are connected via N—H⋯O hydrogen bonding between the acetyl groups and the amine groups of neighbouring (H2DAT)2+ cations. Layers of (H2DAT)2+ strands and perchlorate anions are connected by a network of hydrogen bonds between the NH and NH2 groups and the O atoms of the perchlorate anion. The consits of one perchlorate anion in a general position, as well as of one cation that is located on a center of inversion.
of the title diprotonated diacetyltriethylenetetramine (DAT) perchorate salt, CRelated literature
For background to pharmaceutical chelating agents in the treatment of diabetes, see: Cooper et al. (2004); Gong et al. (2006, 2008); Jüllig et al. (2007); Lu et al. (2010). For the detection of a new group of TETA metabolites, see: Lu et al. (2007). For the preparation and characterization of DAT mono- and dihydrochloride salts, see: Jonas et al. (2006); Wichmann et al. (2011). For related structures, see: Elaoud et al. (1999); Fu et al. (2005); Ilioudis et al. (2000, 2002); Ilioudis & Steed (2003); Wichmann et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811055516/nc2261sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811055516/nc2261Isup2.hkl
The DAT * 2 HCl powder material was synthesized by CarboGen, Switzerland according to literature procedure (Jonas et al. 2006, Wichmann et al. 2011). Cu(ClO4)2 is commercially available and was used as received. Crystals of the title compound were grown by slow evaporation of an aqueous solution of DAT * 2 HCl and Cu(ClO4)2 in stoichiometric ratio in water over a period of 6 weeks.
H atoms bonded to C and N atoms were positioned geometrically (C—H = 0.98–0.99 Å, N—H = 0.88–0.92 Å) and refined using a riding-model approximation, with Uiso(H) = 1.5 Ueq(C, N).
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).C10H24N4O22+·2ClO4− | F(000) = 452 |
Mr = 431.23 | Dx = 1.553 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 12054 reflections |
a = 6.0888 (5) Å | θ = 4.7–59.0° |
b = 10.9415 (9) Å | µ = 0.41 mm−1 |
c = 14.8160 (11) Å | T = 150 K |
β = 110.846 (6)° | Not regular, colourless |
V = 922.44 (13) Å3 | 0.45 × 0.35 × 0.17 mm |
Z = 2 |
Stoe IPDS II diffractometer | 2113 independent reflections |
Radiation source: fine-focus sealed tube | 1624 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.114 |
Image plate detector scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: numerical (X-RED32; Stoe & Cie, 2001) | h = −7→6 |
Tmin = 0.837, Tmax = 0.936 | k = −14→14 |
11528 measured reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0435P)2 + 0.0412P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
2113 reflections | Δρmax = 0.38 e Å−3 |
120 parameters | Δρmin = −0.42 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0082 (19) |
C10H24N4O22+·2ClO4− | V = 922.44 (13) Å3 |
Mr = 431.23 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.0888 (5) Å | µ = 0.41 mm−1 |
b = 10.9415 (9) Å | T = 150 K |
c = 14.8160 (11) Å | 0.45 × 0.35 × 0.17 mm |
β = 110.846 (6)° |
Stoe IPDS II diffractometer | 2113 independent reflections |
Absorption correction: numerical (X-RED32; Stoe & Cie, 2001) | 1624 reflections with I > 2σ(I) |
Tmin = 0.837, Tmax = 0.936 | Rint = 0.114 |
11528 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.38 e Å−3 |
2113 reflections | Δρmin = −0.42 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7492 (2) | −0.27758 (14) | 0.49858 (8) | 0.0292 (3) | |
N3 | 0.4849 (2) | −0.35281 (14) | 0.55667 (8) | 0.0203 (3) | |
H3 | 0.4552 | −0.3783 | 0.6075 | 0.030* | |
N6 | 0.1286 (2) | −0.15588 (13) | 0.49690 (8) | 0.0180 (3) | |
H6A | 0.0102 | −0.2008 | 0.5058 | 0.027* | |
H6B | 0.2493 | −0.1497 | 0.5556 | 0.027* | |
C1 | 0.8854 (3) | −0.3315 (2) | 0.66635 (12) | 0.0306 (4) | |
H1A | 0.9869 | −0.4013 | 0.6669 | 0.046* | |
H1B | 0.8082 | −0.3455 | 0.7133 | 0.046* | |
H1C | 0.9805 | −0.2570 | 0.6835 | 0.046* | |
C2 | 0.7025 (3) | −0.31761 (17) | 0.56731 (10) | 0.0212 (3) | |
C4 | 0.2944 (3) | −0.35009 (17) | 0.46258 (10) | 0.0218 (4) | |
H4A | 0.1589 | −0.3965 | 0.4668 | 0.033* | |
H4B | 0.3476 | −0.3914 | 0.4145 | 0.033* | |
C5 | 0.2149 (3) | −0.22157 (17) | 0.42777 (10) | 0.0211 (3) | |
H5A | 0.3478 | −0.1757 | 0.4205 | 0.032* | |
H5B | 0.0875 | −0.2255 | 0.3637 | 0.032* | |
C7 | 0.0392 (3) | −0.03159 (17) | 0.46280 (11) | 0.0230 (4) | |
H7A | −0.0947 | −0.0376 | 0.4008 | 0.035* | |
H7B | 0.1647 | 0.0169 | 0.4518 | 0.035* | |
Cl1 | 0.43802 (6) | −0.55724 (4) | 0.77065 (2) | 0.02264 (14) | |
O2 | 0.4296 (2) | −0.55967 (14) | 0.86654 (8) | 0.0337 (3) | |
O3 | 0.2285 (3) | −0.60503 (17) | 0.70295 (10) | 0.0478 (4) | |
O4 | 0.4650 (3) | −0.43253 (15) | 0.74660 (10) | 0.0461 (4) | |
O5 | 0.6382 (3) | −0.62675 (18) | 0.77258 (10) | 0.0507 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0253 (6) | 0.0377 (9) | 0.0282 (5) | −0.0049 (6) | 0.0139 (5) | −0.0020 (5) |
N3 | 0.0192 (6) | 0.0211 (8) | 0.0200 (6) | 0.0012 (6) | 0.0062 (5) | 0.0024 (5) |
N6 | 0.0164 (6) | 0.0183 (7) | 0.0180 (5) | 0.0012 (6) | 0.0044 (4) | 0.0009 (5) |
C1 | 0.0222 (8) | 0.0346 (12) | 0.0290 (8) | 0.0027 (8) | 0.0020 (6) | 0.0014 (8) |
C2 | 0.0204 (7) | 0.0180 (9) | 0.0251 (7) | 0.0018 (7) | 0.0081 (6) | −0.0024 (6) |
C4 | 0.0192 (7) | 0.0211 (9) | 0.0226 (7) | −0.0001 (7) | 0.0041 (5) | −0.0031 (6) |
C5 | 0.0214 (7) | 0.0231 (9) | 0.0185 (6) | 0.0032 (7) | 0.0069 (5) | 0.0001 (6) |
C7 | 0.0251 (8) | 0.0201 (9) | 0.0265 (7) | 0.0083 (7) | 0.0124 (6) | 0.0060 (6) |
Cl1 | 0.0200 (2) | 0.0276 (2) | 0.01913 (18) | 0.00163 (17) | 0.00557 (13) | 0.00246 (15) |
O2 | 0.0382 (7) | 0.0424 (9) | 0.0237 (6) | 0.0036 (7) | 0.0150 (5) | 0.0075 (5) |
O3 | 0.0355 (8) | 0.0518 (11) | 0.0400 (7) | −0.0072 (8) | −0.0063 (6) | −0.0065 (7) |
O4 | 0.0564 (9) | 0.0378 (10) | 0.0441 (7) | −0.0072 (8) | 0.0180 (7) | 0.0166 (7) |
O5 | 0.0381 (8) | 0.0661 (13) | 0.0463 (8) | 0.0256 (8) | 0.0130 (6) | −0.0092 (8) |
O1—C2 | 1.231 (2) | C4—C5 | 1.517 (2) |
N3—C2 | 1.334 (2) | C4—H4A | 0.9900 |
N3—C4 | 1.4622 (17) | C4—H4B | 0.9900 |
N3—H3 | 0.8800 | C5—H5A | 0.9900 |
N6—C7 | 1.485 (2) | C5—H5B | 0.9900 |
N6—C5 | 1.492 (2) | C7—C7i | 1.515 (3) |
N6—H6A | 0.9200 | C7—H7A | 0.9900 |
N6—H6B | 0.9200 | C7—H7B | 0.9900 |
C1—C2 | 1.501 (2) | Cl1—O3 | 1.4129 (13) |
C1—H1A | 0.9800 | Cl1—O5 | 1.4284 (15) |
C1—H1B | 0.9800 | Cl1—O4 | 1.4344 (16) |
C1—H1C | 0.9800 | Cl1—O2 | 1.4401 (12) |
C2—N3—C4 | 121.60 (13) | N3—C4—H4B | 109.0 |
C2—N3—H3 | 119.2 | C5—C4—H4B | 109.0 |
C4—N3—H3 | 119.2 | H4A—C4—H4B | 107.8 |
C7—N6—C5 | 112.56 (12) | N6—C5—C4 | 111.17 (13) |
C7—N6—H6A | 109.1 | N6—C5—H5A | 109.4 |
C5—N6—H6A | 109.1 | C4—C5—H5A | 109.4 |
C7—N6—H6B | 109.1 | N6—C5—H5B | 109.4 |
C5—N6—H6B | 109.1 | C4—C5—H5B | 109.4 |
H6A—N6—H6B | 107.8 | H5A—C5—H5B | 108.0 |
C2—C1—H1A | 109.5 | N6—C7—C7i | 110.03 (16) |
C2—C1—H1B | 109.5 | N6—C7—H7A | 109.7 |
H1A—C1—H1B | 109.5 | C7i—C7—H7A | 109.7 |
C2—C1—H1C | 109.5 | N6—C7—H7B | 109.7 |
H1A—C1—H1C | 109.5 | C7i—C7—H7B | 109.7 |
H1B—C1—H1C | 109.5 | H7A—C7—H7B | 108.2 |
O1—C2—N3 | 121.11 (13) | O3—Cl1—O5 | 111.45 (11) |
O1—C2—C1 | 122.39 (15) | O3—Cl1—O4 | 109.27 (10) |
N3—C2—C1 | 116.49 (14) | O5—Cl1—O4 | 109.82 (11) |
N3—C4—C5 | 113.08 (13) | O3—Cl1—O2 | 110.69 (9) |
N3—C4—H4A | 109.0 | O5—Cl1—O2 | 107.47 (8) |
C5—C4—H4A | 109.0 | O4—Cl1—O2 | 108.06 (10) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O4 | 0.88 | 2.12 | 2.989 (2) | 167 |
N6—H6A···O1ii | 0.92 | 1.77 | 2.6745 (19) | 168 |
N6—H6B···O2iii | 0.92 | 2.13 | 2.9265 (17) | 145 |
N6—H6B···O5iii | 0.92 | 2.40 | 3.2141 (19) | 147 |
Symmetry codes: (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C10H24N4O22+·2ClO4− |
Mr | 431.23 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 6.0888 (5), 10.9415 (9), 14.8160 (11) |
β (°) | 110.846 (6) |
V (Å3) | 922.44 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.45 × 0.35 × 0.17 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | Numerical (X-RED32; Stoe & Cie, 2001) |
Tmin, Tmax | 0.837, 0.936 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11528, 2113, 1624 |
Rint | 0.114 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.087, 1.03 |
No. of reflections | 2113 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.42 |
Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), VESTA (Momma & Izumi, 2011), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O4 | 0.88 | 2.12 | 2.989 (2) | 167.2 |
N6—H6A···O1i | 0.92 | 1.77 | 2.6745 (19) | 168.2 |
N6—H6B···O2ii | 0.92 | 2.13 | 2.9265 (17) | 144.9 |
N6—H6B···O5ii | 0.92 | 2.40 | 3.2141 (19) | 147.2 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
We acknowledge support from the following funding sources: Endocore Research Associates; the Maurice and Phyllis Paykel Trust; Lottery Health (New Zealand); the Auckland Medical Research Foundation; the University of Auckland; the Department of Education (New Zealand) through a grant to the Maurice Wilkins Centre of Excellence for Molecular Biodiscovery; Protemix Corporation Ltd; and by program grants from the Foundation for Research Science and Technology, New Zealand and from the Health Research Council of New Zealand.
References
Cooper, G. J. S., Phillips, A. R. J., Choong, S. Y., Leonard, B. L., Crossman, D. J., Brunton, D. H., Saafi, E. L., Dissanayake, A. M., Cowan, B. R., Young, A. A., Occleshaw, C. J., Chan, Y.-K., Leahy, F. E., Keogh, G. F., Gamble, G. D., Allen, G. R., Pope, A. J., Boyd, P. D. W., Poppitt, S. D., Borg, T. K., Doughty, R. N. & Baker, J. R. (2004). Diabetes, 53, 2501–2508. Web of Science CrossRef PubMed CAS Google Scholar
Elaoud, Z., Kamoun, S. & Mhiri, T. (1999). J. Chem. Crystallogr. 29, 1287–1290. Web of Science CSD CrossRef CAS Google Scholar
Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, o774–o775. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gong, D., Lu, J., Chen, X., Choong, S. Y., Zhang, S., Chan, Y.-K., Glyn-Jones, S., Gamble, G. D., Phillips, A. R. J. & Cooper, G. J. S. (2006). Mol. Pharmacol. 70, 2045–2051. Web of Science CrossRef PubMed CAS Google Scholar
Gong, D., Lu, J., Chen, X., Reddy, S., Crossman, D. J., Glyn-Jones, S., Choong, Y.-S., Kennedy, J., Barry, B., Zhang, S., Chan, Y.-K., Ruggiero, K., Phillips, A. R. J. & Cooper, G. J. S. (2008). Diabetologia, 51, 1741–1751. Web of Science CrossRef PubMed CAS Google Scholar
Ilioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26–36. CSD CrossRef Google Scholar
Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787–798. Web of Science CSD CrossRef CAS Google Scholar
Ilioudis, C. A. & Steed, J. W. (2003). J. Supramol. Chem. 1, 165–187. CrossRef Google Scholar
Jonas, M., Vaulont, I., Soi, A. & Schmidt, G. (2006). US Patent Appl. 20060041170. Google Scholar
Jüllig, M., Chen, X., Hickey, A. J., Crossman, D. J., Xu, A., Wang, Y., Greenwood, D. R., Choong, Y. S., Schönberger, S. J., Middleditch, M. J., Phillips, A. R. J. & Cooper, G. J. S. (2007). Proteomics Clin. Appl. 1, 387–399. Web of Science PubMed Google Scholar
Lu, J., Chan, Y.-K., Poppitt, S. D., Othman, A. A. & Cooper, G. J. S. (2007). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 859, 62–68. Web of Science CrossRef CAS Google Scholar
Lu, J., Gong, D., Choong, S. Y., Xu, H., Chan, Y. K., Chen, X., Fitzpatrick, S., Glyn-Jones, S., Zhang, S., Nakamura, T., Ruggiero, K., Obolonkin, V., Poppitt, S. D., Phillips, A. R. J. & Cooper, G. J. S. (2010). Diabetologia, 53, 1217–1226. Web of Science CrossRef CAS PubMed Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wichmann, K. A., Boyd, P. D. W., Söhnel, T., Allen, G. R., Phillips, A. R. J. & Cooper, G. J. S. (2007). Cryst. Growth Des. 7, 1844–1850. Web of Science CSD CrossRef CAS Google Scholar
Wichmann, K. A., Söhnel, T. & Cooper, G. J. S. (2011). J. Mol. Struct. doi:10.1016/j.molstruc.2011.12.020. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a larger project focusing on TETA and its metabolites as pharmaceutical chelating agents in Diabetes treatment (Cooper et al., 2004, Gong et al. 2006, 2008, Jüllig et al. 2007, Lu et al. 2010), we previously published the detection of a new group of TETA metabolites, N1-Monoacetyltriethylenetetramine (MAT) and the N1, N10-Diacetyltriethylenetetramine (DAT) (Lu et al. 2007), as well as just recently the development of a new selective synthetic route and the characterization of the DAT mono- and dihydrochloride salts (Wichmann et al., 2011).
TETA and its metabolites belong into the polyamine family, ambivalent and multidentate ligands, which are well known for their ability to form a variety of interesting open-chain, macrocyclic and three-dimensional architectures. TETA salts exist in variable protonation states with different anionic species (Ilioudis, et al. 2000, 2002, 2003, Elaoud et al. 1999, Fu et al. 2005, Wichmann et al. 2007). Therefore, we investigated the metabolite forms MAT and DAT towards their protonation and complexation behaviour (Wichmann et al., 2011). The obtained crystal structure of the new DAT salt [(H2DAT) * 2 ClO4] is described in this paper.
The (H2DAT)2+ cations are arranged as a linear symmetric chain with the terminal NH—CO—CH3 groups in trans-position to each other (Fig. 1).
The crystal structure consists of a three-dimensional-network, containing alternating assembly of two-dimensional-layers of (H2DAT)2+ cations (Fig. 2) and the ClO4- anions. The (H2DAT)2+ cations form linear strands along [100] (Fig. 3), connected via hydrogen bonding between the acetyl groups and the amine groups of neighbouring (H2DAT)2+ cations, with a C2=O1 ··· H6A/N6 distance of 1.767 (1) Å. These linear strands of the (H2DAT)2+ cations form two-dimensional-layers in the (001) plane. However, the two-dimensional-layers of (H2DAT)2+ cations and the perchlorate anions were stabilized by a network of intermolecular hydrogen bonds between the NH– and NH2-groups and the oxygen atoms of the perchlorate anion, with N6—H6B···O2—Cl1—O4···H3—N3 between 2.126 (1) Å and 2.125 (1) Å, (Table 1). The terminal NH-groups of a (H2DAT)2+ cation binds to an O-atom of a perchlorate anion, which itself bound to an internal NH-group of another (H2DAT)2+ cation and vice versa. Therefore each (H2DAT)2+ cation is connected to four different (H2DAT)2+ cations, two from the above and two from the below layer.