organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o333-o334

3,12-Di­aza-6,9-diazo­nia-2,13-dioxo­tetra­decane bis­­(perchlorate)

aSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand, bSchool of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand, cDepartment of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany, dCentre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University, Hospitals NHS, Foundation Trust, York Place, Manchester M13 9WL, England, and eSchool of Medicine, University of Manchester, Oxford Road, Manchester M13, England
*Correspondence e-mail: t.soehnel@auckland.ac.nz

(Received 19 December 2011; accepted 23 December 2011; online 11 January 2012)

The crystal structure of the title diprotonated diacetyl­triethyl­ene­tetra­mine (DAT) perchorate salt, C10H24N4O22+·2ClO4, can be described as a three-dimensional assembly of alternating layers consisting of diprotonated diacetyl­triethyl­ene­tetra­mine (H2DAT)2+ strands along [100] and the anionic species ClO4. The (H2DAT)2+ cations in the strands are connected via N—H⋯O hydrogen bonding between the acetyl groups and the amine groups of neighbouring (H2DAT)2+ cations. Layers of (H2DAT)2+ strands and perchlorate anions are connected by a network of hydrogen bonds between the NH and NH2 groups and the O atoms of the perchlorate anion. The asymmetric unit consits of one perchlorate anion in a general position, as well as of one cation that is located on a center of inversion.

Related literature

For background to pharmaceutical chelating agents in the treatment of diabetes, see: Cooper et al. (2004[Cooper, G. J. S., Phillips, A. R. J., Choong, S. Y., Leonard, B. L., Crossman, D. J., Brunton, D. H., Saafi, E. L., Dissanayake, A. M., Cowan, B. R., Young, A. A., Occleshaw, C. J., Chan, Y.-K., Leahy, F. E., Keogh, G. F., Gamble, G. D., Allen, G. R., Pope, A. J., Boyd, P. D. W., Poppitt, S. D., Borg, T. K., Doughty, R. N. & Baker, J. R. (2004). Diabetes, 53, 2501-2508.]); Gong et al. (2006[Gong, D., Lu, J., Chen, X., Choong, S. Y., Zhang, S., Chan, Y.-K., Glyn-Jones, S., Gamble, G. D., Phillips, A. R. J. & Cooper, G. J. S. (2006). Mol. Pharmacol. 70, 2045-2051.], 2008[Gong, D., Lu, J., Chen, X., Reddy, S., Crossman, D. J., Glyn-Jones, S., Choong, Y.-S., Kennedy, J., Barry, B., Zhang, S., Chan, Y.-K., Ruggiero, K., Phillips, A. R. J. & Cooper, G. J. S. (2008). Diabetologia, 51, 1741-1751.]); Jüllig et al. (2007[Jüllig, M., Chen, X., Hickey, A. J., Crossman, D. J., Xu, A., Wang, Y., Greenwood, D. R., Choong, Y. S., Schönberger, S. J., Middleditch, M. J., Phillips, A. R. J. & Cooper, G. J. S. (2007). Proteomics Clin. Appl. 1, 387-399.]); Lu et al. (2010[Lu, J., Gong, D., Choong, S. Y., Xu, H., Chan, Y. K., Chen, X., Fitzpatrick, S., Glyn-Jones, S., Zhang, S., Nakamura, T., Ruggiero, K., Obolonkin, V., Poppitt, S. D., Phillips, A. R. J. & Cooper, G. J. S. (2010). Diabetologia, 53, 1217-1226.]). For the detection of a new group of TETA metabolites, see: Lu et al. (2007[Lu, J., Chan, Y.-K., Poppitt, S. D., Othman, A. A. & Cooper, G. J. S. (2007). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 859, 62-68.]). For the preparation and characterization of DAT mono- and dihydro­chloride salts, see: Jonas et al. (2006[Jonas, M., Vaulont, I., Soi, A. & Schmidt, G. (2006). US Patent Appl. 20060041170.]); Wichmann et al. (2011[Wichmann, K. A., Söhnel, T. & Cooper, G. J. S. (2011). J. Mol. Struct. doi:10.1016/j.molstruc.2011.12.020. ]). For related structures, see: Elaoud et al. (1999[Elaoud, Z., Kamoun, S. & Mhiri, T. (1999). J. Chem. Crystallogr. 29, 1287-1290.]); Fu et al. (2005[Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, o774-o775.]); Ilioudis et al. (2000[Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787-798.], 2002[Ilioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26-36.]); Ilioudis & Steed (2003[Ilioudis, C. A. & Steed, J. W. (2003). J. Supramol. Chem. 1, 165-187.]); Wichmann et al. (2007[Wichmann, K. A., Boyd, P. D. W., Söhnel, T., Allen, G. R., Phillips, A. R. J. & Cooper, G. J. S. (2007). Cryst. Growth Des. 7, 1844-1850.]).

[Scheme 1]

Experimental

Crystal data
  • C10H24N4O22+·2ClO4

  • Mr = 431.23

  • Monoclinic, P 21 /c

  • a = 6.0888 (5) Å

  • b = 10.9415 (9) Å

  • c = 14.8160 (11) Å

  • β = 110.846 (6)°

  • V = 922.44 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 150 K

  • 0.45 × 0.35 × 0.17 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2001[Stoe & Cie (2001). X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.837, Tmax = 0.936

  • 11528 measured reflections

  • 2113 independent reflections

  • 1624 reflections with I > 2σ(I)

  • Rint = 0.114

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.087

  • S = 1.03

  • 2113 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.88 2.12 2.989 (2) 167
N6—H6A⋯O1i 0.92 1.77 2.6745 (19) 168
N6—H6B⋯O2ii 0.92 2.13 2.9265 (17) 145
N6—H6B⋯O5ii 0.92 2.40 3.2141 (19) 147
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of a larger project focusing on TETA and its metabolites as pharmaceutical chelating agents in Diabetes treatment (Cooper et al., 2004, Gong et al. 2006, 2008, Jüllig et al. 2007, Lu et al. 2010), we previously published the detection of a new group of TETA metabolites, N1-Monoacetyltriethylenetetramine (MAT) and the N1, N10-Diacetyltriethylenetetramine (DAT) (Lu et al. 2007), as well as just recently the development of a new selective synthetic route and the characterization of the DAT mono- and dihydrochloride salts (Wichmann et al., 2011).

TETA and its metabolites belong into the polyamine family, ambivalent and multidentate ligands, which are well known for their ability to form a variety of interesting open-chain, macrocyclic and three-dimensional architectures. TETA salts exist in variable protonation states with different anionic species (Ilioudis, et al. 2000, 2002, 2003, Elaoud et al. 1999, Fu et al. 2005, Wichmann et al. 2007). Therefore, we investigated the metabolite forms MAT and DAT towards their protonation and complexation behaviour (Wichmann et al., 2011). The obtained crystal structure of the new DAT salt [(H2DAT) * 2 ClO4] is described in this paper.

The (H2DAT)2+ cations are arranged as a linear symmetric chain with the terminal NH—CO—CH3 groups in trans-position to each other (Fig. 1).

The crystal structure consists of a three-dimensional-network, containing alternating assembly of two-dimensional-layers of (H2DAT)2+ cations (Fig. 2) and the ClO4- anions. The (H2DAT)2+ cations form linear strands along [100] (Fig. 3), connected via hydrogen bonding between the acetyl groups and the amine groups of neighbouring (H2DAT)2+ cations, with a C2=O1 ··· H6A/N6 distance of 1.767 (1) Å. These linear strands of the (H2DAT)2+ cations form two-dimensional-layers in the (001) plane. However, the two-dimensional-layers of (H2DAT)2+ cations and the perchlorate anions were stabilized by a network of intermolecular hydrogen bonds between the NH– and NH2-groups and the oxygen atoms of the perchlorate anion, with N6—H6B···O2—Cl1—O4···H3—N3 between 2.126 (1) Å and 2.125 (1) Å, (Table 1). The terminal NH-groups of a (H2DAT)2+ cation binds to an O-atom of a perchlorate anion, which itself bound to an internal NH-group of another (H2DAT)2+ cation and vice versa. Therefore each (H2DAT)2+ cation is connected to four different (H2DAT)2+ cations, two from the above and two from the below layer.

Related literature top

For background to pharmaceutical chelating agents in the treatment of diabetes, see: Cooper et al. (2004); Gong et al. (2006, 2008); Jüllig et al. (2007); Lu et al. (2010). For the detection of a new group of TETA metabolites, see: Lu et al. (2007). For the preparation and characterization of DAT mono- and dihydrochloride salts, see: Jonas et al. (2006); Wichmann et al. (2011). For related structures, see: Elaoud et al. (1999); Fu et al. (2005); Ilioudis et al. (2000, 2002); Ilioudis & Steed (2003); Wichmann et al. (2007).

Experimental top

The DAT * 2 HCl powder material was synthesized by CarboGen, Switzerland according to literature procedure (Jonas et al. 2006, Wichmann et al. 2011). Cu(ClO4)2 is commercially available and was used as received. Crystals of the title compound were grown by slow evaporation of an aqueous solution of DAT * 2 HCl and Cu(ClO4)2 in stoichiometric ratio in water over a period of 6 weeks.

Refinement top

H atoms bonded to C and N atoms were positioned geometrically (C—H = 0.98–0.99 Å, N—H = 0.88–0.92 Å) and refined using a riding-model approximation, with Uiso(H) = 1.5 Ueq(C, N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 75% probabiliyt level. [symmetry code: (i) -x, -y - z + 1].
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Hydrogen bonding interactions are shown as dashed lines.
[Figure 3] Fig. 3. The strands of (H2DAT)2+ cations viewed along the a axis. The dashed bonds indicate the hydrogen bonds.
3,12-Diaza-6,9-diazonia-2,13-dioxotetradecane bis(perchlorate) top
Crystal data top
C10H24N4O22+·2ClO4F(000) = 452
Mr = 431.23Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12054 reflections
a = 6.0888 (5) Åθ = 4.7–59.0°
b = 10.9415 (9) ŵ = 0.41 mm1
c = 14.8160 (11) ÅT = 150 K
β = 110.846 (6)°Not regular, colourless
V = 922.44 (13) Å30.45 × 0.35 × 0.17 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
2113 independent reflections
Radiation source: fine-focus sealed tube1624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
Image plate detector scansθmax = 27.5°, θmin = 2.4°
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2001)
h = 76
Tmin = 0.837, Tmax = 0.936k = 1414
11528 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.0412P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2113 reflectionsΔρmax = 0.38 e Å3
120 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (19)
Crystal data top
C10H24N4O22+·2ClO4V = 922.44 (13) Å3
Mr = 431.23Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.0888 (5) ŵ = 0.41 mm1
b = 10.9415 (9) ÅT = 150 K
c = 14.8160 (11) Å0.45 × 0.35 × 0.17 mm
β = 110.846 (6)°
Data collection top
Stoe IPDS II
diffractometer
2113 independent reflections
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2001)
1624 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.936Rint = 0.114
11528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
2113 reflectionsΔρmin = 0.42 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7492 (2)0.27758 (14)0.49858 (8)0.0292 (3)
N30.4849 (2)0.35281 (14)0.55667 (8)0.0203 (3)
H30.45520.37830.60750.030*
N60.1286 (2)0.15588 (13)0.49690 (8)0.0180 (3)
H6A0.01020.20080.50580.027*
H6B0.24930.14970.55560.027*
C10.8854 (3)0.3315 (2)0.66635 (12)0.0306 (4)
H1A0.98690.40130.66690.046*
H1B0.80820.34550.71330.046*
H1C0.98050.25700.68350.046*
C20.7025 (3)0.31761 (17)0.56731 (10)0.0212 (3)
C40.2944 (3)0.35009 (17)0.46258 (10)0.0218 (4)
H4A0.15890.39650.46680.033*
H4B0.34760.39140.41450.033*
C50.2149 (3)0.22157 (17)0.42777 (10)0.0211 (3)
H5A0.34780.17570.42050.032*
H5B0.08750.22550.36370.032*
C70.0392 (3)0.03159 (17)0.46280 (11)0.0230 (4)
H7A0.09470.03760.40080.035*
H7B0.16470.01690.45180.035*
Cl10.43802 (6)0.55724 (4)0.77065 (2)0.02264 (14)
O20.4296 (2)0.55967 (14)0.86654 (8)0.0337 (3)
O30.2285 (3)0.60503 (17)0.70295 (10)0.0478 (4)
O40.4650 (3)0.43253 (15)0.74660 (10)0.0461 (4)
O50.6382 (3)0.62675 (18)0.77258 (10)0.0507 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (6)0.0377 (9)0.0282 (5)0.0049 (6)0.0139 (5)0.0020 (5)
N30.0192 (6)0.0211 (8)0.0200 (6)0.0012 (6)0.0062 (5)0.0024 (5)
N60.0164 (6)0.0183 (7)0.0180 (5)0.0012 (6)0.0044 (4)0.0009 (5)
C10.0222 (8)0.0346 (12)0.0290 (8)0.0027 (8)0.0020 (6)0.0014 (8)
C20.0204 (7)0.0180 (9)0.0251 (7)0.0018 (7)0.0081 (6)0.0024 (6)
C40.0192 (7)0.0211 (9)0.0226 (7)0.0001 (7)0.0041 (5)0.0031 (6)
C50.0214 (7)0.0231 (9)0.0185 (6)0.0032 (7)0.0069 (5)0.0001 (6)
C70.0251 (8)0.0201 (9)0.0265 (7)0.0083 (7)0.0124 (6)0.0060 (6)
Cl10.0200 (2)0.0276 (2)0.01913 (18)0.00163 (17)0.00557 (13)0.00246 (15)
O20.0382 (7)0.0424 (9)0.0237 (6)0.0036 (7)0.0150 (5)0.0075 (5)
O30.0355 (8)0.0518 (11)0.0400 (7)0.0072 (8)0.0063 (6)0.0065 (7)
O40.0564 (9)0.0378 (10)0.0441 (7)0.0072 (8)0.0180 (7)0.0166 (7)
O50.0381 (8)0.0661 (13)0.0463 (8)0.0256 (8)0.0130 (6)0.0092 (8)
Geometric parameters (Å, º) top
O1—C21.231 (2)C4—C51.517 (2)
N3—C21.334 (2)C4—H4A0.9900
N3—C41.4622 (17)C4—H4B0.9900
N3—H30.8800C5—H5A0.9900
N6—C71.485 (2)C5—H5B0.9900
N6—C51.492 (2)C7—C7i1.515 (3)
N6—H6A0.9200C7—H7A0.9900
N6—H6B0.9200C7—H7B0.9900
C1—C21.501 (2)Cl1—O31.4129 (13)
C1—H1A0.9800Cl1—O51.4284 (15)
C1—H1B0.9800Cl1—O41.4344 (16)
C1—H1C0.9800Cl1—O21.4401 (12)
C2—N3—C4121.60 (13)N3—C4—H4B109.0
C2—N3—H3119.2C5—C4—H4B109.0
C4—N3—H3119.2H4A—C4—H4B107.8
C7—N6—C5112.56 (12)N6—C5—C4111.17 (13)
C7—N6—H6A109.1N6—C5—H5A109.4
C5—N6—H6A109.1C4—C5—H5A109.4
C7—N6—H6B109.1N6—C5—H5B109.4
C5—N6—H6B109.1C4—C5—H5B109.4
H6A—N6—H6B107.8H5A—C5—H5B108.0
C2—C1—H1A109.5N6—C7—C7i110.03 (16)
C2—C1—H1B109.5N6—C7—H7A109.7
H1A—C1—H1B109.5C7i—C7—H7A109.7
C2—C1—H1C109.5N6—C7—H7B109.7
H1A—C1—H1C109.5C7i—C7—H7B109.7
H1B—C1—H1C109.5H7A—C7—H7B108.2
O1—C2—N3121.11 (13)O3—Cl1—O5111.45 (11)
O1—C2—C1122.39 (15)O3—Cl1—O4109.27 (10)
N3—C2—C1116.49 (14)O5—Cl1—O4109.82 (11)
N3—C4—C5113.08 (13)O3—Cl1—O2110.69 (9)
N3—C4—H4A109.0O5—Cl1—O2107.47 (8)
C5—C4—H4A109.0O4—Cl1—O2108.06 (10)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.882.122.989 (2)167
N6—H6A···O1ii0.921.772.6745 (19)168
N6—H6B···O2iii0.922.132.9265 (17)145
N6—H6B···O5iii0.922.403.2141 (19)147
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H24N4O22+·2ClO4
Mr431.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)6.0888 (5), 10.9415 (9), 14.8160 (11)
β (°) 110.846 (6)
V3)922.44 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.45 × 0.35 × 0.17
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-RED32; Stoe & Cie, 2001)
Tmin, Tmax0.837, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
11528, 2113, 1624
Rint0.114
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 1.03
No. of reflections2113
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.42

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), VESTA (Momma & Izumi, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.882.122.989 (2)167.2
N6—H6A···O1i0.921.772.6745 (19)168.2
N6—H6B···O2ii0.922.132.9265 (17)144.9
N6—H6B···O5ii0.922.403.2141 (19)147.2
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

We acknowledge support from the following funding sources: Endocore Research Associates; the Maurice and Phyllis Paykel Trust; Lottery Health (New Zealand); the Auckland Medical Research Foundation; the University of Auckland; the Department of Education (New Zealand) through a grant to the Maurice Wilkins Centre of Excellence for Mol­ecular Biodiscovery; Protemix Corporation Ltd; and by program grants from the Foundation for Research Science and Technology, New Zealand and from the Health Research Council of New Zealand.

References

First citationCooper, G. J. S., Phillips, A. R. J., Choong, S. Y., Leonard, B. L., Crossman, D. J., Brunton, D. H., Saafi, E. L., Dissanayake, A. M., Cowan, B. R., Young, A. A., Occleshaw, C. J., Chan, Y.-K., Leahy, F. E., Keogh, G. F., Gamble, G. D., Allen, G. R., Pope, A. J., Boyd, P. D. W., Poppitt, S. D., Borg, T. K., Doughty, R. N. & Baker, J. R. (2004). Diabetes, 53, 2501–2508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElaoud, Z., Kamoun, S. & Mhiri, T. (1999). J. Chem. Crystallogr. 29, 1287–1290.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, o774–o775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGong, D., Lu, J., Chen, X., Choong, S. Y., Zhang, S., Chan, Y.-K., Glyn-Jones, S., Gamble, G. D., Phillips, A. R. J. & Cooper, G. J. S. (2006). Mol. Pharmacol. 70, 2045–2051.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGong, D., Lu, J., Chen, X., Reddy, S., Crossman, D. J., Glyn-Jones, S., Choong, Y.-S., Kennedy, J., Barry, B., Zhang, S., Chan, Y.-K., Ruggiero, K., Phillips, A. R. J. & Cooper, G. J. S. (2008). Diabetologia, 51, 1741–1751.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIlioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26–36.  CSD CrossRef Google Scholar
First citationIlioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787–798.  Web of Science CSD CrossRef CAS Google Scholar
First citationIlioudis, C. A. & Steed, J. W. (2003). J. Supramol. Chem. 1, 165–187.  CrossRef Google Scholar
First citationJonas, M., Vaulont, I., Soi, A. & Schmidt, G. (2006). US Patent Appl. 20060041170.  Google Scholar
First citationJüllig, M., Chen, X., Hickey, A. J., Crossman, D. J., Xu, A., Wang, Y., Greenwood, D. R., Choong, Y. S., Schönberger, S. J., Middleditch, M. J., Phillips, A. R. J. & Cooper, G. J. S. (2007). Proteomics Clin. Appl. 1, 387–399.  Web of Science PubMed Google Scholar
First citationLu, J., Chan, Y.-K., Poppitt, S. D., Othman, A. A. & Cooper, G. J. S. (2007). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 859, 62–68.  Web of Science CrossRef CAS Google Scholar
First citationLu, J., Gong, D., Choong, S. Y., Xu, H., Chan, Y. K., Chen, X., Fitzpatrick, S., Glyn-Jones, S., Zhang, S., Nakamura, T., Ruggiero, K., Obolonkin, V., Poppitt, S. D., Phillips, A. R. J. & Cooper, G. J. S. (2010). Diabetologia, 53, 1217–1226.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWichmann, K. A., Boyd, P. D. W., Söhnel, T., Allen, G. R., Phillips, A. R. J. & Cooper, G. J. S. (2007). Cryst. Growth Des. 7, 1844–1850.  Web of Science CSD CrossRef CAS Google Scholar
First citationWichmann, K. A., Söhnel, T. & Cooper, G. J. S. (2011). J. Mol. Struct. doi:10.1016/j.molstruc.2011.12.020.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o333-o334
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds