organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o438-o439

6-Chloro-N-(2-meth­­oxy­phen­yl)pyridazin-3-amine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories complex, Lahore 54600, Pakistan, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 7 January 2012; accepted 13 January 2012; online 18 January 2012)

The asymmetric unit of the title compound, C11H10ClN3O, contains two geometrically different mol­ecules, A and B, in both of which the pyridazine rings are essentially planar with r.m.s. deviations of 0.0137 and 0.0056Å, respectively. In mol­ecule A, the dihedral angle between the pyridazine and benzene rings is 6.5 (2)°, whereas in mol­ecule B it is 27.93 (7)°. In mol­ecule B, an intramolecular N—H⋯O hydrogen bond forms an S(5) ring motif. In both molecules, S(6) ring motifs are present due to non-classical C—H⋯N hydrogen bonds. The ππ inter­actions between the pyridazine rings of A mol­ecules [3.4740 (13) Å] and B mol­ecules [3.4786 (17) Å] have very similar centroid–centroid separations. ππ Inter­actions also occur between the benzene rings of B mol­ecules with a centroid–centroid separation of 3.676 (2) Å and a slippage of 1.02 Å. In the crystal, the mol­ecules are linked into chains extending along [010] by C—H⋯N and C—H⋯Cl interactions.

Related literature

For general background and related structures, see: Ather et al. (2010a[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o2107.],b[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o2499.],c[Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2493.]; 2011[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2011). Acta Cryst. E67, o1020.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClN3O

  • Mr = 235.67

  • Monoclinic, P 2/c

  • a = 14.6018 (5) Å

  • b = 10.8574 (3) Å

  • c = 17.4630 (6) Å

  • β = 126.438 (2)°

  • V = 2227.29 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.32 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.957

  • 17904 measured reflections

  • 4387 independent reflections

  • 2815 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.03

  • 4387 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.86 2.14 2.579 (3) 111
N3—H3⋯N4 0.86 2.48 3.278 (2) 155
N6—H6A⋯N1i 0.86 2.44 3.270 (3) 161
C2—H2⋯Cl2ii 0.93 2.79 3.526 (2) 137
C3—H3A⋯N5 0.93 2.61 3.503 (3) 161
C6—H6⋯N2 0.93 2.31 2.913 (4) 122
C17—H17⋯N5 0.93 2.50 2.992 (3) 113
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to 6-chloropyridazin derivatives (Ather et al., 2010a,b,c; 2011), the title compound I (Fig. 1) is being reported here.

The two molecules in the asymmetric unit are present, which differ from each other geometrically. In one molecule, the pyridazin ring A (C1-C4/N1/N2) and the phenyl ring B (C5-C10) are planar with r. m. s. deviation of 0.0137Å and 0.0065Å, respectively. The dihedral angle between A/B is 6.5 (2)°. In second molecule, the pyridazin ring C (C12-C15/N4/N5) and the phenyl ring D (C16-C21) are planar with r. m. s. deviation of 0.0056 and 0.0053Å, respectively and the dihedral angle between C/D is 27.93 (7)°. In the more planar molecule, there exists classical intramolecular H-bonding of N–H···O type (Table 1, Fig. 2) with S(5) ring motif (Bernstein et al., 1995). In both molecules S(6) ring motifs are formed due to non-classical C–H···N type of H-bondings (Table 1, Fig. 2). The molecules are interlinked due to the H-bondings of C–H···N and C–H···Cl types (Table 1, Fig. 2) to form the one dimensional polymeric chains extending along [0 1 0]. There exist ππ interactions between the centroids of a phenyl and two pyridazin rings with CgA···CgAi = 3.4740 (13)Å, CgC···CgCi = 3.4786 (17)Å and CgD···CgDii = 3.676 (2)Å (slippage = 1.021Å), where CgA, CgC and CgD are the centroids of the rings A, C and D, respectively. Symmetry codes: (i) 1-x, y, 1/2-z; (ii) -x, 1-y, -z.

Related literature top

For general background and related structures, see: Ather et al. (2010a,b,c; 2011). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

An equimolar quantity (6.71 mmol) of 3,6-dichloropyradizine and 2-methoxyaniline in 10 ml of ethanol was heated under reflux for 3 h. The reaction mixture was concentrated under reduced pressure, cooled and poured over 50 ml of distilled water. The precipitate was filtered and dried in oven on 333 K. The dried crude product was recrystallized in ethanol to obtain colourless needles of I.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93-0.96Å, N–H = 0.86Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound showing that molecules form one dimensional polymeric chains along [0 1 0].
6-Chloro-N-(2-methoxyphenyl)pyridazin-3-amine top
Crystal data top
C11H10ClN3OF(000) = 976
Mr = 235.67Dx = 1.406 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 773 reflections
a = 14.6018 (5) Åθ = 2.4–25.3°
b = 10.8574 (3) ŵ = 0.32 mm1
c = 17.4630 (6) ÅT = 295 K
β = 126.438 (2)°Needle, colourless
V = 2227.29 (14) Å30.32 × 0.16 × 0.14 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4387 independent reflections
Radiation source: fine-focus sealed tube2815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.0 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 1718
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1312
Tmin = 0.938, Tmax = 0.957l = 2121
17904 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3696P]
where P = (Fo2 + 2Fc2)/3
4387 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H10ClN3OV = 2227.29 (14) Å3
Mr = 235.67Z = 8
Monoclinic, P2/cMo Kα radiation
a = 14.6018 (5) ŵ = 0.32 mm1
b = 10.8574 (3) ÅT = 295 K
c = 17.4630 (6) Å0.32 × 0.16 × 0.14 mm
β = 126.438 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4387 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2815 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.957Rint = 0.027
17904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
4387 reflectionsΔρmin = 0.21 e Å3
291 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46850 (6)0.13866 (5)0.05144 (5)0.0738 (2)
O10.24223 (15)0.23518 (15)0.32088 (12)0.0808 (7)
N10.36545 (16)0.13820 (14)0.13098 (13)0.0619 (6)
N20.32177 (15)0.08784 (14)0.17449 (13)0.0607 (7)
N30.28781 (15)0.08591 (15)0.23280 (13)0.0659 (7)
C10.40898 (17)0.06681 (16)0.10082 (14)0.0523 (7)
C20.41035 (19)0.06066 (17)0.10578 (15)0.0626 (8)
C30.3676 (2)0.11179 (16)0.14842 (16)0.0645 (9)
C40.32520 (17)0.03400 (16)0.18478 (14)0.0528 (7)
C50.23884 (17)0.0334 (2)0.27383 (15)0.0622 (8)
C60.2125 (2)0.0903 (2)0.26998 (19)0.0792 (10)
C70.1651 (3)0.1314 (3)0.3150 (2)0.1053 (16)
C80.1428 (3)0.0507 (3)0.3617 (2)0.1073 (14)
C90.1660 (2)0.0735 (3)0.36443 (19)0.0881 (11)
C100.21385 (19)0.1147 (2)0.32131 (16)0.0673 (9)
C110.2238 (3)0.3246 (3)0.3706 (2)0.0938 (11)
Cl20.56300 (6)0.35556 (5)0.46367 (4)0.0777 (2)
O20.08261 (14)0.73892 (13)0.00138 (12)0.0856 (7)
N40.40277 (16)0.36064 (13)0.28154 (14)0.0582 (7)
N50.32848 (15)0.41352 (13)0.19496 (13)0.0575 (6)
N60.25123 (16)0.59100 (15)0.10279 (14)0.0722 (7)
C120.47012 (18)0.42988 (16)0.35550 (15)0.0537 (7)
C130.47274 (19)0.55815 (17)0.35300 (17)0.0622 (8)
C140.3991 (2)0.61149 (17)0.26792 (17)0.0655 (9)
C150.32556 (18)0.53634 (16)0.18843 (16)0.0550 (8)
C160.15632 (19)0.54289 (18)0.01765 (16)0.0592 (8)
C170.1480 (2)0.4246 (2)0.01534 (18)0.0705 (9)
C180.0498 (3)0.3871 (2)0.10086 (19)0.0834 (10)
C190.0397 (2)0.4662 (3)0.15407 (19)0.0842 (11)
C200.0322 (2)0.5845 (2)0.12320 (19)0.0760 (10)
C210.0649 (2)0.62309 (19)0.03823 (17)0.0633 (9)
C220.0100 (3)0.8233 (3)0.0472 (2)0.1089 (13)
H20.439540.108600.080750.0752*
H30.295700.164580.238900.0791*
H3A0.366090.196880.153700.0775*
H60.226450.145660.237380.0949*
H70.148640.214510.313190.1261*
H80.111790.079230.391900.1288*
H90.149200.128550.395290.1058*
H11A0.264400.300600.436070.1408*
H11B0.143940.329690.342100.1408*
H11C0.250740.403450.366950.1408*
H6A0.264580.667530.100450.0866*
H130.522900.604330.407460.0747*
H140.396820.696720.261670.0786*
H170.208600.370190.020140.0846*
H180.044630.307240.122430.1002*
H190.105760.439860.211250.1013*
H200.092900.638510.159780.0912*
H22A0.073630.787080.052660.1638*
H22B0.031180.842050.109510.1638*
H22C0.012300.897540.010380.1638*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1073 (5)0.0477 (3)0.0915 (4)0.0106 (3)0.0727 (4)0.0023 (3)
O10.1095 (13)0.0681 (10)0.0948 (12)0.0036 (9)0.0771 (11)0.0063 (9)
N10.0869 (13)0.0357 (8)0.0751 (12)0.0041 (8)0.0547 (11)0.0027 (8)
N20.0787 (13)0.0389 (8)0.0778 (13)0.0060 (8)0.0537 (11)0.0029 (8)
N30.0868 (14)0.0455 (9)0.0894 (14)0.0022 (9)0.0654 (12)0.0000 (9)
C10.0654 (13)0.0360 (9)0.0545 (13)0.0019 (9)0.0350 (11)0.0012 (9)
C20.0921 (17)0.0368 (9)0.0779 (16)0.0039 (10)0.0608 (14)0.0000 (10)
C30.0981 (18)0.0305 (9)0.0837 (16)0.0042 (10)0.0642 (15)0.0031 (10)
C40.0581 (13)0.0406 (10)0.0582 (13)0.0001 (9)0.0338 (11)0.0015 (9)
C50.0549 (13)0.0675 (13)0.0651 (14)0.0018 (10)0.0361 (12)0.0015 (11)
C60.0869 (18)0.0732 (15)0.099 (2)0.0176 (13)0.0670 (17)0.0098 (14)
C70.120 (3)0.100 (2)0.129 (3)0.0425 (18)0.092 (2)0.0195 (19)
C80.121 (2)0.129 (3)0.112 (2)0.048 (2)0.091 (2)0.026 (2)
C90.0869 (19)0.113 (2)0.0851 (19)0.0225 (16)0.0623 (17)0.0181 (16)
C100.0607 (15)0.0811 (16)0.0631 (15)0.0031 (12)0.0384 (13)0.0040 (12)
C110.122 (2)0.0861 (18)0.097 (2)0.0192 (16)0.0780 (19)0.0074 (15)
Cl20.1150 (5)0.0491 (3)0.0793 (4)0.0085 (3)0.0634 (4)0.0085 (3)
O20.0938 (13)0.0507 (9)0.0976 (12)0.0108 (8)0.0489 (11)0.0039 (8)
N40.0806 (13)0.0349 (8)0.0777 (13)0.0005 (8)0.0572 (11)0.0002 (9)
N50.0726 (12)0.0352 (8)0.0763 (12)0.0019 (8)0.0505 (11)0.0007 (8)
N60.0799 (14)0.0406 (9)0.0811 (14)0.0046 (9)0.0397 (12)0.0088 (9)
C120.0736 (14)0.0378 (9)0.0731 (14)0.0029 (9)0.0564 (13)0.0027 (10)
C130.0846 (16)0.0377 (10)0.0767 (16)0.0088 (10)0.0546 (14)0.0064 (10)
C140.0877 (17)0.0320 (9)0.0839 (17)0.0032 (10)0.0549 (15)0.0024 (10)
C150.0677 (14)0.0369 (10)0.0758 (15)0.0039 (9)0.0510 (13)0.0006 (10)
C160.0677 (15)0.0510 (11)0.0696 (15)0.0030 (11)0.0466 (13)0.0021 (11)
C170.0809 (17)0.0608 (13)0.0805 (17)0.0063 (12)0.0537 (15)0.0031 (12)
C180.106 (2)0.0732 (15)0.0828 (19)0.0028 (15)0.0625 (19)0.0188 (14)
C190.0857 (19)0.093 (2)0.0746 (18)0.0053 (16)0.0480 (16)0.0130 (15)
C200.0761 (18)0.0790 (16)0.0781 (18)0.0104 (13)0.0487 (16)0.0077 (14)
C210.0755 (16)0.0548 (12)0.0738 (16)0.0020 (11)0.0521 (15)0.0042 (11)
C220.116 (2)0.0680 (16)0.137 (3)0.0319 (16)0.072 (2)0.0163 (17)
Geometric parameters (Å, º) top
Cl1—C11.731 (3)C2—H20.9300
Cl2—C121.737 (2)C3—H3A0.9300
O1—C101.374 (3)C6—H60.9300
O1—C111.431 (4)C7—H70.9300
O2—C211.366 (3)C8—H80.9300
O2—C221.422 (4)C9—H90.9300
N1—N21.363 (3)C11—H11B0.9600
N1—C11.296 (3)C11—H11C0.9600
N2—C41.332 (2)C11—H11A0.9600
N3—C51.399 (4)C12—C131.395 (3)
N3—C41.365 (3)C13—C141.342 (3)
N3—H30.8600C14—C151.405 (3)
N4—N51.358 (3)C16—C211.395 (4)
N4—C121.301 (3)C16—C171.383 (3)
N5—C151.337 (2)C17—C181.381 (4)
N6—C151.356 (3)C18—C191.366 (5)
N6—C161.399 (3)C19—C201.372 (4)
N6—H6A0.8600C20—C211.374 (4)
C1—C21.386 (3)C13—H130.9300
C2—C31.343 (4)C14—H140.9300
C3—C41.402 (4)C17—H170.9300
C5—C101.400 (4)C18—H180.9300
C5—C61.388 (3)C19—H190.9300
C6—C71.394 (5)C20—H200.9300
C7—C81.362 (5)C22—H22A0.9600
C8—C91.384 (5)C22—H22B0.9600
C9—C101.371 (4)C22—H22C0.9600
C10—O1—C11118.5 (3)H11B—C11—H11C109.00
C21—O2—C22118.5 (2)H11A—C11—H11B110.00
N2—N1—C1119.43 (16)O1—C11—H11B109.00
N1—N2—C4118.8 (2)O1—C11—H11C109.00
C4—N3—C5131.21 (18)H11A—C11—H11C109.00
C5—N3—H3114.00O1—C11—H11A109.00
C4—N3—H3114.00N4—C12—C13124.4 (2)
N5—N4—C12119.61 (15)Cl2—C12—N4116.94 (14)
N4—N5—C15118.73 (17)Cl2—C12—C13118.68 (17)
C15—N6—C16130.36 (18)C12—C13—C14116.5 (2)
C15—N6—H6A115.00C13—C14—C15118.86 (18)
C16—N6—H6A115.00N5—C15—C14121.9 (2)
N1—C1—C2124.3 (2)N6—C15—C14118.47 (17)
Cl1—C1—C2119.2 (2)N5—C15—N6119.65 (19)
Cl1—C1—N1116.44 (15)C17—C16—C21118.5 (2)
C1—C2—C3116.9 (2)N6—C16—C17125.2 (2)
C2—C3—C4118.53 (18)N6—C16—C21116.29 (19)
N2—C4—C3121.9 (2)C16—C17—C18120.1 (3)
N3—C4—C3118.34 (17)C17—C18—C19120.6 (2)
N2—C4—N3119.8 (2)C18—C19—C20120.0 (3)
N3—C5—C10116.0 (2)C19—C20—C21120.0 (3)
N3—C5—C6125.5 (2)C16—C21—C20120.7 (2)
C6—C5—C10118.5 (3)O2—C21—C16114.2 (2)
C5—C6—C7119.9 (3)O2—C21—C20125.1 (2)
C6—C7—C8120.5 (3)C12—C13—H13122.00
C7—C8—C9120.5 (4)C14—C13—H13122.00
C8—C9—C10119.5 (3)C13—C14—H14121.00
C5—C10—C9121.1 (2)C15—C14—H14121.00
O1—C10—C9124.6 (3)C16—C17—H17120.00
O1—C10—C5114.3 (2)C18—C17—H17120.00
C1—C2—H2122.00C17—C18—H18120.00
C3—C2—H2122.00C19—C18—H18120.00
C4—C3—H3A121.00C18—C19—H19120.00
C2—C3—H3A121.00C20—C19—H19120.00
C7—C6—H6120.00C19—C20—H20120.00
C5—C6—H6120.00C21—C20—H20120.00
C6—C7—H7120.00O2—C22—H22A109.00
C8—C7—H7120.00O2—C22—H22B109.00
C7—C8—H8120.00O2—C22—H22C109.00
C9—C8—H8120.00H22A—C22—H22B109.00
C8—C9—H9120.00H22A—C22—H22C110.00
C10—C9—H9120.00H22B—C22—H22C110.00
C11—O1—C10—C5177.8 (2)N3—C5—C6—C7179.2 (3)
C11—O1—C10—C91.7 (4)C10—C5—C6—C71.7 (4)
C22—O2—C21—C16172.8 (3)N3—C5—C10—O10.4 (3)
C22—O2—C21—C208.1 (5)C6—C5—C10—C91.0 (4)
N2—N1—C1—C23.0 (3)N3—C5—C10—C9179.8 (2)
C1—N1—N2—C40.0 (3)C6—C5—C10—O1179.6 (2)
N2—N1—C1—Cl1177.09 (16)C5—C6—C7—C81.0 (5)
N1—N2—C4—C32.9 (3)C6—C7—C8—C90.6 (5)
N1—N2—C4—N3176.4 (2)C7—C8—C9—C101.3 (5)
C5—N3—C4—C3177.8 (2)C8—C9—C10—O1178.9 (3)
C5—N3—C4—N22.9 (4)C8—C9—C10—C50.5 (4)
C4—N3—C5—C63.1 (4)Cl2—C12—C13—C14179.7 (3)
C4—N3—C5—C10177.8 (2)N4—C12—C13—C140.8 (5)
C12—N4—N5—C151.0 (4)C12—C13—C14—C150.0 (5)
N5—N4—C12—Cl2179.8 (2)C13—C14—C15—N51.3 (5)
N5—N4—C12—C130.3 (5)C13—C14—C15—N6179.8 (3)
N4—N5—C15—C141.8 (4)N6—C16—C17—C18179.9 (3)
N4—N5—C15—N6179.4 (3)C21—C16—C17—C181.4 (5)
C15—N6—C16—C1735.8 (5)N6—C16—C21—O20.8 (4)
C16—N6—C15—N514.6 (5)N6—C16—C21—C20180.0 (3)
C16—N6—C15—C14166.5 (3)C17—C16—C21—O2177.8 (3)
C15—N6—C16—C21145.7 (3)C17—C16—C21—C201.4 (5)
Cl1—C1—C2—C3177.19 (19)C16—C17—C18—C190.5 (6)
N1—C1—C2—C32.9 (4)C17—C18—C19—C200.6 (6)
C1—C2—C3—C40.1 (4)C18—C19—C20—C210.7 (5)
C2—C3—C4—N3176.3 (2)C19—C20—C21—O2178.8 (3)
C2—C3—C4—N23.0 (4)C19—C20—C21—C160.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.862.142.579 (3)111
N3—H3···N40.862.483.278 (2)155
N6—H6A···N1i0.862.443.270 (3)161
C2—H2···Cl2ii0.932.793.526 (2)137
C3—H3A···N50.932.613.503 (3)161
C6—H6···N20.932.312.913 (4)122
C17—H17···N50.932.502.992 (3)113
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10ClN3O
Mr235.67
Crystal system, space groupMonoclinic, P2/c
Temperature (K)295
a, b, c (Å)14.6018 (5), 10.8574 (3), 17.4630 (6)
β (°) 126.438 (2)
V3)2227.29 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.32 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.938, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
17904, 4387, 2815
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.03
No. of reflections4387
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.862.142.579 (3)111
N3—H3···N40.862.483.278 (2)155
N6—H6A···N1i0.862.443.270 (3)161
C2—H2···Cl2ii0.932.793.526 (2)137
C3—H3A···N50.932.613.503 (3)161
C6—H6···N20.932.312.913 (4)122
C17—H17···N50.932.502.992 (3)113
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o2107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66, o2499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2011). Acta Cryst. E67, o1020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o438-o439
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds