metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyridinium bis­­(pyridine-2,6-di­carboxyl­ato)ferrate(III)

aDepartment of Chemistry, Ferdowsi University of Mashhad, 917791436 Mashhad, Iran, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mirzaeesh@um.ac.ir, joelt@tulane.edu

(Received 9 January 2012; accepted 12 January 2012; online 21 January 2012)

In the title compound, (C5H7N2)[Fe(C7H3NO4)2] or [2-apyH][Fe(pydc)2], the asymmetric unit contains an [Fe(pydc)2] (pydc is pyridine-2,6-dicarboxyl­ate) anion and a protonated 2-amino­pyridine cation ([2-apyH]+). The complex anion contains an FeIII atom within a distorted octahedral FeN2O4 coordination geometry. N—H⋯O and C—H⋯O hydrogen bonding, offset ππ stacking [centroid–centroid distance = 3.805 (13) Å] and C=O⋯π inter­actions [3.494 (14) Å] generate a three-dimensional network structure.

Related literature

For related structures, see: Mirzaei et al. (2011[Mirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580-607.]); Eshtiagh-Hosseini et al. (2010[Eshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187-3197.], 2011[Eshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. & Aghaei, R. (2011). J. Coord. Chem. 64, 3969-3979.]); Hseu et al. (1991[Hseu, J. F., Chen, J. J., Chuang, C. C., Wei, H. H., Cheng, M. C., Wang, Y. & Yao, Y. D. (1991). Inorg. Chim. Acta, 184, 1-5.]); Marsh (1993[Marsh, R. E. (1993). Acta Cryst. C49, 643.]); Aghabozorg, Nemati et al. (2007[Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2007). Acta Cryst. E63, m2921.]); Aghabozorg, Sadrkhanlou et al. (2007[Aghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760.]); Soleimannejad et al. (2010[Soleimannejad, J., Aghabozorg, H. & Sheshmani, S. (2010). Acta Cryst. E66, m411.]). For details on the importance of coordinative covalent bonds and weak inter­molecular forces in forming extended organized networks, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)[Fe(C7H3NO4)2]

  • Mr = 481.18

  • Orthorhombic, P b c a

  • a = 7.9288 (10) Å

  • b = 15.881 (2) Å

  • c = 30.069 (4) Å

  • V = 3786.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 100 K

  • 0.34 × 0.25 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2009[Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.]) Tmin = 0.696, Tmax = 0.932

  • 62788 measured reflections

  • 5007 independent reflections

  • 4354 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.05

  • 5007 reflections

  • 301 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.85 (2) 1.99 (2) 2.7786 (18) 153 (2)
N4—H4A⋯O2i 0.91 (3) 2.07 (3) 2.862 (2) 145 (2)
N4—H4B⋯O6ii 0.83 (2) 1.98 (2) 2.8045 (19) 171 (2)
C3—H3⋯O4ii 0.95 2.44 3.3466 (19) 159
C12—H12⋯O5iii 0.95 2.43 3.281 (2) 150
C10—H10⋯O1iv 0.95 2.58 3.2398 (19) 127
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) x-1, y, z; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For the synthesis of supramolecular systems, coordinative covalent bonds and weak intermolecular forces are important to the assembly into extended organized networks (Steiner, 2002). Our research group has worked on the synthesis of supramolecular systems including proton transfer compounds and their complexes and are exploring the role of non-covalent interactions such as hydrogen bonding, ion pairing and π-π stacking in constructing the supramolecular crystalline compounds and their metal complexes (Mirzaei et al., 2011; Eshtiagh-Hosseini et al., 2011, Eshtiagh-Hosseini, et al., 2010).

The asymmetric unit of the title compound (I) is shown in Fig. 1. The Fe atom is hexa-coordinated by two N and four O atoms from two (pydc)2– ions resulting in a distorted octahedral coordination environment. Although it would be reasonable to consider O1, O3, O5, and O7 as the equatorial "plane" and the N1 and N2 atoms to occupy the apical positions, the geometric constraints of the pydc2- ligand generate a considerable tetrahedral distortion of this "plane" as seen from the angles O1–Fe1–O3 and O5–Fe1–O7 which are, respectively 150.46 (5)° and 151.47 (5)°. Although the O1–Fe1–O3 and O5–Fe1–O7 planes are close to being orthogonal (dihedral angle = 88.49 (7)°), the remainder of the ligands are noticeably less so. In particular, the ligand containing N1 is folded along the O1···O3 line by 30.4 (1)° which is likely caused by a close contact with the carbonyl group containing O8 in the anion at 1 + x, y, z. This distortion is the largest of all those found in the related complexes [Cat][Fe(py-2,6-dc)2] (Cat = (H5O2) (Hseu et al., 1991, Marsh et al., 1993), 2,9-dimethyl-1,10-phenanthrolinium (Aghabozorg, Sadrkhanlou et al., 2007), piperazinium (Aghabozorg, Nemati et al., 2007), 4,4'-bipyridinium (Soleimannejad et al., 2010), 2-aminopyrimidinium (Eshtiagh-Hosseini et al., 2011)).

The solid state architecture of I is generated via intermolecular N–H···O and C–H···O hydrogen bonding (Table 1 and Fig. 2) having the graph-set motifs R44(24) and R21(6) as well as offset π-π stacking interactions between the pyridine unit containing N2 and the cation at 1 - x, -y, 1 - z (centroid-centroid distance = 3.805 (13) Å) and a C14O8···π interaction with the centroid of the pyridine ring containing N1 (3.494 (14) Å).

Related literature top

For related structures, see: Mirzaei et al. (2011); Eshtiagh-Hosseini et al. (2010, 2011); Hseu et al. (1991); Marsh (1993); Aghabozorg, Nemati et al. (2007); Aghabozorg, Sadrkhanlou et al. (2007); Soleimannejad et al. (2010). For details on the importance of coordinative covalent bonds and weak intermolecular forces in forming extended organized networks, see: Steiner (2002). For graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

A solution of 2-aminopyridine (0.06 g, 0.60 mmol) and pyridine-2,6-dicarboxylic acid (0.05 g, 0.30 mmol) was refluxed for 1 h. Then a solution of FeCl3.6H2O (0.04 g, 0.15 mmol) was added dropwise and the refluxing continued for 6 hrs at 60°C. The resulting solution was light green in colour. After slow evaporation of solvent at laboratory temperature plate-like yellow crystals were collected.

Refinement top

The N-bound H atoms were located in a difference Fourier map and refined freely. The C-bound H-atoms were placed in calculated positions and treated as riding atoms, with C–H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of I with 50% probability ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Packing of I viewed down a with H-bonding interactions shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. H atoms not involved in hydrogen bonding are omitted. Key: Fe = brown, O = red, N = blue, C = grey, H = green.
2-Aminopyridinium bis(pyridine-2,6-dicarboxylato)ferrate(III) top
Crystal data top
(C5H7N2)[Fe(C7H3NO4)2]F(000) = 1960
Mr = 481.18Dx = 1.688 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9998 reflections
a = 7.9288 (10) Åθ = 2.7–29.0°
b = 15.881 (2) ŵ = 0.86 mm1
c = 30.069 (4) ÅT = 100 K
V = 3786.2 (8) Å3Plate, yellow
Z = 80.34 × 0.25 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5007 independent reflections
Radiation source: fine-focus sealed tube4354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 29.1°, θmin = 2.6°
Absorption correction: numerical
(SADABS; Sheldrick, 2009)
h = 1010
Tmin = 0.696, Tmax = 0.932k = 2121
62788 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.8224P]
where P = (Fo2 + 2Fc2)/3
5007 reflections(Δ/σ)max = 0.002
301 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C5H7N2)[Fe(C7H3NO4)2]V = 3786.2 (8) Å3
Mr = 481.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.9288 (10) ŵ = 0.86 mm1
b = 15.881 (2) ÅT = 100 K
c = 30.069 (4) Å0.34 × 0.25 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5007 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2009)
4354 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.932Rint = 0.051
62788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
5007 reflectionsΔρmin = 0.38 e Å3
301 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 °. in omega, colllected at phi = 0.00, 90.00 and 180.00 °. and 2 sets of 800 frames, each of width 0.45 ° in phi, collected at omega = -30.00 and 210.00 °. The scan time was 10 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Those attached to nitrogen were independently refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.59560 (3)0.000219 (13)0.381592 (7)0.01464 (7)
O10.71089 (13)0.10747 (7)0.40025 (3)0.0189 (2)
O20.86897 (14)0.21717 (7)0.37918 (4)0.0207 (2)
O30.57386 (14)0.09825 (7)0.33979 (4)0.0193 (2)
O40.58951 (16)0.14205 (7)0.26911 (4)0.0260 (3)
O50.72260 (13)0.06573 (7)0.42789 (4)0.0200 (2)
O60.71032 (17)0.14212 (9)0.49034 (4)0.0340 (3)
O70.38240 (14)0.05590 (7)0.35875 (4)0.0203 (2)
O80.09948 (14)0.06009 (8)0.36268 (4)0.0282 (3)
N10.71877 (15)0.03920 (8)0.32474 (4)0.0151 (2)
N20.41237 (15)0.03392 (8)0.42709 (4)0.0155 (2)
C10.79204 (18)0.15161 (9)0.37119 (5)0.0169 (3)
C20.78632 (17)0.11562 (9)0.32459 (5)0.0152 (3)
C30.83948 (19)0.15243 (10)0.28506 (5)0.0182 (3)
H30.88710.20730.28460.022*
C40.8203 (2)0.10578 (10)0.24610 (5)0.0207 (3)
H40.85470.12930.21850.025*
C50.7509 (2)0.02482 (9)0.24716 (5)0.0196 (3)
H50.73880.00750.22080.024*
C60.70041 (18)0.00665 (9)0.28810 (5)0.0165 (3)
C70.61493 (19)0.09005 (9)0.29832 (5)0.0182 (3)
C80.6451 (2)0.09916 (10)0.46131 (5)0.0205 (3)
C90.4578 (2)0.08052 (10)0.46189 (5)0.0182 (3)
C100.3381 (2)0.10642 (11)0.49278 (5)0.0242 (3)
H100.36920.13830.51820.029*
C110.1704 (2)0.08385 (11)0.48508 (6)0.0278 (4)
H110.08580.10090.50560.033*
C120.1253 (2)0.03686 (11)0.44795 (6)0.0244 (3)
H120.01090.02240.44230.029*
C130.25309 (19)0.01181 (10)0.41939 (5)0.0178 (3)
C140.23732 (19)0.03925 (10)0.37688 (5)0.0192 (3)
N30.69376 (17)0.22722 (8)0.63929 (4)0.0190 (3)
H3A0.589 (3)0.2371 (14)0.6420 (7)0.030 (6)*
N40.6725 (2)0.28438 (10)0.56932 (5)0.0301 (3)
H4A0.561 (3)0.2940 (15)0.5747 (8)0.043 (7)*
H4B0.712 (3)0.3010 (15)0.5452 (8)0.039 (6)*
C150.7672 (2)0.24858 (9)0.60028 (5)0.0212 (3)
C160.9402 (2)0.22941 (10)0.59494 (6)0.0276 (4)
H160.99630.24330.56800.033*
C171.0264 (2)0.19094 (11)0.62851 (7)0.0288 (4)
H171.14210.17720.62460.035*
C180.9461 (2)0.17143 (11)0.66875 (6)0.0264 (3)
H181.00670.14560.69240.032*
C190.7792 (2)0.19028 (10)0.67326 (5)0.0218 (3)
H190.72250.17750.70030.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01050 (11)0.01760 (12)0.01583 (12)0.00026 (7)0.00200 (7)0.00414 (7)
O10.0182 (5)0.0206 (5)0.0178 (5)0.0026 (4)0.0036 (4)0.0010 (4)
O20.0186 (5)0.0173 (5)0.0261 (6)0.0019 (4)0.0028 (4)0.0004 (4)
O30.0194 (5)0.0171 (5)0.0214 (5)0.0013 (4)0.0020 (4)0.0041 (4)
O40.0326 (7)0.0191 (6)0.0264 (6)0.0023 (5)0.0022 (5)0.0028 (4)
O50.0121 (5)0.0254 (6)0.0225 (5)0.0011 (4)0.0011 (4)0.0070 (4)
O60.0318 (7)0.0410 (7)0.0292 (6)0.0014 (6)0.0093 (5)0.0163 (6)
O70.0160 (5)0.0248 (6)0.0199 (5)0.0043 (4)0.0001 (4)0.0054 (4)
O80.0168 (6)0.0336 (7)0.0342 (7)0.0092 (5)0.0079 (5)0.0039 (5)
N10.0108 (5)0.0165 (6)0.0180 (6)0.0019 (5)0.0024 (4)0.0023 (4)
N20.0119 (6)0.0195 (6)0.0152 (6)0.0014 (5)0.0005 (4)0.0000 (5)
C10.0122 (6)0.0178 (7)0.0206 (7)0.0029 (5)0.0022 (5)0.0023 (5)
C20.0105 (6)0.0165 (7)0.0186 (7)0.0017 (5)0.0021 (5)0.0022 (5)
C30.0146 (7)0.0178 (7)0.0222 (7)0.0007 (5)0.0026 (5)0.0047 (5)
C40.0207 (7)0.0234 (7)0.0179 (7)0.0017 (6)0.0056 (6)0.0051 (6)
C50.0208 (7)0.0196 (7)0.0184 (7)0.0029 (6)0.0034 (6)0.0008 (6)
C60.0131 (6)0.0165 (7)0.0199 (7)0.0026 (5)0.0016 (5)0.0015 (5)
C70.0152 (7)0.0161 (7)0.0234 (7)0.0022 (5)0.0014 (6)0.0025 (5)
C80.0190 (7)0.0228 (7)0.0198 (7)0.0016 (6)0.0036 (6)0.0044 (6)
C90.0189 (7)0.0203 (7)0.0153 (7)0.0038 (6)0.0004 (5)0.0008 (5)
C100.0296 (9)0.0250 (8)0.0180 (7)0.0064 (7)0.0055 (6)0.0020 (6)
C110.0241 (8)0.0305 (9)0.0289 (8)0.0085 (7)0.0144 (7)0.0030 (7)
C120.0137 (7)0.0286 (8)0.0310 (8)0.0035 (6)0.0064 (6)0.0081 (7)
C130.0116 (6)0.0204 (7)0.0215 (7)0.0006 (5)0.0006 (5)0.0049 (5)
C140.0151 (7)0.0208 (7)0.0218 (7)0.0030 (6)0.0020 (5)0.0044 (6)
N30.0149 (6)0.0207 (6)0.0214 (6)0.0011 (5)0.0045 (5)0.0024 (5)
N40.0420 (10)0.0285 (8)0.0197 (7)0.0062 (7)0.0093 (6)0.0062 (6)
C150.0270 (8)0.0136 (7)0.0228 (8)0.0013 (6)0.0083 (6)0.0000 (5)
C160.0289 (9)0.0194 (8)0.0344 (9)0.0062 (7)0.0188 (7)0.0033 (6)
C170.0164 (8)0.0205 (8)0.0494 (11)0.0024 (6)0.0084 (7)0.0074 (7)
C180.0189 (8)0.0239 (8)0.0365 (9)0.0012 (6)0.0024 (7)0.0004 (7)
C190.0182 (7)0.0233 (8)0.0239 (8)0.0004 (6)0.0007 (6)0.0028 (6)
Geometric parameters (Å, º) top
Fe1—O52.0122 (11)C5—H50.9500
Fe1—O12.0128 (11)C6—C71.519 (2)
Fe1—O32.0137 (11)C8—C91.514 (2)
Fe1—O72.0277 (11)C9—C101.390 (2)
Fe1—N12.0638 (12)C10—C111.396 (3)
Fe1—N22.0679 (12)C10—H100.9500
O1—C11.2919 (18)C11—C121.390 (3)
O2—C11.2305 (19)C11—H110.9500
O3—C71.2954 (19)C12—C131.387 (2)
O4—C71.2221 (19)C12—H120.9500
O5—C81.2920 (19)C13—C141.519 (2)
O6—C81.2227 (19)N3—C151.353 (2)
O7—C141.3002 (19)N3—C191.359 (2)
O8—C141.2192 (19)N3—H3A0.85 (2)
N1—C21.3266 (19)N4—C151.324 (2)
N1—C61.3287 (19)N4—H4A0.91 (3)
N2—C131.3311 (19)N4—H4B0.83 (2)
N2—C91.3316 (19)C15—C161.414 (2)
C1—C21.514 (2)C16—C171.364 (3)
C2—C31.390 (2)C16—H160.9500
C3—C41.395 (2)C17—C181.402 (3)
C3—H30.9500C17—H170.9500
C4—C51.399 (2)C18—C191.363 (2)
C4—H40.9500C18—H180.9500
C5—C61.388 (2)C19—H190.9500
O5—Fe1—O191.17 (5)O4—C7—C6121.15 (14)
O5—Fe1—O394.04 (5)O3—C7—C6113.23 (13)
O1—Fe1—O3150.46 (4)O6—C8—O5125.69 (15)
O5—Fe1—O7151.47 (4)O6—C8—C9121.04 (15)
O1—Fe1—O795.97 (5)O5—C8—C9113.27 (13)
O3—Fe1—O793.20 (5)N2—C9—C10120.29 (15)
O5—Fe1—N1119.50 (5)N2—C9—C8111.41 (13)
O1—Fe1—N176.24 (5)C10—C9—C8128.29 (15)
O3—Fe1—N175.90 (5)C9—C10—C11117.61 (15)
O7—Fe1—N189.03 (5)C9—C10—H10121.2
O5—Fe1—N275.96 (5)C11—C10—H10121.2
O1—Fe1—N2110.89 (5)C12—C11—C10121.09 (15)
O3—Fe1—N298.58 (5)C12—C11—H11119.5
O7—Fe1—N275.68 (5)C10—C11—H11119.5
N1—Fe1—N2163.55 (5)C13—C12—C11117.59 (15)
C1—O1—Fe1119.79 (10)C13—C12—H12121.2
C7—O3—Fe1120.09 (10)C11—C12—H12121.2
C8—O5—Fe1120.93 (10)N2—C13—C12120.67 (15)
C14—O7—Fe1120.45 (10)N2—C13—C14111.43 (13)
C2—N1—C6122.87 (13)C12—C13—C14127.89 (15)
C2—N1—Fe1117.92 (10)O8—C14—O7126.22 (15)
C6—N1—Fe1118.08 (10)O8—C14—C13120.90 (15)
C13—N2—C9122.70 (13)O7—C14—C13112.88 (13)
C13—N2—Fe1118.84 (10)C15—N3—C19123.04 (14)
C9—N2—Fe1118.39 (10)C15—N3—H3A117.3 (15)
O2—C1—O1125.02 (14)C19—N3—H3A119.6 (15)
O2—C1—C2121.01 (13)C15—N4—H4A119.9 (15)
O1—C1—C2113.98 (13)C15—N4—H4B122.3 (16)
N1—C2—C3120.67 (14)H4A—N4—H4B118 (2)
N1—C2—C1110.75 (12)N4—C15—N3118.23 (15)
C3—C2—C1128.58 (14)N4—C15—C16124.22 (16)
C2—C3—C4117.51 (14)N3—C15—C16117.53 (16)
C2—C3—H3121.2C17—C16—C15119.88 (15)
C4—C3—H3121.2C17—C16—H16120.1
C3—C4—C5120.81 (14)C15—C16—H16120.1
C3—C4—H4119.6C16—C17—C18120.70 (16)
C5—C4—H4119.6C16—C17—H17119.7
C6—C5—C4117.69 (14)C18—C17—H17119.7
C6—C5—H5121.2C19—C18—C17118.55 (17)
C4—C5—H5121.2C19—C18—H18120.7
N1—C6—C5120.44 (13)C17—C18—H18120.7
N1—C6—C7111.03 (13)N3—C19—C18120.28 (15)
C5—C6—C7128.48 (14)N3—C19—H19119.9
O4—C7—O3125.61 (14)C18—C19—H19119.9
O5—Fe1—O1—C1124.47 (11)N1—C2—C3—C40.5 (2)
O3—Fe1—O1—C124.16 (16)C1—C2—C3—C4179.94 (14)
O7—Fe1—O1—C183.20 (11)C2—C3—C4—C50.4 (2)
N1—Fe1—O1—C14.33 (11)C3—C4—C5—C60.8 (2)
N2—Fe1—O1—C1160.13 (10)C2—N1—C6—C50.7 (2)
O5—Fe1—O3—C7130.21 (11)Fe1—N1—C6—C5166.92 (11)
O1—Fe1—O3—C730.65 (16)C2—N1—C6—C7178.35 (12)
O7—Fe1—O3—C777.40 (11)Fe1—N1—C6—C710.74 (15)
N1—Fe1—O3—C710.79 (11)C4—C5—C6—N10.3 (2)
N2—Fe1—O3—C7153.40 (11)C4—C5—C6—C7176.96 (14)
O1—Fe1—O5—C8113.09 (12)Fe1—O3—C7—O4171.34 (12)
O3—Fe1—O5—C896.00 (12)Fe1—O3—C7—C68.32 (16)
O7—Fe1—O5—C88.31 (18)N1—C6—C7—O4178.53 (14)
N1—Fe1—O5—C8172.08 (11)C5—C6—C7—O44.0 (2)
N2—Fe1—O5—C81.84 (12)N1—C6—C7—O31.79 (18)
O5—Fe1—O7—C1414.53 (18)C5—C6—C7—O3175.64 (15)
O1—Fe1—O7—C14118.14 (11)Fe1—O5—C8—O6177.84 (14)
O3—Fe1—O7—C1489.99 (12)Fe1—O5—C8—C91.99 (18)
N1—Fe1—O7—C14165.81 (12)C13—N2—C9—C101.8 (2)
N2—Fe1—O7—C148.06 (11)Fe1—N2—C9—C10178.61 (12)
O5—Fe1—N1—C293.42 (11)C13—N2—C9—C8177.56 (14)
O1—Fe1—N1—C29.99 (10)Fe1—N2—C9—C80.72 (17)
O3—Fe1—N1—C2179.94 (11)O6—C8—C9—N2179.09 (15)
O7—Fe1—N1—C286.39 (11)O5—C8—C9—N20.76 (19)
N2—Fe1—N1—C2107.84 (19)O6—C8—C9—C100.2 (3)
O5—Fe1—N1—C698.35 (11)O5—C8—C9—C10179.99 (16)
O1—Fe1—N1—C6178.22 (11)N2—C9—C10—C111.8 (2)
O3—Fe1—N1—C611.71 (10)C8—C9—C10—C11177.39 (16)
O7—Fe1—N1—C681.84 (11)C9—C10—C11—C120.3 (3)
N2—Fe1—N1—C660.4 (2)C10—C11—C12—C131.3 (3)
O5—Fe1—N2—C13178.28 (12)C9—N2—C13—C120.1 (2)
O1—Fe1—N2—C1395.90 (12)Fe1—N2—C13—C12176.91 (12)
O3—Fe1—N2—C1386.23 (12)C9—N2—C13—C14178.55 (13)
O7—Fe1—N2—C134.90 (11)Fe1—N2—C13—C141.72 (17)
N1—Fe1—N2—C1317.3 (3)C11—C12—C13—N21.4 (2)
O5—Fe1—N2—C91.31 (11)C11—C12—C13—C14179.82 (15)
O1—Fe1—N2—C987.13 (12)Fe1—O7—C14—O8170.02 (13)
O3—Fe1—N2—C990.74 (12)Fe1—O7—C14—C139.43 (17)
O7—Fe1—N2—C9178.13 (12)N2—C13—C14—O8174.77 (15)
N1—Fe1—N2—C9159.71 (16)C12—C13—C14—O83.7 (3)
Fe1—O1—C1—O2178.75 (12)N2—C13—C14—O74.71 (18)
Fe1—O1—C1—C21.11 (16)C12—C13—C14—O7176.78 (15)
C6—N1—C2—C31.1 (2)C19—N3—C15—N4179.95 (15)
Fe1—N1—C2—C3166.53 (11)C19—N3—C15—C161.4 (2)
C6—N1—C2—C1179.40 (13)N4—C15—C16—C17178.71 (16)
Fe1—N1—C2—C112.98 (15)N3—C15—C16—C170.1 (2)
O2—C1—C2—N1170.78 (13)C15—C16—C17—C181.2 (3)
O1—C1—C2—N19.09 (17)C16—C17—C18—C191.2 (3)
O2—C1—C2—C39.8 (2)C15—N3—C19—C181.3 (2)
O1—C1—C2—C3170.37 (14)C17—C18—C19—N30.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.85 (2)1.99 (2)2.7786 (18)153 (2)
N4—H4A···O2i0.91 (3)2.07 (3)2.862 (2)145 (2)
N4—H4B···O6ii0.83 (2)1.98 (2)2.8045 (19)171 (2)
C3—H3···O4ii0.952.443.3466 (19)159
C12—H12···O5iii0.952.433.281 (2)150
C10—H10···O1iv0.952.583.2398 (19)127
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z; (iii) x1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C5H7N2)[Fe(C7H3NO4)2]
Mr481.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.9288 (10), 15.881 (2), 30.069 (4)
V3)3786.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.34 × 0.25 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2009)
Tmin, Tmax0.696, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
62788, 5007, 4354
Rint0.051
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.05
No. of reflections5007
No. of parameters301
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.38

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.85 (2)1.99 (2)2.7786 (18)153 (2)
N4—H4A···O2i0.91 (3)2.07 (3)2.862 (2)145 (2)
N4—H4B···O6ii0.83 (2)1.98 (2)2.8045 (19)171 (2)
C3—H3···O4ii0.952.443.3466 (19)159
C12—H12···O5iii0.952.433.281 (2)150
C10—H10···O1iv0.952.583.2398 (19)127
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z; (iii) x1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

The authors express their appreciation to the Ferdowsi University of Mashhad for financial support of this research paper (grant No. P/18).

References

First citationAghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2007). Acta Cryst. E63, m2921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. & Aghaei, R. (2011). J. Coord. Chem. 64, 3969–3979.  CAS Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187–3197.  CAS Google Scholar
First citationHseu, J. F., Chen, J. J., Chuang, C. C., Wei, H. H., Cheng, M. C., Wang, Y. & Yao, Y. D. (1991). Inorg. Chim. Acta, 184, 1–5.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarsh, R. E. (1993). Acta Cryst. C49, 643.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580–607.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSoleimannejad, J., Aghabozorg, H. & Sheshmani, S. (2010). Acta Cryst. E66, m411.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds